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Abstract Symmetry transformations in a space of D-dimensional vacuum metrics with
D − 3 commuting Killing vectors are studied. We solve directly the Einstein equations in
the Maison formulation under additional assumptions. We show that the Reissner-Nordström
solution is related by the symmetry transformation to a particular case of the 5-dimensional
Gross-Perry metric and the 5-dimensional plane wave solution is related to the Gross-Perry-
Sorkin metric.
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1 Introduction

Stationary vacuum Einstein equations admit the symmetry group SL(2,R) [2, 3]. This sym-
metry was generalized to an action of the group SL(D − 2,R) in the class of D-dimensional
vacuum metrics with D−3 commuting Killing vectors [4]. In the case D = 5 this group con-
tains the group SO(1,2) which preserves asymptotical flatness of a metric [5]. For instance,
using this action one can reproduce the Myers-Perry solution from the Schwarzschild-
Tangherlini metric [5].

In this paper we investigate in detail the action of the SL(D − 2,R) symmetry group
when integral submanifolds of the Killing vectors are not null. We identify relevant param-
eters of this action and we discuss corresponding changes of the metric signature. We solve
directly the Einstein equations in D = 5 assuming two commuting Killing vectors and addi-
tional symmetries which are not isometries. We give an example of the SL(3,R) symmetry
transformation in D = 5 which generates the Reissner-Nordström 4-dimensional solution,
with a dyonic electromagnetic field, from the 5-dimensional Gross-Perry metric [1, 7] of the
Euclidean signature.

In the considered class of solutions there are near horizon metrics of extremal black holes
[6] and metrics obtained by Clément (see [8] and references therein).
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2 Generation Method for Reduced Vacuum Einstein Equations

Let M be (n + 2)-dimensional manifold with metric g admitting n − 1 commuting Killing
vectors (thus, D = n + 2) which define a non-null integrable distribution. In special coor-
dinates xi , i = 1, . . . , n − 1, and xa , a = n,n + 1, n + 2, the Killing vectors are ∂i and the
metric takes the form

g = gij (dxi + Ai)(dxj + Aj) + τ−1g̃abdxadxb, (1)

where τ = |detgij |, Ai = Ai
adxa and functions gij , Ai

a , g̃ab do not depend on coordinates xi .
The vacuum Einstein equations for metrics (1) are equivalent to the following equations [4]

d(χ−1 ∗ dχ) = 0, (2)

R̃ab = 1

4
Tr(χ−1χ,aχ

−1χ,b) (3)

for g̃ab and n × n symmetric matrix χ constrained by the conditions

detχ = ±1, εχnn < 0, (4)

where ε = sgn(det g̃ab). Here R̃ab is the Ricci tensor of the metric g̃ = g̃abdxadxb and ∗
denotes the Hodge dualization with respect to this metric. The matrix χ is related to com-
ponents of (1) via the equations

χ =
(

gij − ε
τ
ViVj

1
τ
Vi

1
τ
Vj − ε

τ

)
, (5)

dVi = τgij ∗ dAj . (6)

Note that (6) is integrable by virtue of (2) and that

sgn(detgij ) = −ε detχ. (7)

Equations (2)–(4) are preserved by the transformation

χ �→ χ ′ = ε′ST χS (8)

where S ∈ SL(n,R) is a constant matrix and value of ε′ = ±1 is fixed by the condition

ε′ε(ST χS)nn < 0. (9)

Transformations given by (8)–(9) can be used to obtain new vacuum metrics from known
ones. They generalize the Ehlers transformation [2] for stationary 4-dimensional metrics. In
dimension 5 they contain the group SO(1,2) preserving asymptotical flatness of metrics [5].

3 Relevant Parameters and Change of Signature

Most of parameters in S (symmetry) do not change the seed metric in a nontrivial way.
Any matrix S with Sn

n �= 0 can be uniquely decomposed into a product of three matrices
S = S0HT , where

S0 =
(

δi
j αi

0 1

)
, (10)
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H =
(

βi
j 0

0 (detβi
j )

−1

)
, T =

(
δi
j 0

γj 1

)
. (11)

The matrix T (translation) yields translations of Vi by constants −εγi . It does not change the
seed metric. The matrix H (homothety) corresponds to a linear transformation of xi and Ai

combined with a multiplication of the full metric g by (detβi
j )

−2. Thus, modulo coordinate
transformations, H is a homothety and can be replaced by

H0 =
(

βδi
j 0

0 β1−n

)
(12)

with an appropriate constant β . The only nontrivial action is that of the matrix S0 (true
symmetry),

ST
0 χS0 =

(
gij − ε

τ
ViVj αi − ε

τ
Vi(α

kVk − ε)

αj − ε
τ
Vj (α

kVk − ε) V kVk − ε
τ
(αkVk − ε)2

)
, (13)

where αi = gijα
j and V i = gijVj .

If Sn
n = 0 then S is equivalent, modulo H and T , to one of the matrices Sl , l = 1, . . . , n−1

with entries given by

Si
ln =

{
1 if i = n − l,

0 if i > n − l,
Sn

lj =
{

−1 if j = n − l,

0 if j �= n − l,

(14)

Si
lj =

{
1 if i = j �= n − l,

0 if i �= j or i = j = n − l.

Note that Sl contains n − l − 1 free parameters (components Si
ln for i < n − l).

Summarizing, without loss of generality, symmetry transformations (8) can be reduced to
the action of one of matrices S0, Sl composed with H0, the latter equivalent to a homothety
of g.

Transformations (8) can change signature of gij , and hence the signature of (1). Let the
initial signature of gij be (p, q), where p denotes the multiplicity of the value +1. If ε′ > 0
then transformation (8) preserves this signature. If ε′ < 0 then the signature of the final
metric gij is (q + ε,p − ε). (Note that if (p, ε) = (0,1) or (q, ε) = (0,−1) then ε′ > 0.)
For instance, if we start with a 5-dimensional metric of the Lorentz signature (− + + +
+) then the transformed metric has the same signature or the Euclidean one. In this case
transformation (13) adds two parameters to the seed metric. (They have to be dependent,
α2 = 1

2 (α1)2, if the asymptotical flatness is to be preserved [5].) Transformations Sl take the
form

S1 =
⎛
⎝1 0 α

0 0 1
0 −1 0

⎞
⎠ , (15)

S2 =
⎛
⎝ 0 0 1

0 1 0
−1 0 0

⎞
⎠ . (16)
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4 Solutions with 2-Dimensional Space of Constant Curvature

Let us assume that χ = χ(z) depends only on one coordinate z and metric g̃ has the follow-
ing form

g̃ = dz2 + f (z)g(k), (17)

where g(k) is a 2-dimensional metric of constant curvature k = 0,±1 and signature ++ or
+−,

g(k) = 4(dx̃2 + εdỹ2)

(1 + k(x̃2 + εỹ2))2
. (18)

Note that z can be shifted by a constant and metric (17) can be multiplied by another constant
since this transformation can be compensated by a change of coordinates xi . Thus, we admit
the following transformations

z �→ cz + c0, f �→ c−2f, c, c0 = const. (19)

The Ricci tensor of g̃ reads

Ricci(g̃) = (f,z)
2 − 2ff,zz

2f 2
dz2 +

(
k − f,zz

2

)
g(k). (20)

It follows from (3) that

f = kz2 + az + b, a, b = const (21)

and

Tr
(
χ−1χ,z

)2 = 2a2 − 8kb. (22)

A double integration of (2) gives

χ = χ0 exp
(
(w + w0)C

)
, (23)

where χ0, C are constant matrices such that

χ0 = χT
0 , χ0C = CT χ0, TrC = 0, Tr C2 = 2a2 − 8kb (24)

and w(z) is a particular solution of

w,z = ±f −1. (25)

The constant w0 and the sign in (25) can be arbitrarily chosen.
One can classify functions f and w by putting them into a canonical form. First, let us

note that by virtue of (19) one can transform f into one of the following expressions labelled
by k and a new index k′ = 0,±1,

f (z) =
{

z if k = k′ = 0,

kz2 + k′ if k2 + k′2 �= 0.
(26)

Using (26) we find particular solutions of (25). They are presented in Table 1.
The symmetry (8) induces transformations C �→ S−1CS and χ0 �→ ST χ0S which allow

us to reduce matrices C and χ0 to simpler forms. First, we put matrix C into a canonical
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Table 1 TrC2 and solutions of
(25)–(26)

w(z) Conditions TrC2

(i) log |z| k = k′ = 0 2

(ii) arctanh z k′ = −k �= 0, z2 < 1 8

(iii) arccoth z k′ = −k �= 0, z2 > 1 8

(iv) z k = 0, k′ �= 0 0

(v) 1/z k �= 0, k′ = 0 0

(vi) arccot z k′ = k �= 0 −8

Jordan form. Then, we find χ0 satisfying (24) and we simplify it by means of matrices which
commute with C. Below we present results of this procedure in the case of 5-dimensional
metrics. Then n = 2 and there are four canonical forms of C and χ , in which α,β are
constants and ε, εi = ±1,

C =
⎛
⎝ α β 0

−β α 0
0 0 −2α

⎞
⎠ , χ =

⎛
⎝−eαw sin(βw) eαw cos(βw) 0

eαw cos(βw) eαw sin(βw) 0
0 0 −εe−2αw

⎞
⎠ ,

(27)
TrC2 = 6α2 − 2β2, β �= 0,

C =
⎛
⎝α 0 0

0 β 0
0 0 −α − β

⎞
⎠ , χ =

⎛
⎝ε1e

αw 0 0
0 ε2e

βw 0
0 0 −εe−(α+β)w

⎞
⎠ ,

(28)
TrC2 = 2(α2 + αβ + β2),

C =
⎛
⎝α 1 0

0 α 0
0 0 −2α

⎞
⎠ , χ =

⎛
⎝ 0 ε1e

αw 0
ε1e

αw ε1weαw 0
0 0 −εe−2αw

⎞
⎠ ,

(29)
Tr C2 = 6α2,

C =
⎛
⎝0 1 0

0 0 1
0 0 0

⎞
⎠ , χ = −ε

⎛
⎝0 0 1

0 1 w

1 w 1
2 w2

⎞
⎠ , TrC2 = 0. (30)

Note that case (27), with parameters in an appropriate range, is compatible with any func-
tion from Table 1, cases (28) and (29) admit functions (i)–(v) while (30) is only compatible
with functions (iv)–(v).

5 Canonical Metrics

Below, we present metrics corresponding to cases (27)–(30). In what follows, the coordi-
nates x1, x2 will be denoted by x, y.

5.1 Case (27)

The following metric

g = eαw
[
sin(βw)(dy2 − dx2) + 2 cos(βw)dxdy

] + e−2αw
(
dz2 + f (z)g(k)

)
(31)
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corresponds to solution (27) where f (z) is defined by (26) and w(z) is any function from
Table 1. In case when ε = 1 metrics (31) are Lorentzian. In the subcase (v) with k = ε = 1
solution (31) reads

g = eα/z
[
sin(β/z)(dy2 − dx2) + 2 cos(β/z)dxdy

] + e−2α/z
(
dz2 + z2d
2

)
, (32)

where β = ±√
3α and d
2 is the standard metric of the 2-dimensional sphere. The Kaluza-

Klein reduction of the latter solution with respect to x or y leads to 4-dimensional asymp-
totically flat Lorentzian metric. Coordinate z plays a role the a 3-dimensional length.

It is noted that for k = 1 and subcase (ii) solution (31) reduces to one of metrics found
in [9].

5.2 Case (28)

Metric which corresponds to the subcase (i) of solution (28) is given by

g = ε1z
αdx2 + ε2z

βdy2 + z−α−β
(
dz2 + 4z(dx̃2 + εdỹ2)

)
, (33)

where α2 + αβ + β2 = 1. Metrics related to (ii)–(iii) are given by

g = ε1

∣∣∣∣z + 1

z − 1

∣∣∣∣
α/2

dx2 + ε2

∣∣∣∣z + 1

z − 1

∣∣∣∣
β/2

dy2

+
∣∣∣∣z + 1

z − 1

∣∣∣∣
−(α+β)/2 (

dz2 + k(z2 − 1)g(k)
)
, (34)

where α2 + αβ + β2 = 4. We postpone metrics corresponding to subcases (iv) and (v) be-
cause they are flat as well as metrics obtained from them by the symmetry transformation (8).

5.3 Case (29)

The subcases (i), (iv) and (v) correspond, respectively, to the following metrics

g = ε1z
±1/

√
3dy (log |z|dy + 2dx) + z∓2/

√
3(dz2 + 4z(dx̃2 + εdỹ2)), (35)

g = ε1dy (zdy + 2dx) + dz2 + 4k′(dx̃2 + εdỹ2), (36)

g = ε1dy

(
2dx + 1

z
dy

)
+ dz2 + 4kz2g(k), (37)

while the metric

g = ε1

2

∣∣∣∣z + 1

z − 1

∣∣∣∣
±1/

√
3

dy

(
log

∣∣∣∣z + 1

z − 1

∣∣∣∣dy + 4dx

)

+
∣∣∣∣z + 1

z − 1

∣∣∣∣
∓2/

√
3 (

dz2 + k(z2 − 1)g(k)
)

(38)

follows in subcases (ii) and (iii). Although (36) is flat, it can be transformed to non-flat
solutions (see Sect. 6).
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5.4 Case (30)

The subcases (iv)–(v) correspond respectively to the following metrics

g = 2ε

z2
dx2 + 4ε

z
dx (dy − 2ε(ỹdx̃ − x̃dỹ)) + ε (dy − 2ε(ỹdx̃ − x̃dỹ))

2

+ z2

2

(
dz2 + 4k′(dx̃2 + εdỹ2)

)
, (39)

g = gij θ
iθ j + 1

2z2

(
dz2 + kz2g(k)

)
, (40)

where

gij = ε

(
2z2 2z

2z 1

)
, θ1 = dx, θ2 = dy − 2ε(ỹdx̃ − x̃dỹ)

1 + k(x̃2 + εỹ2)
. (41)

Both solutions are not flat. Metric (40) for k = ε = 1 is Lorentzian and can be slightly
simplified by introducing spherical angles θ , φ instead of x̃, ỹ. Then (40)–(41) yields

g = −2z2dx2 + (2zdx + dy ′ + cos θdφ)2 + (2z2)−1
(
dz2 + z2d
2

)
, (42)

where y ′ = y + φ and d
2 = dθ2 + sin2 θdφ2.

6 Examples of Transformed Metrics

In this section, new metrics are constructed by application of the symmetry transformation
(8) to some canonical solutions found in the previous section. Among them there is the
Reissner-Nordström solution lifted to 5 dimensions, the Gross-Perry-Sorkin monopole so-
lution and the near horizon metrics. It is noted that this transformation cannot always be
used. For instance, transformation (8) with S given by (16) is not applicable to (39)–(41) or
(35)–(37) because then χ ′

33 = 0.
Below we present all metrics which can be obtained from (39)–(41). Solutions corre-

sponding to matrix S0 become

g = gij θ
iθ j + τ−1

(
dz2 + f (z)g(k)

)
, (43)

where

gij = ετ

(
1 w + α2

w + α2 1
2w2 − 2α1

)
, τ = 2

|(w + 2α2)2 + 4α1 − 2(α2)2| ,
(44)

θ1 = dx − 2εα2(ỹdx̃ − x̃dỹ)

1 + k(x̃2 + εỹ2)
, θ2 = dy − 2ε(ỹdx̃ − x̃dỹ)

1 + k(x̃2 + εỹ2)
.

Applying transformation (15) to metrics (39)–(40) gives the following solutions

g = 2εdy (dx − 2ε(ỹdx̃ − x̃dỹ)) + ε

(
(z + α0)

2 − z2

2

)
dy2

+ dz2 + 4k′(dx̃2 + εdỹ2), (45)

g = gij θ
iθ j + dz2 + kz2g(k), (46)
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where

gij = ε

(
0 1
1 ( 1

z
+ α0)

2 − 1
2z2

)
, θ1 = dx − 2ε(ỹdx̃ − x̃dỹ)

1 + k(x̃2 + εỹ2)
, θ2 = dy. (47)

Transformation (15) applied to (32) leads to

g = ηe−2α/zdy2 + e2α/z cos2 γ

|sin(β/z + 2γ )|
(

dx ′ + β

cos2 γ
cos θdφ

)2

+ eα/z|sin(β/z + 2γ )|
cos2 γ

(
dz2 + z2d
2

)
, (48)

where x ′ = x+βφ/ cos2 γ , tanγ = α0, β = ±√
3α and η = sgn(sin(β/z+2γ )). For γ = 0,

(48) reduces to metric equivalent to a transform of (32) by means of (16).
It is noted that 5-dimensional near horizon geometries [6] may be associated with (28) by

a suitable symmetry transformation. The 3-dimensional metric 2dvdr −C2r2dv2 +C−2dθ2

used in [6] is transformed to C−2(1−z2)−1(dz2 + (1−z2)g(−1)) by the following coordinate
transformation

v = x̃ + ỹ − 1

x̃ + ỹ + 1
, r = C−2

(
2(x̃ + 1)

1 − x̃2 + ỹ2
− 1

)
, θ = arccos z (49)

and setting ε = −1. It can be shown that the symmetry transformation S = S0HT (ε′ = 1),
where

S0 =
⎛
⎝1 0 −C/2

0 1 0
0 0 1

⎞
⎠ , H = 1

2BC3/2

⎛
⎝ 8AB3 C2 0

−8B3 0 0
0 0 C

⎞
⎠ , T =

⎛
⎝1 0 0

0 1 0
0 1 1

⎞
⎠ ,

(50)

relates the near horizon geometry with horizon topology H ∼= S1 ×S2 (see [6]) with solution
(34) with ε = k = −1, ε1 = ε2 = 1, α = 0, β = 2, and (x, y) replaced by (x/

√
C,y/

√
C).

Let us consider metric (34) with k = −k′ �= 0. If ε1 = ε2 = ε = k = 1, α = −β = −2 and
we admit a constant conformal factor in g we obtain the (Euclidean) Gross-Perry solution
[1, 7]

g =
(

ρ − q

ρ + q

)2

dx2 +
(

ρ + q

ρ − q

)2

dy2 + 1

4

(
1 − q2

ρ2

)2 (
dρ2 + ρ2d
2

)
, (51)

where d
2 = dθ2 + sin2 θdφ2, q = const and ρ = q(z + √
z2 − 1). Let us transform metric

(51) by means of (8) with

S = − 1

2q

⎛
⎝

√
2(m2 − q2) m + q m − q

−√
2(m2 − q2) −m + q −m − q

2m
√

2(m2 − q2)
√

2(m2 − q2)

⎞
⎠ . (52)

For ε′ = −1 this transformation yields surprisingly the following 5-dimensional vacuum
solution

g =
(

dx − √
2Q cos θdφ +

√
2Q

r
dt

)2

−
(

1 − 2m

r
+ Q2

r2

)
dt2
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+
(

1 − 2m

r
+ Q2

r2

)−1

dr2 + r2d
2, (53)

where t = y, ρ = r − m + √
r2 − 2mr + Q2 and q = √

m2 − Q2. Within the Kaluza-Klein
approach the latter metric decomposes into the 4-dimensional Reissner-Nordström solution
on the manifold x = constant

g′ = −
(

1 − 2m

r
+ Q2

r2

)
dt2 +

(
1 − 2m

r
+ Q2

r2

)−1

dr2 + r2d
2 (54)

and dyonic electromagnetic field given by

A = −√
2Q cos θdφ +

√
2Q

r
dt. (55)

This field represents a magnetic and electric monopoles of the same strength placed at the
same point.

Transformation (15) applied to (29) leads to the following class of solutions

g = εeαw

|w + 2α0| (θ
1)2 + ηε1e

−2αw(θ2)2 + eαw|w + 2α0|
(
dz2 + f (z)g(k)

)
, (56)

where η = sgn(w + 2α0), θ1 = dx − 2ε(ỹdx̃−x̃dỹ)

1+k(x̃2+εỹ2)
, θ2 = dy and functions f (z), w are given

by (26) and Table 1 for subcases (i)–(v). For instance, in the subcase (iv) the latter metric
can be written in the form

g = ε1dy2 + 1

z

(
dx + ρ2

2
dφ

)2

+ z
(
dz2 + dρ2 + ρ2dφ2

)
, (57)

where ε = k1 = 1 and cylindrical coordinates ρ, φ (x̃ = ρ

2 cosφ, ỹ = ρ

2 sinφ) are introduced
for simplicity. Metric (57) provides an example of a non flat metric obtained from a flat one
by means of a symmetry.

It turns out that in the subcase (v) of (29) the matrix S1 transforms 5-dimensional plane
wave solution into Gross-Perry-Sorkin metric [7, 10, 11]. To show that we set ε = ε1 =
k = 1 in (37) and introduce spherical coordinates with z = −r . Then, applying coordinate
transformation x = 2u+t

2
√

m
, y = √

mt we obtain the plane wave solution

g =
(

1 − m

r

)
dt2 + 2dtdu + dr2 + r2d
2. (58)

Transforming the latter metric by virtue of matrix S1 with α0 < −1/2 we get the Gross-
Perry-Sorkin monopole solution

g = −dt2 + 1

1 + M
r̃

(dũ − M cos θdφ)
2 +

(
1 + M

r̃

)
(dr̃2 + r̃2d
2), (59)

where ũ = u/
√

α′
0, r̃ = √

α′
0 r , M = m/

√
α′

0 and α′
0 = −2α0 − 1.
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7 Summary

We showed that symmetry transformation (8) of the D-dimensional vacuum Einstein equa-
tions with D − 3 commuting Killing vectors may lead to at most (D − 3)-parameter family
of new solutions. The symmetry transformations can be reduced to (10), (12) or (14). We
outlined a method of solving (2)–(3) under the assumption that the 3-dimensional metric g̃

is given by (17) and the matrix χ (see (5)) depends only on the coordinate z. 5-dimensional
metrics obtained in this way are given in Sects. 5.1–5.4. Some of these metrics were used
as seed solutions for the symmetry transformation (Sect. 6). Unexpectedly, it turns out that
the Kaluza-Klein version of the Reissner-Nordström solution is the symmetry transform of
a Gross-Perry metric and that the 5-dimensional plane wave metric (58) is related to the
Gross-Perry-Sorkin monopole solution (59).
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