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Abstract A single-mode microwave cavity field, coupled to its reservoir, interacting gen-
erally with a superconducting charge qubit is considered. Using a certain canonical trans-
formation for the qubit states, the system is transformed into the usual Jaynes-Cummings
model. The solution of the master equation of this system, in the case of a high-Q cavity
is obtained. The temporal evolution of the population inversion is explored. The effects of
cavity damping on the purity of the qubit, the field and the global system state are studied.
It is found that due to the coupling between the system and environment, the purity is lost.
The entanglement is compared with total correlation. It is found that, with the damping pa-
rameter, the asymptotic value of the correlation measure is not null, since the global system
evolves to a classically correlated state. The negativity is used as an indicator of the degree
of entanglement between the qubit and the field. The results indicate the sensitivity of these
aspects to change of the damping parameter.

Keywords Charge qubit · Purity · Correlation

1 Introduction

Superconducting qubits have been considered as possible candidates for quantum informa-
tion processing and have attracted much attention in recent years [1–8]. It has been ex-
perimentally demonstrated that the superconducting qubits possess macroscopic quantum

M. Sebawe Abdalla
Mathematics Department, College of Science, King Saud University P.O. Box 2455, Riyadh 11451,
Saudi Arabia

A.-S.F. Obada · E.M. Khalil (B)
Mathematics Department, Faculty of Science, Al-Azher University, Nassr City 11884, Cairo, Egypt
e-mail: eiedkhalil@yahoo.com

A.-B.A. Mohamed
Mathematics Department, Faculty of Science, Assiut University, Assiut, Egypt

mailto:eiedkhalil@yahoo.com


1326 Int J Theor Phys (2014) 53:1325–1336

coherence and can be used to realize the conditional two-qubit gate, where the supercon-
ducting qubits have gained substantial interest as devices for application in quantum infor-
mation processing [1, 2, 9]. Here, Josephson qubits are recognized as being among the most
promising devices to implement solid state quantum computation [10]. The manipulation of
quantum states in individual and coupled qubits (Cooper-pair box) has been demonstrated
experimentally [11] and the behavior of charge oscillations in superconducting Cooper pair
boxes weakly interacting with an environment has been discussed [12]. Superconducting cir-
cuits can behave like virtual atoms and test quantum mechanics at macroscopic scales and
can be used to conduct atomic-physics experiments on a silicon chip [9]. Furthermore, the
quantum dynamics of a Cooper-pair box with a superconducting loop in the presence of a
non-classical microwave field have been investigated [13]. The development in the theory of
quantum information and the correlations are playing an increasingly fundamental and im-
portant role in the study and exploitation of quantum advantages. In particular, it has been
widely recognized, during the past few decades, that correlations (including entanglement,
and more generally, quantum correlations) are valuable resources for quantum information
processing [14–18].

The study of entanglement dynamics is crucial for the realization of quantum algorithms
and quantum information processing protocols [19]. On the other hand, realistic quantum
systems will inevitably interact with the environments. The interaction between the system
and the environment usually leads to a decoherence process [20, 21]. This is a fundamental
obstacle to perform reliable quantum computation. Therefore, a number of studies have been
devoted to study the dynamics of quantum entanglement under environmental effects [22].
To measure the entanglement (purity loss) and classical correlation, there are more than one
measure in the literature, such as the von Neumann reduced entropy or linear entropy, the
negative mutual entropy [23], the negative mutual information (index of classical correla-
tion) [24], the sum of negative eigenvalues of the partially transposed density matrix [25].
But the total correlation in a bipartite quantum system can be measured by quantum mutual
information [26, 27], which may be divided into classical and quantum parts [28–30].

This contribution is organized as follows. Section 2 is devoted to introduce the system
Hamiltonian model and introduce an exact solution of the master equation in the case of
a high-Q cavity for a general interaction of a single-mode microwave cavity field with a
superconducting charge qubit. In Sect. 3 we discuss the population inversion, while in Sect. 4
we investigate the purity of the system and its subsystems state, by using linear entropy. The
entanglement and the total correlation are discussed by using the negativity in Sect. 5. Our
conclusion is given in Sect. 6.

2 The Physical Model and Its Solution

We consider a system consisting of a single-mode microwave cavity field interacting with
a superconducting charge qubit. The Hamiltonian for this system is a generalization of
[31, 32]. This Hamiltonian can be written as:

Ĥ

�
= ωâ†â + Ezσ̂z − EJ

[
σ̂+e

iπ
Φ0

(ÎΦC+ηâ+η∗ â†) + hc
]
, (1)

where ω is the frequency of the cavity field. The operators σ̂z and σ̂± are defined by σ̂z =
|e〉〈e| − |g〉〈g| and σ̂+ = |e〉〈g|, σ̂− = |g〉〈e|, where |e〉 and |g〉 are the excited and ground
states of the qubit, respectively. Here, a and a† are annihilation and creation operators of
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the cavity and Î is an identity operator, EJ is the coupling constant of the interaction of the
atom with the cavity. The qubit charging energy Ez = −2Ech(1 − 2ng), which depends on

the gate charge ng . The single-electron charging energy is Ech = e2

2(Cg+2CJ )
, Cg and CJ are

the Josephson junction and the gate capacities. The third term is the nonlinear charge qubit-
photon interaction, where ΦC the flux is generated by a classical applied magnetic field and
Φ0 is the quantum flux. The parameter η has units of magnetic flux and its absolute value
represents the strength of the quantum flux inside the cavity and can be expressed as |η| = S√

ω�

ε0V C2 | cos( 2πz0
g

)| [31, 32], which shows that |η| depends on the area S of the surface

defined by the contour of the superconducting quantum interference device (SQUID) and
its position z0, the wavelength g of cavity field, and the volume V of the cavity. If the light
field is not so strong (e.g., the average number of photons inside the cavity N = â†â ≤ 100),
then we can only keep the first order of πη

Φ0
and safely neglect all higher orders. Thus, the

Hamiltonian (1) becomes

Ĥ

�
= ωâ†â + Ezσ̂z − EJ

(
σ̂x cos

πΦC

Φ0
+ σ̂y sin

πΦC

Φ0

)

− πEJ

Φ0

(
−σ̂x sin

πΦC

Φ0
+ σ̂y cos

πΦC

Φ0

)(
ηâ + η∗â†

)
. (2)

From the above equation we can get all the information related to the well known Jaynes-
Cummings model JCM. We assume that the qubit-photon system works at low tempera-
tures T (e.g., T = 30 mK in Refs. [33–35]), then the mean number of thermal photons in the
cavity is almost negligible in the microwave regime [31, 32], and the cavity is approximately
considered in the zero-temperature environment. Therefore, in this paper we take into ac-
count only the field mode damping and ignore the qubit state damping, while the cavity is
assumed to be at zero temperature. Then, the master equation for the density matrix of the
combined (qubit-field) system is given by:

dρ̂(t)

dt
= −i

[
Ĥ , ρ̂(t)

] + γ
([

aρ̂(t), â†
] + [

â, ρ̂(t)â†
])

, (3)

where γ is the cavity field damping parameter. To solve the master equation (3), we make
the following transformations of the atomic operators

Ŝx =
(

σ̂x cos
πΦC

Φ0
+ σ̂y sin

πΦC

Φ0

)

Ŝy =
(

−σ̂x sin
πΦC

Φ0
+ σ̂y cos

πΦC

Φ0

)
(4)

Ŝz = σ̂z

These rotated operators Ŝz, Ŝx and Ŝy satisfy the following properties

[Ŝx, Ŝy] = 2iŜz, [Ŝy, Ŝz] = 2iŜx, [Ŝz, Ŝx] = 2iŜy (5)

The eigenstates of Ŝz is the same eigenstates of σ̂z. Thus, the Hamiltonian (2) becomes

Ĥ

�
= ωâ†â + EzŜz − EJ Ŝx − πEJ

Φ0
Ŝy

(
ηâ + η∗â†

)
(6)



1328 Int J Theor Phys (2014) 53:1325–1336

To simplify this Hamiltonian, we define the transformation between the states |e〉, |g〉 and
the states |↑〉, |↓〉 which take the following form:

|↑〉 = cos ξ |e〉 + sin ξ |g〉, |↓〉 = cos ξ |g〉 − sin ξ |e〉, ξ = 1

2
tan−1

(
EJ

Ez

)
. (7)

The rotated operators Q̂z and Q̂± defined as Q̂+ = |↑〉〈↓|, Q̂− = |↓〉〈↑| and Q̂z =
|↑〉〈↑| − |↓〉〈↓|, satisfy the following properties

[Q̂+, Q̂−] = Q̂z, [Q̂z, Q̂±] = ±2Q̂± (8)

This in fact would give us an advantage to transform the Hamiltonian (6) after applying the
rotated wave approximation into the form

ˆ̃
H = ωâ†â + Ω0Q̂z − πEJ

Φ0
cos2 ξ

(
ηâQ̂+ + Q̂−η∗â†

)
,

Ω0 =
√

E2
z + (EJ )2.

(9)

Thus we have managed to remove the driving term from the Hamiltonian (9) while its effect
is concealed in the augmented atomic frequency Ω0, which shifts the atomic energy levels to
Ω0 = ±√

E2
z + (EJ )2. The connections between the original operators σ̂ ′s and the rotating

operators Q̂′s take the following form

σ̂x = cos
πΦC

Φ0
(cos 2ξQ̂x − sin 2ξQ̂z) − sin

πΦC

Φ0
Q̂y

σ̂y = sin
πΦC

Φ0
(cos 2ξQ̂x − sin 2ξQ̂z) + cos

πΦC

Φ0
Q̂y (10)

σ̂z = (cos 2ξQ̂z + sin 2ξQ̂x)

Note here the mixing of these operators, which will show their effect when discussing the
different phenomena later. After the above transforms, the master equation of the qubit-field
system is given by:

d ˆ̃ρ(t)

dt
= −i

[ ˆ̃
H, ˆ̃ρ(t)

] + γ
([

a ˆ̃ρ(t), â†
] + [

â, ˆ̃ρ(t)â†
])

. (11)

The analytic methods for obtaining solutions of Eq. (11) in the case of a high-Q cavity
(γ 	 λ), employ the so-called dressed-states representation [36–38], i.e. representation con-
sisting of the complete set of Hamiltonian eigenstates. For lossless cavity the full set of
dressed states are

∣
∣Ψ ±

n

〉 = Φ±
n |↑, n〉 ± Φ∓

n |↓, n + 1〉 (n = 0,1,2, . . .),

Φ±
n = 1√

2

√

1 ∓ δ

ηn

, ηn =
√

δ2 + ν2
n, νn = λ cos2 ξ

√
n + 1,

λ = π |η|EJ

Φ0
, δ = Ω0 − ω

2

(12)
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In an invariant subspace spanned by |↑, n〉 and |↓, n + 1〉, the eigenvalues of Ĥ are given
by:

E±
n = μn ± ηn, μn = ω

(
n + 1

2

)
, (13)

where

H̃
∣∣Ψ ±

n

〉 = E±
n

∣∣Ψ ±
n

〉
, H̃ |↓,0〉 = −ω◦

2
|↓,0〉. (14)

To solve Eq. (11) in the high-Q limit, we express the annihilation operator a and the photon
number operator â†â in terms of the dressed states. Then we use the representation J (t) =
ei

ˆ̃
Htρ(t)e−i

ˆ̃
Ht and obtain an equation for J (t) in terms of the dressed states (12). The exact

equation for J (t) is found to be a sum of time-independent and time-dependent terms. The
time-dependent terms in this equation oscillate at the frequency proportional to the qubit-
field coupling g. It can be shown that the contribution of the oscillatory terms is of the
order of (γ 2/g2). Hence, if we make the secular approximation [36–38], i.e, we neglect the
oscillatory terms by assuming (γ 	 g), with the representation

J̇ (t) = ei
ˆ̃

Ht ∂ρ̂(t)

∂t
e−i

ˆ̃
Ht + i

[ ˆ̃
H,J (t)

]
, (15)

when we let that χ
ij
mn = 〈Ψ i

m|J (t)|Ψ j
n 〉, i, j = +,−, the off-diagonal elements of the density

matrix J (t) are given by

χ±±
mn (t) = χ±±

mn (0)e−γ (m+n+Φ∓2
m +Φ∓2

n )t , ∀m �= n.

χ±∓
mn (t) = χ±∓

mn (0)e−γ (m+n+Φ∓2
m +Φ±2

n )t , ∀m,n.

(16)

But the diagonal elements of density matrix J (t) satisfy the equations:

χ̇±±
n,n (t) = 2γ

[
f ±2

n+1χ
±±
n+1,n+1(t) + g±2

n+1χ
∓∓
n+1,n+1(t) − (

n + Φ∓2
n

)
χ±±

n,n (t)
]
. (17)

Where f ±
n = √

nΦ±
n−1Φ

±
n + √

n + 1Φ∓
n−1Φ

∓
n , and g±

n = √
nΦ±

n−1Φ
∓
n − √

n + 1Φ∓
n−1Φ

±
n .

The solution of the coupled differential equation (17), can be written as

χ±±
n,n (t) = e−2γ (n+Φ∓2

n )tχ±±
n,n (0)

+ 2γ

∫ t

0
e2γ (n+Φ∓2

n )τ
(
f ±2

n+1χ
±±
n+1,n+1(τ ) + g±2

n+1χ
∓∓
n+1,n+1(τ )

)
dτ. (18)

If we assume that there is an upper limit on the number of photons initially present in the
system [37, 38], so χ±±

N+1,N+1(t) = 0 is always true since the number of photons in the cavity
will decrease only. Then at n = N,N − 1, . . .

χ±±
N,N (t) = e−2γ (N+Φ∓2

N
)tχ±

N,N (0), (19)

χ±±
N−1,N−1(t) = e−2γ (N+Φ∓2

N−1−1)tχ±±
N−1,N−1(0)

+ f ±2
N χ±±

N,N(0)(e−2γ (1+Φ∓2
N

−Φ∓2
N−1)t − 1)

(Φ∓2
N−1 − Φ∓2

N − 1)
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+ g±2
N χ∓∓

N,N(0)(e−2γ (1+Φ±2
N

−Φ∓2
N−1)t − 1)

(Φ∓2
N−1 − Φ±2

N − 1)
, etc. (20)

Then we take N very large to insure convergence.

To investigate the effect of a cavity damping on the purity and the entanglement, we
assume that the qubit-photon system is initially in the state ρ(0) = J (0) = |↑, α〉〈↑, α|.
Where the qubit is initially in the state |↑〉〈↑|, while the field is initially in a coherent state
|α〉 = ∑∞

n=0 qn | n〉, where qn = e−|α|2/2 αn√
n! , and α is a complex number in general. With the

initial density matrix J (0), the density matrix ρ̃(t) are found to be

ρ̃(t) =
∑

i,j=↑,↓
Xij |i〉〈j |, Xij =

∑

m,n=0

xij
m,n, (21)

where

x↑↑
m,n =

⎧
⎪⎪⎨

⎪⎪⎩

Φ+
mΦ+

n e−i(E+
m−E+

n )tχ++
mn + Φ−

mΦ−
n e−i(E−

m−E−
n )tχ−−

mn

+ Φ+
mΦ−

n e−i(E+
m−E−

n )tχ+−
mn + Φ−

mΦ+
n e−i(E−

m−E+
n )tχ−+

mn , m �= n;
Φ+2

n χ+
n (t) + Φ−2

n χ−
n (t) + 2q∗

nqnΦ
2+
n Φ2+

n e−γ (2n+1)t cos(2ηnt), m = n.

(22)

x↓↓
m,n =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Φ−
mΦ−

n e−i(E+
m−E+

n )tχ++
mn + Φ+

mΦ+
n e−i(E−

m−E−
n )tχ−−

mn

− Φ−
mΦ+

n e−i(E+
m−E−

n )tχ+−
mn − Φ+

mΦ−
n e−i(E−

m−E+
n )tχ−+

mn , m �= n;
Φ−2

n χ+
n (t) + Φ+2

n χ−
n (t) − 2q∗

nqnΦ
−
n Φ−

n e−γ (2n+1)t cos(2ηnt), m = n;
γ

∫ t

0 [χ++
00 + χ−−

00 ]dτ m = n = 0.

(23)

x↑↓
m,n = (

x↓↑
m,n

)† = Φ−
mΦ+

n e−i(E+
m−E+

n )tχ++
mn − Φ+

mΦ−
n e−i(E−

m−E−
n )tχ−−

mn

+ Φ−
mΦ−

n e−i(E+
m−E−

n )t − χ+−
mn Φ+

mΦ+
n e−i(E−

m−E+
n )tχ−+

mn , ∀m,n. (24)

By using the transforms of Eqs. (7), the exact solution of the master equation (21) in the
case of a high-Q cavity is given by

ρ(t) = [
X↑↑ cos2 ξ + X↓↓ sin2 ξ − sin ξ cos ξ

(
X↑↓ + X↓↑)]|e〉〈e|

+ [
X↓↓ cos2 ξ + X↑↑ sin2 ξ + (

X↑↓ + X↓↑)
sin ξ cos ξ

]|g〉〈g|
+ [

X↑↓ cos2 ξ − X↓↑ sin2 ξ + (
X↑↑ − X↓↓)

sin ξ cos ξ
]

⊗ |e〉〈g| + [
X↓↑ cos2 ξ − X↑↓ sin2 ξ

+ (
X↑↑ − X↓↓)

sin ξ cos ξ
]|g〉〈e|. (25)

In the forthcoming sections we study the dynamical properties of the population inver-
sion, the purity and entanglement for the proposed system of a single-mode microwave
cavity field and a superconducting charge qubit. We assume that the SC Cooper-pair box
is made from aluminum, with a energy gap of ∼ 2.4 K (about 50 GHz) [39]; the charge
energy Ech and the Josephson energy EJ are 4Ech/h = 149 GHz and 2EJ /h = 13.0 GHz,
respectively. The frequency of the cavity field is taken as 40 GHz, corresponding to a wave-
length ∼0.75 cm. Therefore, the SC energy gap is the largest energy and the quasiparticle
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excitation on the island can be well suppressed at low temperatures. If SQUID area is as-
sumed to be about 50 µm × 50 µm, the absolute value |λ| of the qubit-photon coupling
constant is about |λ| = 4 × 106 rad s−1. The gate voltage is adjusted such that the gate
charge is ng = 0.634233, which can be experimentally achieved [39], then the detuning
2δ = 9 × 106 rad s−1 and ξ � 1

2 tan−1( 40
13 ) � 36◦. In the next section we concentrate on the

discussion of the population inversion behaviour.

3 Population Inversion of the Charge-Qubit

The junction effects can be used to observe the collapses and revivals phenomena in a con-
densed matter system. The interaction of the photons with a junction which behaves like
an atom undergoing transition between the quantum states of the junction as it absorbs and
emits radiation. This in fact would give information about the behaviour of the interaction
between the qubit and the electromagnetic field during the time considered. Therefore us-
ing above mentioned data we have plotted the function 〈σz(t)〉 against the scaled time 106t

to display its behaviour for different values of the detuning parameter δ and decoherence
parameter γ .

In Fig. 1 we plot the population inversion as a function of the scaled time and assuming
that the qubit is initially in the excited state and the field in the coherent state with the
intensity of the initial coherent parameter to α = 4, the coupling parameter is taken λ =
4×106 rad s−1 related to the junction coupling by Eq. (12). The first case, we consider is the
on-resonance case (δ = 0) and without the damping i.e γ = 0. we find that the phenomena

Fig. 1 Time evolution of the population inversion of the charge-Qubit when |α|2 = 16
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of collapses and revivals are similar to that of the coherent state JCM case. Since the revival
times can be estimated as in Refs. [40, 41], therefore the revival times for a coherent state
can be written as tR = 2π |α|. We see that the population inversion starts to oscillate showing
a long period of collapse after the onset of the interaction then periods of revivals. During
this revival periods the function shows fluctuations with a symmetrical behaviour around
zero (note that this symmetry becomes from Eq. (10), where the second term vanishes for
the on-resonance case) where its extreme occurs between ±0.4. Also, there are short periods
of collapse during which the function exhibits slight fluctuations; see Fig. 1(a). When we
take the damping into account and adjust (γ = 0.002), it is observed that the amplitudes
of revival oscillations decay to zero as the time develops (see Fig. 1(b)). Which means that
the decay of quantum coherence is due to the very specific time evolution described by the
master Eq. (3), i.e., due to the amplitude damping. It is remarked that the qubit decays to a
mixed state where the probabilities of finding the atom in the excited state and the ground
state are equal.

The second case we take the off-resonance case into consideration by adjusting 2δ =
9 × 106 rad s−1 and in the absence of the damping parameter (γ = 0), It is clear from this
figure the population inversion shows periodic oscillations between the maximum value
〈σz(t)〉 = 0.6 and minimum value 〈σz(t)〉 = −0.8 see Fig. 1(c). It is evident from the figures
that the collapses region is shifted upward and downward gradually in the inversion curve
for the case δ �= 0. In the meantime, the function shows a small period of revival after
the onset of the interaction which is followed with a small period of collapse. When we
take the damping into account (γ = 0.002) and the detuning (2δ = 9 × 106 rad s−1), we
see that the oscillations of the population function are weakened out and the amplitudes of
the revival oscillations decay to zero as the time develops (see Fig. 1(d)). In general the
detuning parameter plays two roles: firstly, it weakens the interaction between the atom and
the field; secondly, it reduces the transition probability of the atom from the upper level to
the mixed state of the stationary case and delays the damping. Furthermore in this case it
adds oscillatory behaviour to the form of the collapse and revival due to the mixing of the
operators σz(t) and σx(t) as showing in Eq. (10) as observed in [42].

4 Purity Loss of the States

There are two sources of purity loss in the present system. One of them is due to the unitary
qubit-cavity interaction. This process is usually called entanglement and from the point of
view of one of the subsystems, a purity loss will take place. On the other hand, the interaction
of the field subsystem with the environment also induces purity loss, and this process is
usually called decoherence in the literature. Due to decoherence, a pure state is apt to change
into a mixed state. However, in many cases of quantum information processing, one requires
a state with high purity and large amount of entanglement.

Here we use the linear entropy as a measure for the purity loss of the states of the global
system, of the qubit and cavity, in analogy to what is done for the calculation of the purity
in terms of von Neumann (or linear) entropy [43–47] which has similar behavior. The purity
loss of the qubit-cavity state can be measured in terms of the linear entropy [48] defined as:
S = 1 − tr{ρ2}. It should be noted that the entropy is a key concept of quantum information
[49]. To see what happens to the charge-qubit state, we trace out the cavity variables from the
state ρ(t) and get the reduced density matrix: ρq = trf {ρ}. The linear entropy of the Cooper-
pair box states can be written as: Sq = 1 − tr{ρ2

q}, where Sq has a zero value for a pure state.
But the reduced density matrix of the cavity state is given by: ρf = trq{ρ}. The linear entropy
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Fig. 2 Dynamics of the mixedness of the global system state (dotted plots), charge-qubite state (dashed
dotted plots) and cavity state (solid plots) for |α|2 = 16

of the cavity field state is given by: Sf = 1 − tr{ρ2
f }. A necessary and sufficient condition

for the ensemble to be described in terms of a pure state is that Tr[ρ̂2
f (t)] = 1. For the case

Tr[ρ2
f (t)] < 1 the field will be in a statistical mixture state. However, for a maximally mixed

ensemble corresponds to Tr[ρ2
f (t)] = 1

2 .
To do the analysis and discuss the purity, we plot the mixedness of the global system state,

charge qubit state and cavity state against the dimensionless time 106t assuming that the field
is prepared in a coherent state with the initial coherent parameter α = 4 and the atom in the
excited state for different values of the parameters δ and γ . In the on-resonance case and
absence of the damping (γ = 0), it is known that Sq = Sf , they have the same time evolution
curve. From Fig. 2(a) it is observed that the linear entropy in general satisfies the inequality
0 < Sf < 0.5 further the system approaches a mixed state showing strong entanglement
with regular oscillations at the half of the revival times, while weak entanglement at the
half of the collapse times and the system does not reach a pure state at any time t > 0. In
the meantime the maximum value of the linear entropy function becomes nearly 0.5. This
means that the qubit almost reaches the mixed state as verified by the population inversion
in Fig. 1(a).

When we take the damping parameter γ into account, the linear entropies of the charge-
qubit and cavity are different. Since the definitions of the linear entropies depend on the off-
diagonal terms of the densities (whether total or partial), we must expect that these quantities
will be affected by the cavity damping, this is shown distinctively in Fig. 2(b). Owing to
amplitude damping, the state is changed from a pure state at t = 0, to a mixed state as
time develops. We note that the total entropy increases monotonically and no longer equals
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to zero while Sq and Sf are no longer equal and hence cannot be used as a measure for
entanglement. But they may be used to study the purity loss. After a long time, the purity
loss of the full system S approximately follows that for the linear entropy of the cavity and
the time scales of the cavity and the full systems decoherence are the same. It is remarked
that the field attains higher entropy than the charge-qubit, so the purity loss of the field state
is faster than the qubit purity loss as observed in Fig. 2(b).

When we take the off-resonance case into consideration by setting 2δ = 9 × 106 rad s−1

and in absence of the damping parameter (γ = 0). We see that the linear entropy has the
same behaviour excepting the short time at the beginning interaction the extreme (minimum)
of function Sq decreases and more fluctuations can be seen, however, with some interference
between patterns see Fig. 2(c). This means that the field becomes in a mixture state and never
reaching its maximal. As we add the damping parameter γ = 0.002 into consideration, the
field entropy separates further from the charge-qubit entropy, the amplitudes of the fast
oscillations diminish and the minima (maxima) at half-revival times as compared with the
previous case see Figs. 2(b) and 2(c). We also see a more rapid suppression of quantum
coherences and increase of the values of the entropies S and Sf , while Sq converges to 0.5
as t develops (see Fig. 2(d)).

5 Entanglement and Total Correlation

We now consider the influence of decoherence on quantum entanglement of the charge
qubit-cavity system under consideration. Since the interaction of the system with environ-
ment makes the qubit-cavity pure state evolve to a mixed state, the linear entropy is not
a better measure for the entanglement of the mixed state. A good measure to describe the
amount of entanglement is the negativity, N(ρ) = max(0,−∑

j λj ), where λj are nega-
tive eigenvalues of the partially transposed density matrix of the qubit-cavity [50]. For an
entangled mixed state, the negativity is positive whereas it vanishes for unentangled states.

For the environment, not only entanglement but also classical correlation of the system
and environment can make the system evolve from the initial pure state into a mixed one. So
we will also look at the total correlation between the charge-qubit and the field as quantified
by the mutual information M(ρ) [24], which is defined as: M(ρ) = 1

2 [Sq + Sf − S]. The
mutual entropy M(ρ) as defined above is positive, and is zero if and only if the marginal
states are not correlated. It is a measure of both quantum and classical correlation residing in
the composite system. We will compare the two quantities N(ρ) and M(ρ) (i.e., the amount
of entanglement and the mutual information) to understand how much the purely quantum
correlations contribute to the total correlations.

For the on-resonance case and in absence of the damping parameter, we see that the
M(ρ) and N(ρ) follows the same behaviour for the time interval considered with the values
of the extreme are different as observed in Fig. 3(a). Also again we observed that strong
entanglement occurs between the qubit and the cavity at half the revival times while at the
half of collapse times the system shows weak entanglement see Figs. 1(a) and 3(a). When
we take the damping into account (γ = 0.002), it is to be observed that as time develops the
negativity of both N(ρ) and M(ρ) becomes smaller but they differ in the amplitudes, how-
ever they have the same trend in general see Fig. 3(b). When we take the off-resonance case
into consideration by setting 2δ = 9 × 106 rad s−1 and (γ = 0), we see that the functions
M(ρ) and N(ρ) follow same behaviour except the short time at the beginning of interac-
tion the extreme (minimum) of function Sq decreases and more fluctuations can be seen,
however, with some interference between patterns see Fig. 3(c). After adding the damping,
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Fig. 3 Dynamics of the negativity of the global system state (solid plots) and its total correlation (dashed
plots) for |α|2 = 16

we observe that the entanglement between the two subsystems becomes weaker and the am-
plitudes of local maxima and minima are further reduced as observed in Fig. 3(d). During
the repeated periods of entanglement and disentanglement, the qubit and field lose and gain
their coherence but the coherence recovered by the qubit never equal to what lost. The field
finally goes into a pure state (the vacuum state) and its coherence is lost completely. We note
that M(ρ) and N(ρ) have a very strong sensitivity to the damping parameter γ , where with
the increase of γ , the values of both M(ρ) and N(ρ) approach zero faster.

6 Conclusions

A general interaction of a single-mode microwave cavity field with a superconducting charge
qubit is investigated. Applying a canonical transformation to the qubit system, we have
managed to transform the model to the usual JCM. The analytical solution for the master
equation of the system is obtained. The population inversion in absence and presence of
both the damping and the detuning parameters is discussed. It is found that by increasing
the damping parameter the purity of the system and environment is lost. The results show
that with an increase of the damping parameter the entanglement between the subsystem
increases to maximum as the time increases. It should be noted that the problem we have
considered in the present communication is regarded as a generalization of that considered
in Ref. [51] where the entanglement is discussed in absence of the damping factor.
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