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Abstract The mutually unbiasedness between a maximally entangled basis (MEB) and an
unextendible maximally entangled system (UMES) in the bipartite system C

2 ⊗C
2k

(k > 1)

are introduced and discussed first in this paper. Then two mutually unbiased pairs of a max-
imally entangled basis and an unextendible maximally entangled system are constructed;
lastly, explicit constructions are obtained for mutually unbiased MEB and UMES in C

2⊗C
4

and C
2 ⊗ C

8, respectively.

Keywords Mutually unbiased bases · Maximally entangled state · Unextendible
maximally entangled basis

Mutually unbiased bases (MUBs) have been extensively investigated due to their important
roles played in quantum kinematics [1], quantum state tomography [2, 3], quantum key dis-
tribution [4], cryptographic protocols [5, 6], mean king problem [7], quantum teleportation
and superdense coding [8–10], and in quantifying wave-particle duality in multipath inter-
ferometers [4]. Two orthogonal bases B1 = {|φi〉}di=1 and B2 = {|ψi〉}di=1 of Cd are said to
be mutually unbiased if

|〈φi |ψj 〉| = 1√
d

(i, j = 1, 2, . . . , d).

A set of orthonormal bases B1,B2, . . . ,Bm in C
d is said to be a set of mutually unbiased

bases if every pair of the bases in the set is mutually unbiased. The maximum number of
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MUBs in C
d is shown to be no more than d + 1 [3]. For prime power dimensional case and

qubits systems, different constructions of MUBs have been presented in [11–18].
For bipartite systems, there are many different kinds of bases such as product bases (PB)

[19], unextendible product basis (UPB) [20], unextendible maximally entangled system
(UMES) [21–26] and maximally entangled basis (MEB) [27] etc., according to the quantum
entanglement of the related basic vectors in the bases.

The maximally entangled states play a vital role in quantum information processing tasks
such as perfect teleportation [28–36]. A pure state |ψ〉 is said to be a d ⊗ d ′ (d ′ > d)

maximally entangled state if and only if for an arbitrary given orthonormal basis {|iA〉} of
subsystem A, there exists an orthonormal basis {|iB〉} of subsystem B such that |ψ〉 can
be written as |ψ〉 = 1√

d

∑d−1
i=0 |iA〉 ⊗ |iB〉 [35]. A maximally entangled basis (MEB) is an

orthonormal basis consisting of maximally entangled states. In [27], the authors provided
a systematic way of constructing MEBs in arbitrary bipartite system C

d ⊗ C
kd (k ∈ Z+).

Then necessary and sufficient conditions of constructing two mutually unbiased maximally
entangled systems (MUMEBs) are derived, and explicit constructions of MUMEBs in C

2 ⊗
C

4 and C
2 ⊗ C

6 are presented.
An unextendible maximally entangled system (UMES) in C

d ⊗ C
d is a set of less than

d2 orthogonal maximally entangled states in C
d ⊗ C

d such that whose complementary
space has no maximally entangled vectors that are mutually orthogonal. It has been proved
that UMESs do not exist for d = 2, and explicit examples are presented for a 6-member
UMES for d = 3 and a 12-member UMES for d = 4 [21]. In [22], a systematic way of
constructing a set of d2 orthonormal maximally entangled states in C

d
⊗

C
d ′

( d ′
2 < d <

d ′) was established. In [23, 24], UMESs in C
d
⊗

C
d ′

with d ′ = dq + r (0 < r < d)

have been constructed. Also, UMESs in C
d
⊗

C
qd(q ≥ 2) have been constructed in [24].

UMESs in C
d
⊗

C
d have been investigated in [25]. In [22], the authors first considered the

mutually unbiased bases in which all the bases are unextendible maximally entangled ones,
and presented two mutually unbiased unextendible maximally entangled bases(MUUMESs)
in C

2 ⊗ C
3. Necessary conditions of constructing a pair of MUUMESs in C

2 ⊗
C

3 are
derived in [26]. In [23], two MUUMESs in C

2 ⊗ C
5 and C

3 ⊗ C
4 are established.

Instead of the investigation of mutually unbiased bases from two MEBs or from two
UMESs, in this paper we study the mutually unbiasedness between one MEB and one
UMES in the bipartite system C

2 ⊗ C
2k

(k > 1). We first present an approach of construct-
ing a mutually unbiased pair of a maximally entangled basis and unextendible maximally
entangled system and then present explicit constructions of mutually unbiased MEB and
UMES in C

2 ⊗ C
4 and C

2 ⊗ C
8.

Definition 1 Two orthonomal systems {|φi〉}mi=1 and {|ψj 〉}nj=1 in C
d are said to be

mutually unbiased if

|〈φi |ψj 〉| = 1√
d

(1 ≤ i ≤ m, 1 ≤ j ≤ n).

We first begin with examples of MEB and UMES in C
2 ⊗ C

2k
(k > 1). Let {|0〉, |1〉}

and {|i′〉}2k−1
i=0 denote the orthonormal bases of C2 and C

2k
(k > 1), respectively. An MEB

for C2 ⊗ C
2k

(k > 1) has been constructed in [27],

|φ(α)
n,m〉 = 1√

2

1∑

p=0

(−1)np|p ⊕2 m〉|(p + 2α)′〉(α = 0, 1, . . . , 2k−1 − 1; n, m = 0, 1), (1)
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where p⊕2m denotes (p+m) mod 2. And a (2k+1−2)-member UMES in C
2⊗C

2k
(k > 1)

has been constructed in [24],

|ηi,j 〉 = 1√
2

1∑

q=0

(−1)qi |q〉|(q ⊕(2k−1) j )′〉(i = 0, 1; j = 0, 1, . . . , 2k − 2)

where q ⊕(2k−1) j denotes (q + j) mod (2k − 1).

Let {|a′
i〉}2k−1

i=0 be another orthonormal basis in C
2k

that is different from {|i′〉}2k−1
i=0 . New

(2k+1 − 2)-member UMES in C
2 ⊗ C

2k
can be obtained in the following way,

|ψi,j 〉 = 1√
2

1∑

q=0

(−1)qi |q〉|a′
q⊕

(2k−1)
j 〉(i = 0, 1; j = 0, 1, . . . , 2k − 2) (2)

By Definition 1, the MEB (1) and the UMES (2) are mutually unbiased if and only if the
following relations are satisfied.

|〈φ(α)
n,m|ψi,j 〉| = 1√

2k+1
(α = 0, 1, . . . , 2k−1 − 1; n,m, i = 0, 1; j = 0, 1, . . . , 2k − 2). (3)

Let T denote the transition matrix from the basis {|i′〉}2k−1
i=0 to the basis {|a′

i〉}2k−1
i=0 for C2k

,
i.e.

⎛

⎜
⎜
⎜
⎝

|a′
0〉|a′
1〉
...

|a′
(2k−1)

〉

⎞

⎟
⎟
⎟
⎠

= T

⎛

⎜
⎜
⎜
⎝

|0′〉
|1′〉
...

|(2k − 1)′〉

⎞

⎟
⎟
⎟
⎠

, (4)

equivalently, |a′
i〉 = ∑2k−1

j=0 tij |j ′〉, where tij are (i, j)-entries of the matrix T .

Theorem 1 The MEB (1) and the UMES (2) are mutually unbiased if and only if T satisfies
the following conditions:

∣
∣
∣
∣
∣
∣

1∑

p=0

ξptp⊕
(2k−1)

j, p+2α

∣
∣
∣
∣
∣
∣
= 1√

2k−1
, (5)

|
1∑

p=0

ξptp⊕
(2k−1)

j, 1−p+2α| = 1√
2k−1

, (6)

where ξ = 1, −1; j = 0, 1, . . . , 2k − 2; α = 0, 1, . . . , 2k−1 − 1.

Proof From (1), (2) we have

|〈φ(α)
n,m|ψi,j 〉| = 1

2
|

1∑

p=0

1∑

q=0

(−1)np+qi〈p ⊕2 m|q〉〈(p + 2α)′|a′
q⊕

(2k−1)
j 〉|

= 1

2
|

1∑

p,q=0

∑

q=p⊕2m

(−1)np+qi〈(p + 2α)′|a′
q⊕

(2k−1)
j 〉|

where α = 0, 1, . . . , 2k−1 − 1; n, m, i = 0, 1; j = 0, 1, . . . , 2k − 2.
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so the conditions (3) are equivalent to the following conditions:

|
1∑

p,q=0

∑

q=p⊕2m

〈(p + 2α)′|a′
q⊕

(2k−1)
j 〉| = 1√

2k−1

(α = 0, 1, . . . , 2k−1 − 1; n, m, i = 0, 1; j = 0, 1, . . . , 2k − 2). (7)

Since q = p if m = 0 and q = p ⊕2 1 = 1 − p if m = 1, then the above conditions (7)
are equivalent to the following two conditions:

|
1∑

p=0

(−1)p(n+i)〈(p + 2α)′|a′
p⊕

(2k−1)
j 〉| = 1√

2k−1

(α = 0, 1, . . . , 2k−1 − 1; n, i = 0, 1; j = 0, 1, . . . , 2k − 2). (8)

|
1∑

p=0

(−1)np+(1−p)i〈(p + 2α)′|a′
(1−p)⊕

(2k−1)
j 〉| = 1√

2k−1

(α = 0, 1, . . . , 2k−1 − 1; n, i = 0, 1; j = 0, 1, . . . , 2k − 2). (9)

After taking over all possible values of n and i, we can simplify the above conditions (8)
and (9) as follows:

∣
∣
∣
∣
∣
∣

1∑

p=0

ξptp⊕
(2k−1)

j, p+2α

∣
∣
∣
∣
∣
∣
= 1√

2k−1
(α = 0, 1, . . . , 2k−1 − 1; j = 0, 1, . . . , 2k − 2.)

|
1∑

p=0

ξptp⊕
(2k−1)

j, 1−p+2α| = 1√
2k−1

(α = 0, 1, . . . , 2k−1 − 1; j = 0, 1, . . . , 2k − 2.)

where ξ = 1, −1 and thus the theorem is proved.
For a detailed construction of a pair of mutually unbiased MEB and UMES, we

first consider the case of C
2 ⊗ C

4. Let us take the second basis {|a′
i〉}3

i=0 in C
4 as

(|a′
0〉, |a′

1〉, |a′
2〉, |a′

3〉)t = T (|0′〉, |1′〉, |2′〉, |3′〉)t , where t denotes transposition,

T = 1

2

⎛

⎜
⎜
⎝

1 i 1 −i

−1 i 1 i

1 i −1 i

1 −i 1 i

⎞

⎟
⎟
⎠

with i = √−1. It is direct to verify that the matrix T satisfies the mutually unbiased con-
ditions (5)–(6). From (1) and (2) we have the mutually unbiased MEB and the 6-member
UMES in C

2 ⊗ C
4, respectively,

|φ(α)
n,m〉 = 1√

2

1∑

p=0

(−1)np|p ⊕2 m〉|(p + 2α)′〉, α = 0, 1; n, m = 0, 1, (10)

|ψi,j 〉 = 1√
2

1∑

q=0

(−1)qi |q〉|a′
q⊕3j

〉, i = 0, 1; j = 0, 1, 2. (11)
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As another example, we present a detailed construction of mutually unbiased MEB and
14-member UMES in C

2 ⊗ C
8. According to (1) we have a MEB for C2 ⊗ C

8,

|φ(α)
n,m〉 = 1√

2

1∑

p=0

(−1)np|p ⊕2 m〉|(p + 2α)′〉, α = 0, 1, 2, 3; n, m = 0, 1. (12)

To construct a UMES in C
2 ⊗C

8 that is mutually unbiased with the MEB above, we take a
basis {|b′

j 〉}7
j=0 for C8 as

(|b′
0〉, |b′

1〉, |b′
2〉, |b′

3〉, |b′
4〉, |b′

5〉, |b′
6〉, |b′

7〉)t = T (|0′〉, |1′〉, |2′〉, |3′〉, |4′〉, |5′〉, |6′〉, |7′〉)t ,
where

T = 1√
8

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−i −1 1 −i −i −1 1 −i

−i −1 −1 i −i −1 −1 i

−i 1 −1 −i −i 1 −1 −i

−i 1 1 i −i 1 1 i

−i −1 1 −i i 1 −1 i

−i −1 −1 i i 1 1 −i

−i 1 −1 −i i −1 1 i

−i 1 1 i i −1 −1 −i

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then the corresponding complete 14-member UMES in C
2 ⊗ C

8 has the form,

|ψi,j 〉 = 1√
2

1∑

q=0

(−1)qi |q〉|b′
q⊕7j

〉, i = 0, 1; j = 0, 1, . . . , 6. (13)

It is direct to verify that the transformation matrix B satisfies the relation (5)–(6) and so
the MEB (12) and the completed 14-member UMES (13) in C

2 ⊗C
8 are mutually unbiased.

We have constructed a maximally entangled basis and an unextendible maximally entan-
gled system in C

2⊗C
2k

(k > 1) and derived sufficient and necessary conditions of mutually
unbiasedness between them. As detailed applications, we have constructed mutually unbi-
ased pairs of a maximally entangled basis and an unextendible maximally entangled system
in C

2 ⊗ C
4 and in C

2 ⊗ C
8, respectively.

There are still many open problems related to maximally entangled bases and unex-
tendible maximally entangledsystems which are mutually unbiased, such as the case in
C

d ⊗ C
d or Cd ⊗ C

kd (k ∈ Z
+) for d > 2, as well as to the roles played by such bases in

quantum information processing.
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