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Abstract Recently the method based on irreducible representations of finite groups has
been proposed as a tool for investigating the more sophisticated versions of Bell inequalities
( V. Ugǔr Gűney, M. Hillery, Phys. Rev. A90, 062121 (2014) and Phys. Rev. A91, 052110
(2015)). In the present paper an example based on the symmetry group S4 is considered. The
Bell inequality violation due to the symmetry properties of regular tetrahedron is described.
A nonlocal game based on the inequalities derived is described and it is shown that the
violation of Bell inequality implies that the quantum strategies outperform their classical
counterparts.

Keywords Bell inequalities · Group theoretical methods · Nonlocal games

1 Introduction

We present here a short review of the results obtained in our papers [1, 2] devoted to group-
theoretical aspects of Bell inequalities. The Bell inequalities [3] describe a fundamental
difference between classical and quantum correlations. These inequalities must be satisfied
by the classical theory, whereas the quantum theory does not have such restrictions. Since
the time when Bell published his paper numerous authors derived various Bell inequalities
[4–10] (for a review, see [11, 12]).

A common scenario for a Bell inequality is that a bipartite quantum system is prepared,
and one part is sent to each of two parties, Alice and Bob. Each party then performs a
measurement on their part. This procedure is repeated a number of times with different
measurements choices. An event is a choice of measurement observables by each party and
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the results of their measurements. Bell inequality involves the corresponding correlation func-
tions. It can be, however, expressed directly in terms of sums of probabilities of the events.

A significant contribution which allowed the transparent interpretation of Bell inequality has
been made by Fine [13, 14] (see also [15, 16]). He assumed that a number of random vari-
ables possess the joint probability distribution and the relevant probabilities entering the Bell
inequalities are obtained as marginals from joint probability distribution. The Bell ineqauli-
ties form necessary and sufficient conditions for the existence of such a joint probability
distribution returning the initial probabilities as marginals.

In order to derive the Bell inequalities we express the relevant correlation functions in
terms of probabilities of the events (described above) and write the resulting combination of
probabilities as marginals of joint probability distribution arriving at the expression of the
form

∑

α

c(α)p(α). The coefficient c(α) determines how many times p(α) appears in this

sum. Due to 0 ≤ p(α) ≤ 1,
∑

α

p(α) = 1 one obtains

min
α

c(α) ≤
∑

α

c(α)p(α) ≤ max
α

c(α) (1)

which is a Bell inequality.
One of the methods which allow to find examples of Bell inequality violation was pro-

posed by Gűney and Hillery [17, 18]. It is based on group theory and can be described as
follows. We take some finite group G and select its irreducible representation D. Then the
space carrying the representation D becames the space of states of one party. Next, we take
some state |ϕ〉 ⊗ |ψ〉 and construct the operator [17, 18]

X(ϕ, ψ) ≡
∑

g∈G

(D(g)|ϕ〉 ⊗ D(g)|ψ〉)(〈ϕ|D+(g) ⊗ 〈ψ |D+(g)). (2)

Defining

|g, ϕ〉 ≡ D(g)|ϕ〉, |g,ψ〉 ≡ D(g)|ψ〉
|g, ϕ,ψ〉 ≡ |g, ϕ〉 ⊗ |g,ψ〉 (3)

we find for arbitrary bipartite state |χ〉
〈χ |X|χ〉 =

∑

g∈G

|〈g, ϕ,ψ |χ〉|2. (4)

The states |g, ϕ〉 and |g,ψ〉 can be viewed as eigenstates of observables, the first of an
observable on the first system (Alice) and the second of an observable on the second system
(Bob). Each term in the above sum then represents the probability of an event, and the whole
sum is just the sum of probabilities of events, exactly the kind of expression that appears
in a Bell inequality. The set {D(g)|α〉|g ∈ G} is called an orbit of G corresponding to the
representation D of a group G and passing through |α〉. In this terminology the sum (4)
involves the orbit corresponding to D = D ⊗ D and |α〉 = |ϕ〉 ⊗ |ψ〉.

In order to find an example of violation of Bell inequality we look for the state |χ〉 which
maximizes the sum of probabilities on the right hand side of the last equation. To this end
we have to find the maximal eigenvalue of operator X(ϕ, ψ). To this end it is assumed that
in the decomposition of D ⊗ D into irreducible pieces,

D ⊗ D =
⊕

s

D(s) (5)

each D(s) appears only once. This assumption simplifies the form of X(ϕ, ψ) which
becomes diagonal and reduces, according to the Schur lemma, to a multiple of unity on
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each irreducible piece. Using the orthogonality relations it is easy to see that the relevant
eigenvalues of X(ϕ, ψ) are [18]

|G|
ds

‖ (|ϕ〉 ⊗ |ψ〉)s ‖2 (6)

where |G| is the order of G, ds - the dimension of D(s) and (|ϕ〉 ⊗ |ψ〉)s is the projection
of |ϕ〉 ⊗ |ψ〉 on the carrier space of D(s). In general, in order to violate the Bell inequality
it is not sufficient to consider only one orbit. Therefore, we look for the sum of eigenvalues
of all X(ϕn,ψn), where the pairs of vectors (ϕn, ψn) generate the orbits. In this way we can
maximize the sum of probabilities

N∑

n=1

∑

g∈G

|〈g, ϕn, ψn|χ〉|2. (7)

which is a candidate for the example of Bell inequality violation.
The paper is organized as follows. In Section 2 we give some details concerning the

group S4. The method of analyzing the violation of Bell inequality described by Gűney
and Hillery is applied in Section 3. The results are rewritten in term of nonlocal game in
Section 4. The last section contains some conclusions.

2 The S4 Group

We consider the symmetric group S4 consisting of 24 elements. This group has five irre-
ducible representations: trivial representation D0, the alternating representation D1, the
twodimensional one D2 and two threedimensional representations D and D̃. We select
threedimensional representation D because it can be interpreted as the set of symmetry
transformations of the regular tetrahedron [1]. The matrices representing transpositions
generate D and their explicit form reads:

D(12) =
⎡

⎣
1 0 0
0 1 0
0 0 −1

⎤

⎦ , D(13) =
⎡

⎢
⎣

1 0 0

0 − 1
2 −

√
3

2

0 −
√

3
2

1
2

⎤

⎥
⎦ (8)

D(14) =
⎡

⎢
⎣

− 1
3 −

√
2

3 −
√

6
3

−
√

2
3

5
6 −

√
3

6

−
√

6
3 −

√
3

6
1
2

⎤

⎥
⎦ , D(23) =

⎡

⎢
⎣

1 0 0

0 − 1
2

√
3

2

0
√

3
2

1
2

⎤

⎥
⎦ (9)

D(24) =
⎡

⎢
⎣

− 1
3 −

√
2

3

√
6

3

−
√

2
3

5
6

√
3

6√
6

3

√
3

6
1
2

⎤

⎥
⎦ , D(34) =

⎡

⎢
⎣

− 1
3

√
8

3 0√
8

3
1
3 0

0 0 1

⎤

⎥
⎦ . (10)

According to method proposed by Gűney and Hillery, we construct the operator X(ϕ, ψ).
The condition that in the Clebsh-Gordan decomposition each representation apears only
once is in our case satisfied. The product D ⊗ D decomposes into

D ⊗ D = D ⊕ D̃ ⊕ D2 ⊕ D0. (11)
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The transformation leading from the product basis to the one in which decomposition
(11) is explicit given by

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

√
2
3 0 0 0 − 1√

6
0 0 0 − 1√

6
0 − 1√

6
0 − 1√

6
1√
3

0 0 0 − 1√
3

0 0 − 1√
6

0 0 − 1√
3

− 1√
6

− 1√
3

0

0 1√
2

0 − 1√
2

0 0 0 0 0

0 0 1√
2

0 0 0 − 1√
2

0 0

0 0 0 0 0 1√
2

0 − 1√
2

0

0 1√
3

0 1√
3

1√
6

0 0 0 − 1√
6

0 0 1√
3

0 0 − 1√
6

1√
3

− 1√
6

0
1√
3

0 0 0 1√
3

0 0 0 1√
3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(12)

We look for the eigenvalues defined by (6). To this end with the help of (12) we decom-
pose |ϕ〉 ⊗ |ψ〉 into irreducible pieces (explicit calulations are presented in [1]) and use (6).
Finally, we have to select the orbits of S4 in the space of states. The orbit consisting of eight
triples of mutually ortogonal vectors |xi

α〉, α = 0, 1, 2, i = 1, . . . , 8, appears to be the most
optimal choice. It can be found using only elementary Euclidean geometry [1, 2]. There are
eight observables ai for Alice and eight observables bi for Bob

ai =
2∑

α=0

α

∣
∣
∣xi

α

〉 〈
xi
α

∣
∣
∣ , bi =

2∑

β=0

β

∣
∣
∣xi

β

〉 〈
xi
β

∣
∣
∣ . (13)

The vectors |xi
α〉 are written out explicitly in [1, 2].

3 Examples of Bell Inequality

In order to find the example of violation of Bell inequalities we have to choose at least two
orbits [1]. Starting from the vector |ϕ1〉 ⊗ |ψ1〉 = |x1

0 〉 ⊗ |x8
1 〉 we find the following orbit:

|1, 0; 8, 1〉, |1, 1; 8, 2〉, |1, 2; 8, 0〉, |2, 0; 7, 2〉, |2, 1; 7, 0〉, |2, 2; 7, 1〉
|3, 0; 5, 0〉, |3, 1; 5, 2〉, |3, 2; 5, 1〉, |4, 0; 6, 2〉, |4, 1; 6, 1〉, |4, 2; 6, 0〉
|5, 0; 3, 0〉, |5, 1; 3, 2〉, |5, 2; 3, 1〉, |6, 0; 4, 2〉, |6, 1; 4, 1〉, |6, 2; 4, 0〉
|7, 0; 2, 1〉, |7, 1; 2, 2〉, |7, 2; 2, 0〉, |8, 0; 1, 2〉, |8, 1; 1, 0〉, |8, 2; 1, 1〉

(14)

where |i, α; j, β〉 = |xi
α〉⊗|xj

β〉, i, j = 1, . . . , 8, α, β = 0, 1, 2. The second orbit is obtained

by acting elements of S4 on the vector |ϕ2〉 ⊗ |ψ2〉 = |x1
0 〉 ⊗ |x4

1 〉:
|1, 0; 4, 1〉, |1, 1; 5, 0〉, |1, 2; 7, 1〉, |2, 0; 4, 2〉, |2, 1; 8, 1〉, |2, 2; 5, 2〉
|3, 0; 4, 0〉, |3, 1; 8, 0〉, |3, 2; 7, 2〉, |4, 0; 3, 0〉, |4, 1; 1, 0〉, |4, 2; 2, 0〉
|5, 0; 1, 1〉, |5, 1; 6, 0〉, |5, 2; 2, 2〉, |6, 0; 5, 1〉, |6, 1; 7, 0〉, |6, 2; 8, 2〉
|7, 0; 6, 1〉, |7, 1; 1, 2〉, |7, 2; 3, 2〉, |8, 0; 3, 1〉, |8, 1; 2, 1〉, |8, 2; 6, 2〉

(15)
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The states belonging to both orbits are eigenstates of observables entering the inequalities
we are going to derive. Therefore, the sum of 48 probabilities corresponding to the states of
orbits has form

S =
∑

(i,α;j,β)

p(ai = α; bj = β). (16)

The joint probabilities for ai and bj make sense both in classical and quantum physics
because the observables ai and bj commute. On the quantum level the maximal value of
the sum (16) equals the maximal eigenvalue of the operator X(ϕ, ψ) which in our case is
the sum of two eigenvalues of X(ϕn,ψn), n = 1, 2, and approximately equals 14,036. Now,
we want to find the classical upper bound of the sum (16). According to Fine’s theorem the
probabilities entering the Bell inequality are obtained as marginals from the joint probability
distribution. Therefore the probabilities appearing on the right hand side of (16) can be
expressed by the joint probabilities p(σ) ≡ p(a1 = α1, . . . , a8 = α8; b1 = α′

1, . . . , b8 =
α′

8). In this way we obtain the following classical sum of probabilities

S =
∑

σ

c(σ )p(σ ). (17)

The maximal value of S is equal to the largest coefficient c(σ ) (cf. (1)). It can be shown
that the maximal value of c(σ ) is 14 (see [1]). Summarizing, we have shown that the Bell
inequality is violated with our choice of two orbits defining the quantum states.

One can select more than two orbits. Then the difference between classical and quantum
upper bound of Bell expression is larger. For instance, if we add third orbit to the orbits
defined by (14) and (15) we obtain the following sum of probabilities appearing on the right
hand side of (4) [2]

S ≡ P(a1 = 0, b5 = 2) + P(a1 = 1, b7 = 0) + P(a1 = 2, b4 = 0) + P(a2 = 0, b8 = 0) +
+P(a2 = 1, b5 = 1) + P(a2 = 2, b4 = 1) + P(a3 = 0, b7 = 1) + P(a3 = 1, b4 = 2) +
+P(a3 = 2, b8 = 2) + P(a4 = 0, b2 = 1) + P(a4 = 1, b3 = 2) + P(a4 = 2, b1 = 1) +
+P(a5 = 0, b2 = 0) + P(a5 = 1, b1 = 2) + P(a5 = 2, b6 = 2) + P(a6 = 0, b8 = 1) +
+P(a6 = 1, b5 = 0) + P(a6 = 2, b7 = 2) + P(a7 = 0, b3 = 1) + P(a7 = 1, b6 = 0) +
+P(a7 = 2, b1 = 0) + P(a8 = 0, b6 = 1) + P(a8 = 1, b3 = 0) + P(a8 = 2, b2 = 2) +
+P(a1 = 0, b4 = 1) + P(a1 = 1, b5 = 0) + P(a1 = 2, b7 = 1) + P(a2 = 0, b4 = 2) +
+P(a2 = 1, b8 = 1) + P(a2 = 2, b5 = 2) + P(a3 = 0, b4 = 0) + P(a3 = 1, b8 = 0) +
+P(a3 = 2, b7 = 2) + P(a4 = 0, b3 = 0) + P(a4 = 1, b1 = 0) + P(a4 = 2, b2 = 0) +
+P(a5 = 0, b1 = 1) + P(a5 = 1, b6 = 0) + P(a5 = 2, b2 = 2) + P(a6 = 0, b5 = 1) +
+P(a6 = 1, b7 = 0) + P(a6 = 2, b8 = 2) + P(a7 = 0, b6 = 1) + P(a7 = 1, b1 = 2) +
+P(a7 = 2, b3 = 2) + P(a8 = 0, b3 = 1) + P(a8 = 1, b2 = 1) + P(a8 = 2, b6 = 2) +
+P(a1 = 0, b8 = 1) + P(a1 = 1, b8 = 2) + P(a1 = 2, b8 = 0) + P(a2 = 0, b7 = 2) +
+P(a2 = 1, b7 = 0) + P(a2 = 2, b7 = 1) + P(a3 = 0, b5 = 0) + P(a3 = 1, b5 = 2) +
+P(a3 = 2, b5 = 1) + P(a4 = 0, b6 = 2) + P(a4 = 1, b6 = 1) + P(a4 = 2, b6 = 0) +
+P(a5 = 0, b3 = 0) + P(a5 = 1, b3 = 2) + P(a5 = 2, b3 = 1) + P(a6 = 0, b4 = 2) +
+P(a6 = 1, b4 = 1) + P(a6 = 2, b4 = 0) + P(a7 = 0, b2 = 1) + P(a7 = 1, b2 = 2) +
+P(a7 = 2, b2 = 0) + P(a8 = 0, b1 = 2) + P(a8 = 1, b1 = 0) + P(a8 = 2, b1 = 1)

(18)
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where the third orbit is obtained from the vector |ϕ3〉 ⊗ |ψ3〉 = |x1
0 〉 ⊗ |x5

2 〉. In this case, the
classical upper bound in Bell inequality equals 16 whereas the quantum one is 17,38. More
examples of violation of Bell inequalities are presented in paper [2].

4 Bell Inequality as Nonlocal Game

It is shown in the paper [17, 18] that the Bell inequalities can be rewritten in terms of non-
local game. In such a game two players Alice and Bob receive values s and t , respectively,
from an arbitrator, where t, s = 1, 2, . . . , 8. Then both players send back the numbers a and

Table 1 Winning values for
nonlocal game defined by two
orbits of S4

s, t Alice, Bob

14 01

15 10

17 21

18 01, 12, 20

24 02

25 22

27 02, 10, 21

28 11

34 00

35 00, 12, 21

37 22

38 10

41 10

42 20

43 00

46 02, 11, 20

51 01

52 22

53 00, 12, 21

56 10

64 02, 11, 20

65 01

67 10

68 22

71 12

72 01, 12, 20

73 22

76 01

81 02, 10, 21

82 11

83 01

86 22
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b to the arbitrator, where a, b = 0, 1, 2. All configurations (as = a, bt = b) appearing on
the right hand side of (4) are winning. In the case of two orbits the set of winning values is
collected in Table 1 [1].

Assuming that all configuration of (s, t) are equally likely, the probability of winning the
game is 7

32 in the classical case. On the quantum level this probability is slightly higher and
equals 7.018

32 . This implies that the quantum strategy outperforms its classical counterpart.
The similar reasoning can be made for the Bell inequalities obtained for three orbits [2].

5 Conclusions

We gave here examples of violation of Bell inequalities. To this end, using the method pre-
sented in Refs. [17, 18], we selected two and three orbits of S4 group. In view of the fact that
the symmetric group S4 can be considered as the symmetry of regular tetrahedron we could
construct the relevant states and observables using Euclidean geometry in three dimensions.
In the case of two orbits the Bell inequality is only slightly violated but when third oribt is
added the classical upper bound of the sum of probabilities is exceed by 8, 625%.
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Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References
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