Skip to main content
Log in

Nonlinear Effects in Gluon Distribution Predicted by GLR-MQ Evolution Equation at Next-to-leading Order in LHC Data

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this work we have solved the nonlinear GLR-MQ evolution equation upto next-to-leading order (NLO) by considering NLO terms of the gluon-gluon splitting functions and running coupling constant α s (Q 2). Here, we have incorporated a Regge-like behaviour of gluon distribution in order to obtain a solution of the GLR-MQ equation in the range of 5G e V 2Q 2 ≤ 25G e V 2. We have studied the Q 2 evolution of the gluon distribution function G(x, Q 2) and its nonlinear effects at small-x. It can be observed from our analysis that the nonlinearities increase with decrease in the correlation radius R of two interacting gluons, as expected. We have compared our result of G(x, Q 2) as Q 2 increases and x decreases, for two different values of R, viz. R = 2G e V −1 and 5 G e V −1. We have also checked the sensitivity of the Regge intercept λ G on our results. We compare our computed results with those obtained by the global analysis to parton distribution functions (PDFs) by various collaborations where LHC data have been included viz. ABM12, CT14, MMHT14, PDF4LHC15, NNPDF3.0 and CJ15. Besides we have also shown comparison of our results with HERA PDF data viz. HERAPDF15.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Harris, J.W.: J. Phys. Conf. series 630, 012052 (2015)

    Article  Google Scholar 

  2. Frankfurt, L., Strikman, M., Weiss, C.: Ann. Rev. Nucl. Part. Sci. 55, 403 (2005)

    Article  ADS  Google Scholar 

  3. Fai, G., Qiu, J., Zhang, X.: J. Phys. G. Nucl. Part. Phys. S 1037, 30 (2004)

    Google Scholar 

  4. Ball, R.D., et al.: NNPDF collaboration. J. High Energ. Phys. 1504(040), 244–289 (2015)

    Google Scholar 

  5. Abramowicz, H., et al.: ZEUS Colalboration. Phys. Rev. D 89, 072007 (2014)

    Article  ADS  Google Scholar 

  6. Lykasov, G.I., et al.: V.A. Phys. Part. Nucl. 44, 568 (2013)

    Article  Google Scholar 

  7. Praszalowicz, M.: Acta. Phys. Pol. Supp. 2(399), 8 (2015)

    Google Scholar 

  8. Kovchegov, Y.V.: Int. J. Mod. Phys. Conf. Ser. 37, 1560054 (2015)

    Article  Google Scholar 

  9. Khanpour, H., Tehrani, S.A.: Phys. Rev. D 93, 014026 (2016)

    Article  ADS  Google Scholar 

  10. Wang, R., Chen, X., Fu, Q.: arXiv:1611.03670 [hep-ph]

  11. Blaizot, J.P.: Rep. Prog. Phys. 80, 032301 (2017). https://doi.org/10.1088/1361-6633/aa5435

    Article  ADS  MathSciNet  Google Scholar 

  12. Zhu, W., Lan, J.: arXiv:1702.02249v1 [hep-ph]

  13. Adloff, C., et al.: H1 collaboration. Phys. Lett. B 520, 183 (2001)

    Article  ADS  Google Scholar 

  14. Allasia, D. et al.: NMC Collaboration. Phys. Phys. Lett. B 258, 493 (2001)

    Article  ADS  Google Scholar 

  15. Aid, S., et al.: H1 Collaboration. Nucl. Phys. B 449, 3 (1995)

    Article  ADS  Google Scholar 

  16. Dokshitzer, Y.L.: Sov. Phys. JETP 46, 641 (1977)

    ADS  Google Scholar 

  17. Altarelli, G., Parisi, G.: Nucl. Phys. B 126, 298 (1977)

    Article  ADS  Google Scholar 

  18. Curci, G., Furmanski, W., Petronzio, R.: Nucl. Phys. B 175, 27 (1980)

    Article  ADS  Google Scholar 

  19. Furmanski, W., Petronzio, R.: Phys. Lett. B 97, 437 (1980)

    Article  ADS  Google Scholar 

  20. Gribov, V.N., Lipatov, L.N.: Sov. J. Nucl. Phys. 15, 438 (1972)

    Google Scholar 

  21. Cafarella, A., Coriano, C., Guzzi, M.: Nucl. Phys. B 748, 253 (2006)

    Article  ADS  Google Scholar 

  22. Devee, M., Baishya, R., Sarma, J.K.: Int. Phys. J. C 72, 2036 (2012). Ind. J. Phys., 86, 141 (2012)

    ADS  Google Scholar 

  23. Baishya, R., Sarma, J.K.: Eur. Phys. J. C 60, 585 (2009)

    Article  ADS  Google Scholar 

  24. Shah, N.H., Sarma, J.K.: Phys. Rev. D 77, 074023 (2008)

    Article  ADS  Google Scholar 

  25. Baishya, R., Jamil, U., Sarma, J.K.: Phys. Rev. D 79, 034030 (2009)

    Article  ADS  Google Scholar 

  26. Baruah, N., Nath, N.M., Sarma, J.K.: Int J Theor Phys 52, 2464 (2013)

    Article  Google Scholar 

  27. Ghaffari, G., Tazimi, N: Int. J. Theor. Phys. 53, 1832 (2014)

    Article  Google Scholar 

  28. Baruah, N., Sarma, J.K.: Int. J. Theor. Phys. 53, 2492 (2014)

    Article  Google Scholar 

  29. Rezaei, B., Boroun, G.R., Heidari, S.: Int. J. Theor. Phys. 56, 1646 (2017)

    Article  Google Scholar 

  30. Nath, N.M., Sarma, J.K.: Int. J. Theor. Phys. 56, 1456 (2017)

    Article  Google Scholar 

  31. Froissart, M.: Phys. Rev. 123, 1053 (1961)

    Article  ADS  Google Scholar 

  32. Martin, A.: Phys. Rev. 129, 1432 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  33. Martin, A.D., Roberts, R.G., Stirling, W.J., Thorne, R.S.: Eur. Phys. J. C 23, 73 (2002)

    Article  ADS  Google Scholar 

  34. Martin, A.D., Roberts, R.G., Stirling, W.J., Thorne, R.S.: Phys. Lett. B 531, 216 (2002)

    Article  ADS  Google Scholar 

  35. Pumplin, J., et al.: J. High Energy Phys. 07, 012 (2002)

    Article  ADS  Google Scholar 

  36. Eskola, K.J., et al.: Nucl. Phys. B. 600, 221 (2003)

    Google Scholar 

  37. Gribov, L.V., Levin, E.M., Ryskin, M.G.: Phys. Rep. 100, 1 (1983)

    Article  ADS  Google Scholar 

  38. Mueller, A.H., et al.: Nucl. Phys. B. 268, 427 (1986)

    Article  ADS  Google Scholar 

  39. Mueller, A.H.: Nucl. Phys. B. 335, 115 (1990)

    Article  ADS  Google Scholar 

  40. Filho, A.L.A., Gay Ducatti, M.B., Goncalves, V.P.: Phys. Rev. D 59, 054010 (1999)

    Article  ADS  Google Scholar 

  41. Jalilian, J., et al.: Phys. Rev. D. 60, 05401 (1999)

    Google Scholar 

  42. Boroun, G.R., Rezaei, B.: Int. J. Mod. Phys. E 24(8), 1550063 (2015). Chin. Phys. Lett., 32, 11, 11110 (2015)

    Article  ADS  Google Scholar 

  43. Boroun, G.R.: Phys. Eur. J. A 42, 251 (2009)

    Article  ADS  Google Scholar 

  44. Chen, X., et al.: Int. J. of Mod. Phys. E 23(10), 1450057 (2014)

    Article  ADS  Google Scholar 

  45. Rezaei, B., Boroun, G.R.: Phys. Lett. B. 692, 247–249 (2010)

    Article  ADS  Google Scholar 

  46. Devee, M., Sarma, J.K.: Eur. Phys. J. C 74(2), 2751 (2014). Nucl. Phys. B, 885, 571–582(2014)

    Article  ADS  Google Scholar 

  47. Boroun, G.R., Zarrin, S.: Eur. Phys. J. Plus 128, 119 (2013)

    Article  Google Scholar 

  48. Boroun, G.R.: Eur. Phys. J. A 42, 251 (2009)

    Article  ADS  Google Scholar 

  49. Zarrin, S., Boroun, G.R.: arXiv:1607.06243 [hep-ph]

  50. Xiang, W., Cai, S., Zhou, D.: arXiv:1701.07378v1 [hep-ph]

  51. Rojo, J., et al.: J. Phys. G: Nucl. Part. Phys. 42, 103103 (2015)

    Article  ADS  Google Scholar 

  52. HERAPDF1.5: https://www.desy.de/h1zeus/combined_results/herapdftable/

  53. Dulat, S., et al.: Phys. Rev. D 93, 033006 (2016)

    Article  ADS  Google Scholar 

  54. Alekhin, S., Bluemlein, J., Moch, S.: Phys. Rev. D 89, 054028 (2014)

    Article  ADS  Google Scholar 

  55. Accardi, A., et al.: Phys. Rev. D 93, 114017 (2016)

    Article  ADS  Google Scholar 

  56. Harland-Lang, L.A., et al.: Eur. Phys. J. C 75, 204 (2015)

    Article  ADS  Google Scholar 

  57. Laenen, E., Levin, E.: Nucl. Phys. B. 451, 207–230 (1995)

    Article  ADS  Google Scholar 

  58. Prytz, K.: Eur. Phys. J. C 22, 317 (2001)

    Article  ADS  Google Scholar 

  59. Baishya, R., Sarma, J.K.: Phys. Rev. D 74, 107702 (2006)

    Article  ADS  Google Scholar 

  60. Baishya, R., Jamil, U., Sarma, J.K.: Phys. Rev. D 79, 034030 (2009)

    Article  ADS  Google Scholar 

  61. Furmanski, W., Petronzio, R.: Z. Phys C - Particles and Fields 11, 293–314 (1982)

    Article  ADS  Google Scholar 

  62. Collins, P.D. : An Introduction to Regge Theory and High Energy Physics. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  63. Kwiecinski, J.: J. Phys. G 19, 1443 (1993)

    Article  ADS  Google Scholar 

  64. Boroun, G.R.: Commun. Theor. Phys. (Beijing, China), 44, 891–896 (2005)

    Article  ADS  Google Scholar 

  65. Merino, C.: J. Phys. Conf. Ser. 607, 012001 (2015)

    Article  Google Scholar 

  66. Ball, R.D., et al.: Eur. Phys. J. C 76, 383 (2016)

    Article  ADS  Google Scholar 

  67. Donnachie, A., Landshoff, P.V.: Phys. Lett. B 296, 227 (1992)

    Article  ADS  Google Scholar 

  68. Donnachie, A., Landshoff, P.V.: Phys. Lett. B 437, 408 (1998)

    Article  ADS  Google Scholar 

  69. Capella, A., et al.: Phys. Lett. B 337, 358 (1994)

    Article  ADS  Google Scholar 

  70. Csernai, L., et al.: Eur. Phys. J. C 24, 205 (2002)

    Article  ADS  Google Scholar 

  71. Ball, R.D., Forte, S.: Phys. Lett. B 335, 77 (1994)

    Article  ADS  Google Scholar 

  72. Kotikov, A.V.: Mod. Phys. Lett. A, 11, 103 (1996)

    Article  ADS  Google Scholar 

  73. Soffer, J., Teryaev, O.V.: Phys. Rev. D 56, 1549 (1997)

    Article  ADS  Google Scholar 

  74. Butterworth, J., et al.: J. Phys. G 43, 023001 (2016)

    Article  ADS  Google Scholar 

  75. Levin, E.M., Ryskin, M.G.: Phys. Rep. 189, 267 (1990)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors(M. Lalung) is grateful to CSIR, New Delhi for financial assistantship in the form of Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lalung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lalung, M., Phukan, P. & Sarma, J.K. Nonlinear Effects in Gluon Distribution Predicted by GLR-MQ Evolution Equation at Next-to-leading Order in LHC Data. Int J Theor Phys 56, 3625–3637 (2017). https://doi.org/10.1007/s10773-017-3527-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3527-z

Keywords

Navigation