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Abstract The paper examines the geometrical properties of a six-dimensional Kaluza-Klein
type model. They may have an impact on the model of the structure of a neutron and its ex-
cited states in the realm of particle physics. The statistical reason for the six-dimensionality
and the stability of the solution is given. The derivation of the weak limit approximation
of the general wave mechanical (quantum mechanical) approach, defined in the context of
losing its self-consistency (here gravitational), is presented. The non self-consistent case for
the Klein-Gordon equation is defined. The derivation of the energy of states and the analysis
of the spin origin of the analyzed fields configuration is presented as the manifestation of
both the geometry of the internal sample two-dimensional parametric space and kinemat-
ics of fields inside it. The problem of the departure from the (gravitational) self-consistent
calculations of the metric tensor and of other fields of the configuration is discussed. The
implementation of the model for the description of a neutron and its excited states, including
their spins and energies, is given. The informational reason for the existence of the internal
extra parametric space dimensions is proposed.

Keywords Wave mechanics of neutron · Self-consistent Kaluza-Klein field theory

1 Introduction

The paper presents the model of an elementary particle and particularly the model of the
neutral nucleon and its excited states. Since the model is atomic-like I will give a concise
reminder both of the history of the models of an atom and of a neutron which still overlap
until the present day.

Possibly the first model of an atom in the 20th century was Kelvin’s static one [1, 2]
of a sphere of uniformly distributed positive electricity with embedded discrete electrons,
followed closely by the Thomson’s model of “the pudding with raisin muffins in it” [3].
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Models also appeared at the end of the 19th century, stimulated by empirical facts suggesting
the complexity of the structure of the atom and its composition from smaller components [4].
As a result, both the theoretical intuition and the empirical indications prompted the sense
of the electron to Thomson. He disagreed with the idea of the planetary “point planets”
model of the atom but probably was influenced by Maxwell’s considerations on Saturn’s
rings [5]. Hence, contrary to Kelvin’s model, the one by Thomson [3] is not static and one
of its characteristics is the motion of a ring of n negatively charged particles (electrons [6],
as they were called by Stoney [7]), which are set within an uniformly charged sphere (with
the radius of the order of 10−10 m) having a number of particles which vary from ring to
ring. The attractive force of the positively charged sphere and the repulsion of the negatively
charged electrons arranged in a series of parallel rings were to guarantee the stability of
the system. The strange characteristic of the model is that if the number of the negative
particles is larger than 5, some of them must be set in the central position of the sphere yet
not necessarily strictly in the center, or else the movement in the atom becomes unstable.
This problem still arouses interest until the present day [8].

Thomson’s atom has two types of vibrations: the first one connected with the movement
of electrons along their orbits and the second one developing out of the distortion of a ring
from its equilibrium circular shape in a particular spherical shell. Although the model does
not explain the characteristic regularities of the observed spectral lines and the deflection
of an electron when it passes through matter, it was regarded as a sufficient one by many
physicists until the end of the first decade of the 20th century. This was due to the fact that
he found a close relation between the occupation of the electrons inside rings formed in
the concentric shells and the regularities inside the Mendeleev’s periodic table. However,
at the same time some scientists considered that the planetary model of the atom was more
appropriate.

In 1920 Rutherford considered his model of the neutron in relation to the compressed
hydrogen atom in the core of a star and presented his hypothesis on the structure of the
neutron [9]. He perceived the neutron as an electron pressed into the interior of a proton
hence his model of the neutron was more in line with Thomson’s idea of the atom than of
the planetary kind. In 1932 Chadwick experimentally confirmed Rutherford’s hypothesis on
the existence of the neutron.

In the period from 1925 to 1928 there emerged three formulations of quantum mecha-
nics: Heisenberg’s [10], Dirac’s [11–14] and Schrödinger’s [15–18]. They were developed
nearly at the same time. The Schrödinger equation provides a direct representation of the
mechanical system using the notion of the wave function for a particular state. Here the
eigenstate functions form the orthogonal reference frame in the Hilbert space in which the
wave function and its time evolution can be analyzed. The specific Schrödinger’s substantial
approach to the square modulus of the wave function gave the name ‘wave mechanics’ to
his interpretation of quantum mechanics which is in line with de Broglie’s theory of phase
waves [19, 20].

Two questions about the main characteristics of the type of the models of an atom or nu-
cleon built in these formalisms arise. Firstly, are they Thomson’s with deep overlapping of
constituent fields or planetary-like, for which the constituent fields do not overlap so deeply?
On the surface, all of them carry some planetary features, especially if the Hamiltonians of
the particular models are analyzed. This may be easily understood because in this respect
they are classical mechanics descendants, yet in their main idea connected with the nonlo-
cality of the wave function they are Thomson oriented, regardless of the fact whether the
interpretation of the wave function is Schrödinger’s or Copenhagen’s. Indeed, in the atom
the electron wave function is deeply embedded in the nucleus field. Secondly, what is the
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geometry of the manifold (space or space-time) which forms the background arena for the
disputed configurations of fields? The common feature of Thomson’s and Schrödinger’s like
models of the atom is the homogeneity of their space-time structure. We will come back to
this problem in the passage below.

Now, let us return to the neutron. Since it seemed that quantum mechanics did not permit
a consistent representation of the neutron as a bound state of the proton and electron, the
before mentioned Rutherford’s conception of the structure of the neutron has been rejected
by the majority of physicists. Yet, until now attempts have been made to restore this model.
For instance such attempts are connected with the construction of a covering of quantum
mechanics known as hadronic mechanics [21–26] for the specific objective of achieving
a consistent quantitative treatment of nonlocal, nonlinear and nonpotential effects in deep
wave-overlappings of particles at short distances. As far as the quantum models of the neu-
tron are considered, the most popular is the quantum field theory version of the bag model.
Setting aside the difficulties of this model with the determination of the spin of the nucleon
we give some literature references [27, 28] only citing after [29]: “. . . all spin parts [of the
nucleon] have to add to 1

2 which is incredible in the light of the present day experiments.
This may indicate that some underlying symmetries, unknown at present, are playing a role
in forming the various contributing parts such that the final sum rule gives the fermion 1

2
value”.

Another story is partly connected with the name of Riemann. In his lecture entitled “On
the hypotheses that lie at the foundations of geometry” [30], given in 1854, he emphasized
that the truth about space has to be discovered1 from physical experience. The clue is that
he noted that the geometry of space could be highly irregular at very small distances, yet
appearing smooth at the observed ones. He wrote: “Space [in the large] if one ascribes to
it a constant curvature, is necessarily finite, provided only that this curvature has a positive
value, however small. . . . It is quite conceivable that the geometry of space in the very small
does not satisfy the axioms of [Euclidean] geometry. . . ”.

But the story of the atom and nucleon may be told and retold (at least up to now) in
many ways [31]. Not that all of them are right. The latest attractive model of the (hydro-
gen) atom, based on the isomorphism between Maxwell and Dirac formalisms (or rather on
optics-mechanics isomorphism called Hamilton’s analogy), is connected with the name of
Sallhofer [32]. He worked out the formal mathematical strong similarity (I would not call it
identity), in the Minkowski space, between electrodynamics and wave mechanics by means
of which he proved that the hydrogen atom might be seen as a pair of mutually refract-
ing electromagnetic waves. Previously this similarity was pointed out with amusement by
Sakurai [33].

Below the model of a neutral nucleon will be presented which is more planetary (fields
do not overlap very deeply) and incorporates the Riemann’s idea of space. The metric of the
underlying space-time was previously obtained in [34–36] where a six-dimensional Kaluza-
Klein type model at the classical level is considered. In them the static spherically symmetric
solution to the coupled six-dimensional Einstein and Klein-Gordon equations was derived
in the presence of the basic massless dilaton field ϕ, which variation in the radial direction
compensates self-consistently for the curvature. The dilatonic field ϕ forms a kind of ground
field for the self-field of gravitation, the notions of which were discussed elsewhere [37–49].
The solutions presented in [34, 35] are parameterized by one parameter A which has similar

1I do not agree with this point of view, but definitely the truth about space is consistent with physical ex-
perience. I consider the physical world to be perhaps at least six-dimensional with at least four of these
dimensions to be of the space-time origin.
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dynamical consequences as mass [50] M = Ac2/(2G), i.e. its existence would be perceived
by an observer in the same way as invisible mass which could be the extended “center” of
a particle. Because the solution is horizon free hence it is fundamentally different from the
four-dimensional Schwarzschild one.

The motivations which lie behind the six-dimensionality of the space-time and the stabil-
ity of the solutions are presented in Sects. 1.1 and 2.1, respectively. In Sect. 3 the weak limit
approximation of the general wave mechanical approach for the new scalar field inserted
into the “reference” dilatonic background is defined. In Sect. 3.4 the analysis of the phe-
nomenon of the breaking of the scale invariance of the coupled Einstein and Klein-Gordon
equations is given. It will result from the lower symmetry of the self-consistent solution of
these equations, where the original dilatonic field ϕ is the Goldstone one. In Sect. 4.1 the
neutral particle-like solution, which could be called a ‘neutron’, is obtained. In Sect. 4.3 the
results connected with the gravitational bounding of the ‘neutron’ and its excited states are
presented. This means that, as in the case of the ‘neutron’, the formalism makes it possible
to describe the half-integer spin particle with the use of the dynamics of the scalar field in
the six-dimensional space-time. An example of the integer spin ‘ρo’ neutral meson is also
given. Finally, a new concept on the simultaneous variety of the dimensions of parametric
spaces for structures, even more complicated than spinors, also emerges. This feature of the
model connected with the possible observation of several large extra dimensions ought to be
tested in accelerator experiments.

1.1 The Motivations for Extra Dimensions

The idea of the six-dimensional space-time re-enters the physics occasionally [51–53].
Yet the motivations for choosing the six-dimensional models were diverse. For instance in
[51, 52] Nishino, Salam and Sezgin suggested that one may obtain the fermion spectrum in
four-dimensions within the framework of D = 6, N = 2 Kaluza-Klein supergravity. A six-
dimensional model of the Kaluza-Klein theory was also previously investigated by Mańka
and Syska [48, 53], and by Ivashchuk, Melnikov and Bronnikov [54–57]. Recently Sparling
[58] has followed the concept of (3 + 3) dimensional structure of the space-time [59–61].
Unfortunately, models described in [58–61] contain the time component with two additional
time dimensions.

However, still more closely to the Standard Model modelling, there is a way to extend the
four-dimensional space-time to the multi-dimensional one via the Fisherian statistical analy-
sis. Few years ago Frieden proved [62–71] that the Fisher information channel capacity is the
statistical ancestor of the kinematical part of the well known field theory models. Using the
channel capacity notion, which is inherently connected with the internal parametric space of
the sample (of positions collected by the particle alone), and two informational principles,
the structural and the variational one, Frieden and Soffer [62–70] obtained the Klein-Gordon
equation of motion with the proper relativistic dispersion relation.2 The structural informa-
tion principle has been recently proven in [72, 73]. The channel capacity, the trace of the
Fisher information matrix, conveys in our case the Fisher information on the quality of the
(unseen) position parameters3 estimation, being the upper bound for the Stam’s informa-
tion, which is the total intrinsic accuracy of the model. The point is that the channel capacity
which has turned out to be the kinematical part of the action of any field theory model, is

2They obtained the proper structural equation of motions for the Maxwell electromagnetic field, for the Dirac
field and for the gravitational field also [62–71].
3They have nothing to do with the so called classical hidden variables [72].
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additive both in the Minkowskian ν = 0,1,2,3 and the sample n = 1,2, . . . ,ℵ (parametric)
indices [62–70]. This enables the partition of the channel capacity I into two parts, one for
the four-dimensional space-time and the other for the inner parametric space of the sample
whose dimension depends on the spinorial representation of the field [62–73]. When we
note by xν

n = yν
n − θν

n the added fluctuations of the data yν
n (collected by the system alone)

from the expectation positions [62–70] θν
n ≡ θνxn, then it can be proven that it takes the

following form:

I = 4
ℵ∑

n=1

∫
d4yn

(
∂qn(y

ν
n)

∂θν
n

∂qn(y
ν
n)

∂θνn

)

≡
∫

d4ynL
(
ημν, qn(y

ν
n)

)

=
∫

d4xL4

(
gμν,ϕn(x

ν)
) +

∫
dℵx Lℵ(gmn,ϕℵ(xn)), (1)

where qn(y
ν
n) are the original field amplitudes4 in the sample [62–74], ημν is the

Minkowskian metric, xν
n are the original Fisherian variables and xn are the parame-

ters. The index n has been dropped from the first integral on the RHS of (1) as for
the given ν the range of all xν

n is the same. The amplitudes are factorized as follows
qn(y

ν
n) = f ϕn(x

ν)ϕℵ(xn), where f is a proportionality constant and the metric tensor
gMN (M,N ≡ (μ, ν = 0, . . . ,3;m,n = 1, . . . ,ℵ)) is obtained effectively from this pro-
cedure [75]. Factor 4 in the kinematical form of I signifies the Fisher information origin of
the action, yet it does not enter into the equation of motion [62–70] as it is also factored out
from the structural information [72, 73].

For the complex scalar field the dimension ℵ of the extra parametric space is equal to
ℵ = 2. In this way the six-dimensionality of the space having the mixed space-time and
parametric character is chosen. Hence the model with the internal space geometry of the
two-dimensional parametric space parameterized by two angles will be presented. This pro-
vides the geometry of internal space, which in Sects. 3 and 4 enables us to describe the
spinorial field. In [34, 35], Biesiada, Mańka and Syska showed that the six-dimensionality
of this space-time enables the self-consistency of the background solution of the coupled
Einstein and Klein-Gordon equations with the internal parametric space, compactified in a
non-homogeneous manner. For the sake of clarity, the summary of [34, 35] is presented be-
low in Sect. 2. In Sects. 3 and 4 the model will raise a new issue on the wave-mechanical
analysis of the possible general structure of a particle. In Sect. 4 its application to the de-
scription of the ‘neutron’ and its excited states is presented. In general, statistical models
which one can obtain in this way are of the Kaluza-Klein type with four-dimensional space-
time and ℵ-dimensional internal parametric space.

2 The Geometry of the Space-Time

In [34–36] a (1 + 5) six-dimensional field theory has been considered (see also [77]) which
comprises the gravitational self field described by a metric tensor, gMN , and a real massless
“basic” scalar (dilatonic) field, ϕ. We have decomposed the action into two parts:

4After squaring each one of qn(yν
n) and multiplication, the likelihood of the sample is calculated.
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S = SEH + Sϕ

=
∫

d6x
√−g

1

2κ6
R +

∫
d6x

√−g
−gMN

2
∂Mϕ∂Nϕ, (2)

where SEH is the Einstein-Hilbert action and Sϕ is the action for a real massless scalar (dila-
tonic) field with the Lagrangian density equal to Lϕ = − 1

2gMN∂Mϕ∂Nϕ. In (2) g = detgMN

denotes the determinant of the metric tensor, R is the curvature scalar of the six-dimensional
(in general curved) space-time, and κ6 denotes the coupling constant of the six-dimensional
theory, analogous to the familiar Newtonian gravity constant.

By extremalizing the action given by (2) we obtain the Einstein equations

GMN = κ6TMN, (3)

where GMN = RMN − 1
2 gMN R is the Einstein tensor, RMN is the six-dimensional Ricci

tensor, R is the curvature scalar and TMN is the energy-momentum tensor of a real scalar
(dilatonic) field ϕ which is given by

T M
N = ∂Nϕ

∂Lϕ

∂(∂Mϕ)
− δM

N Lϕ. (4)

Variation of the total action S with respect to the field ϕ gives the Klein-Gordon equation

�ϕ ≡ − 1√−g
∂M(

√−ggMN∂N)ϕ = 0, (5)

where gMN is the tensor dual to gMN .
Now consider the six-dimensional space-time which is a topological product of the

curved four-dimensional physical space-time (with the metric gαω, α,ω = 0,1,2,3) and
the compactified parametric space (with the metric ghe, h, e = 5,6).5 Therefore the metric
tensor can be factorized as

gMN =
(

gαω 0
0 ghe

)
. (6)

The four-dimensional diagonal part is assumed to be that of a spherically symmetric geom-
etry

gαω =

⎛

⎜⎜⎝

eν(r)

−eμ(r) 0
0 −r2

−r2 sin2 Θ

⎞

⎟⎟⎠ , (7)

where ν(r) and μ(r) are (at this stage) two arbitrary functions. Analogously, we take the
two-dimensional internal part to be

ghe =
(−2(r) cos2 ϑ 0

0 −2(r)

)
. (8)

5This reflects the generalization of the principal bundle to the case of the statistical space and the sample
space-time as the base space. The axes in the parametric space span the coordinate system in a subspace of
the statistical space.
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The six-dimensional coordinates (xM) are denoted by (t, r, Θ,Φ,ϑ,ς) where t ∈ [0,∞)

is the usual time coordinate, r ∈ [0,∞), Θ ∈ [0,π ] and Φ ∈ [0,2π) are the familiar three-
dimensional spherical coordinates in the macroscopic space; ϑ ∈ [−π,π) and ς ∈ [0,2π)

are coordinates in the two-dimensional parametric space and  ∈ (0,∞) is the “radius” of
this internal space. We assume that (r) is the function of the radius r in the external three-
dimensional space. The internal space is a 2-dimensional parametric space with r-dependent
parameter (r). Using (7)–(8), we can calculate the components of the Ricci tensor. They
are given in Appendix A.

Now we seek for a solution of the Einstein equations (see (3)) with the Ricci tensor given
in Appendix A by (71)–(74), with ν(r) = μ(r), and with the following boundary conditions

lim
r→∞ν(r) = lim

r→∞μ(r) = 0,

(9)
lim
r→∞(r) = d = constant �= 0,

which at the spatial infinity reproduces the flat external four-dimensional Minkowski space-
time and the static parametric space of “radius” d which is of the order calculated in Sect. 4.
We also suppose that the scalar field ϕ is the function of the radius r alone, ϕ = ϕ(r), and
we impose the following boundary condition for the scalar field ϕ:

lim
r→∞ϕ(r) = 0 (10)

which supplements boundary conditions (9) for the metric components.
By virtue of (4) and (2) it is easy to see that the only nonvanishing components of the

energy-momentum tensor are

− T r
r = T t

t = T Θ
Θ = T Φ

Φ = T ϑ
ϑ = T ς

ς = 1

2
grr (∂rϕ)2. (11)

Consequently, it is easy to verify that the self-consistent solution of the coupled Einstein
(3) and Klein-Gordon (5) equations is

ν(r) = μ(r) = ln

(
r

r + A

)
, (r) = d

√
r + A

r
, (12)

ϕ(r) = ±
√

1

2κ6
ln

(
r

r + A

)
. (13)

Hence it results that the only nonzero component of the Ricci tensor (see (71)–(74) in Ap-
pendix A) is Rr

r . So the curvature scalar R is equal to

R = Rr
r = A2

2 r3(r + A)
, (14)

where A is the real constant, with the dimensionality of length, whose value is to be taken
from the observation of each particular system (but see Sect. 4). We notice that all of the six
diagonal Einstein equations (3) have shrunk to just one

1

2
R = κ6T

r
r . (15)
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Now we can rewrite the metric tensor in the form

gMN = diag

(
r

r + A
,− r

r + A
,−r2,−r2 sin2 Θ,

− d2 r + A

r
cos2 ϑ,−d2 r + A

r

)
(16)

with its determinant equal to

g = detgMN = −(d2r2 sinΘ cosϑ)2. (17)

To summarize we notice that the real massless “basic” free scalar field ϕ(r) (see (13)) can
be the source of the nonzero metric tensor as in (16). Only when the constant A is equal to
zero, the solutions (12)–(13) become trivial and the six-dimensional space-time is Ricci flat.

It is worth noting that since (with the solutions given by (12) and (13)) the components
Rϑ

ϑ and Rς
ς of the Ricci tensor (Appendix A) are equal to zero for all values of A, the

parametric space is always Ricci flat. However, we must not neglect the parametric space
because its “radius”  is a function of r and the two spaces, external and parametric, are
therefore “coupled”. Only when A = 0 are these two spaces “decoupled”, and the four-
dimensional space-time becomes Minkowski flat.6

2.1 Stability of the Background Solution

The self consistent solution given by (13) and (16) of the coupled Einstein and Klein-Gordon
equations is unique. To answer the question on the stability of this self-consistent gravity-
dilatonic configuration let us calculate its energy:

Eg+ϕ =
∫

V

d5x
√−g(Gtt + κ6 T tt ), (18)

where using (11)–(17) we obtain:

Eg+ϕ = −2
∫

V

d5x
√−ggtt R

2
= −2Q (19)

with

Q = 8d2π2 lim
ε→0+

∫ ∞

ε

A2

r2
dr

= (2πd)(4πA2) lim
ε→0+

d

ε
. (20)

The integral of 1/r2 does not converge on (0,∞). Hence (19) means that the self consis-
tent solution (13) and (16) cannot be obtained from A → 0 finite energy (even in the limit
Eg+ϕ → 0) convergent solutions around Eg+ϕ = 0 corresponding to A = 0.

If we depart from the self consistent solution then a similar result can be obtained from
the information analysis in the following way. From the notion of the Fisher information

6When A is not equal to zero, our four-dimensional external space-time is curved. Its scalar curvature R4

can be given by (14), i.e. R4 = R = A2

2 r3(r+A)
.
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[62–70], we notice that d is (for r → ∞, see (12)) the characteristic dimension of the para-
metric space, i.e. the radius of the expected value of the position of the system. In the Frieden
[62–70] analysis r is the added fluctuation to d . Hence if we assume that the fluctuation r is
not smaller than the expected value d then the physical limit7 for the fluctuation r is ε ≈ d .
In (20) the cutoff ε = d can be taken which leads to Q = Qcut = (2πd)(4πA2). There-
fore Qcut is finite and its value could be even small in contradistinction to the infinite value
obtained in (20) for ε → 0 in the self consistent case. Hence, we see that the unique self
consistent solution given by (13) and (16) cannot be destabilized to yield any other.

Let us also notice that in (18) the partition of Eg+ϕ into two parts can be obtained by
using the Fisher information formalism developed for physical models by Frieden [62–70].
According to [62–70], Gtt is connected with the Fisherian kinematical degrees of freedom
of the gravitational configuration whereas T tt with its structural degrees of freedom.

To conclude this section it is worth noting that the metric given by (16), with the dilatonic
field given by (13), serves, under further conditions discussed below, as a background fields
configuration. This metric appears in the equation of motions for all new fields which weakly
enter the system.

3 The Quantum Implication—Klein-Gordon Equation. Wave-mechanical Approach
and Weak Interaction Limit

Until now the calculations were fully self-consistent. The model presented below adds a new
scalar field to the system. Yet, since it procures big analytical complications the model will
stop being fully self-consistent. This means among others that we will decline from making
the self-consistent correction of the metric (16) obtained in Sect. 2. Therefore the following
calculations are made totally on the basis of the wave-mechanical approach.

Let us investigate the Klein-Gordon relativistic wave equation for the motion of a scalar
particle with a wave function φ and mass m (for m2 < 0 it would be a 6-dimensional ta-
chion),

1√−g
(i�)∂M

(√−ggMN(i�)∂Nφ
) − m2c2φ = 0, (21)

in the six-dimensional space-time given by the central gravitational field described by the
metric, gMN , given by (16) with its determinant given by (17). This metric tensor is used
in the above Klein-Gordon equation as the background metric only. Hence we neglect the
modification of the Einstein equations. Therefore a particle described by the φ wave func-
tion moves without changing the metric gMN in reciprocal action. This is called the wave-
mechanical approach. But to make our calculations self-consistent by the inclusion of the
Einstein equations coupled to Klein-Gordon equation, we should follow the pattern of the
previous section for all scalar fields (particles) which have the mass m and are inherently
tied up by strong interaction (compare Sect. 4.3.1). This procedure should give the self-
consistent change of the metric tensor gMN .

We incorporate [48, 49] the so-called “natural interpretation” of the wave equation8 with
a particle as an oscillating substance described by the wave function φ which is deformable
according to (21).

7Also the inverse of the Fisher information gives according to the Cramer-Rao inequality [62–70] the lower

bound on the square error (∝ r2) of the estimator of d .
8Then we do not have any problems with possible negative values of probability density which is the inherent
property of the probabilistic interpretation of quantum mechanics for the Klein-Gordon equation [78].
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Using (16) and (17), we can rewrite the Klein-Gordon equation as follows:

sinΘ cosϑ

(
r + A

r
r2 ∂

c∂t

(
∂φ

c∂t

)
− ∂

∂r

(
r2 r + A

r

∂φ

∂r

))

− r2 cosϑ

(
∂

∂Θ

(
sinΘ

1

r2

∂φ

∂Θ

)
+ sinΘ

1

r2 sin2 Θ

(
∂2φ

∂Φ2

))

− r2

d2
sinΘ

(
r

r + A

∂

∂ϑ

(
cosϑ

∂φ

∂ϑ

)
+ cosϑ

r

r + A

∂2φ

∂ς2

)

+ r2 sinΘ cosϑ
m2c2

�2
φ = 0. (22)

In order to isolate the time dependence, the standard procedure of the separation of variables
is performed with the following factorization of φ

φ(r, ϑ, ς, t) = u(r, ϑ, ς)e−i Et
� . (23)

In this way, we obtain the set of stationary states. As the result of further separation in
the three-dimensional spherical coordinates r = (r,Θ,Φ) of the macroscopic space and in
(ϑ,ς) coordinates of the parametric two-dimensional space described by the factorization

u(r, ϑ, ς) = ur(r)YLM(Θ,Φ)ylm̃(ϑ,ς), (24)

we obtain the “almost” familiar radial Klein-Gordon wave equation [78]

r

r + A

{
− 1

r2

∂

∂r

(
r + A

r
r2 ∂ur

∂r

)
+ L(L + 1)

r2
ur

}

= 1

�2c2

{
E2 − m2c4 r

r + A
− λd

�
2c2

d2

(
r

r + A

)2}
ur (25)

with the angular equation in the macroscopic space which defines states with a definite
three-dimensional angular momentum

−�
2

[
1

sinΘ

∂

∂Θ

(
sinΘ

∂

∂Θ

)
+ 1

sin2 Θ

∂2

∂Φ2

]
YLM

= L(L + 1)�2YLM, (26)

and the angular equation in the parametric space with a definite internal angular momentum

1

cosϑ

∂

∂ϑ

(
cosϑ

∂

∂ϑ
ylm̃

)
+ 1

∂ς

(
∂

∂ς
ylm̃

)
= −λdylm̃, (27)

where λd is the main internal angular quantum number. In (26) functions YLM are the sphe-
rical harmonics (normalized angular momentum eigenfunctions) with L = 0,1,2, . . . and
M = 0,±1, . . . ,±L. Similarly ylm̃ are the periodic functions of the inner angles ϑ and
ς . As the result of further separation of (27) in the internal coordinates described by the
factorization

ylm̃(ϑ,ς) = gl(ϑ)hm̃(ς), (28)
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we obtain

1

cosϑ

∂

∂ϑ

(
cosϑ

∂

∂ϑ
gl

)
+ klgl = 0, (29)

where kl is the internal ϑ -angle quantum number of the parametric space geometry (see
Sect. 3.2).

3.1 The Case with λd = 0 and m = 0 and Its Difference from Others

It is not difficult to verify that for λd = 0 and m = 0 the only solution of the stationary
Klein-Gordon equation (25) alone, vanishing in infinity (although not normalizable), exists
for E = 0 and L = 0. For the radial part of φ this solution has the following form (compare
(13) for ϕ(r)):

ur(r) = C ln

(
r

r + A

)
, (30)

where C is a constant. In this way we formally obtain [34, 35] up to C the same solution
which follows from the classical Klein-Gordon equation for the dilaton field (see (5)). Yet
now the field is a scalar one, hence the energy of the configuration (30) is positive and
equals:

∫

V

d5x
√−gT tt

φ = 2C2Q , (31)

where T tt
φ is the t t component of the energy-momentum tensor of the scalar field φ. Integral

Q does not converge and is given by (20).9 However, fortunately here, we may recall the self-
consistent calculations for fields which were previously introduced, i.e. the dilaton ϕ and
metric gMN ones, with the now added scalar field φ, which we for the time being assume to
be given by the configuration (30). The coupled Einstein and Klein-Gordon field equations
for all these fields have to be solved. Now, the case with λd = 0, m = 0, E = 0 is the only
one for which the value of � in (25) is irrelevant as then the RHS of (25) becomes equal
to zero. Therefore in this case the energy-momentum tensor for the massless scalar field
enters into the RHS of Einstein equations (3) in the same way as the dilaton field, differing
only in sign. Hence the RHS of Einstein equations (3) becomes equal to zero leading to
Ricci flat solution of Einstein equations. Therefore the discussed new configuration of all
fields, gMN , ϕ and φ, does not describe the gravitational bound state, contrary to the case of
the metric-dilaton field configuration given by (13) and (16) alone. Hence the configuration
given by (30) for m = 0 and λd = 0 does not appear.10

However, a similar conclusion would not be true for λd > 0 even for m = 0. Indeed, in
all these cases the Planck constant � in (25) becomes important and leads to the appear-
ance of the energy-momentum tensor for the scalar field, T M

φN(�2), which is of the order

9As before in (20), the integral of 1/r2 in Q does not converge on (0,∞). Hence the solution (30) obtained
for E = 0, m = 0, λd = 0 and L = 0 cannot be obtained even from the solutions around E = 0, m = 0 (i.e. in
the limit E → 0, m → 0) for which the LHS of (31) converges.
10We may say that solution (30) of (25) is in this case as “macroscopic” as the dilatonic configuration (13)
leading to the zeroing on the RHS of the Einstein equations (3). In other words: The only Thomson like
solution of the scalar configuration (30), which by definition cannot be treated as a small perturbation of the
metric-dilaton configuration, does not appear at all.
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of �
2. Hence T M

φN(�2) constitutes a tiny quantity in comparison to the energy-momentum
tensor for the dilaton field, T M

N (�0) (see (11) and (13)), which appears on the RHS of Ein-
stein equations (3). This means that in the first approximation we may treat the solutions
of (25) for λd > 0 as leading to small perturbations of the background metric (16), ignoring
its self-consistent modification. In other words, the backreaction of φ is negligible in this
case.

3.2 Further Steps for kl = l(l + 1)

If the internal ϑ -angle quantum number of the parametric space geometry is set to kl =
l(l + 1) then gl(ϑ) = Pl(sinϑ), l = 0,1,2, . . . , are the Lagrange polynomials which
solve (29) and hence the second factor on the RHS of (28) satisfies the following equation
(see (27))

1

∂ς

(
∂

∂ς
hm̃

)
= −[−l(l + 1) + λd ]hm̃. (32)

The condition of continuity of functions hm̃(ς) for ς ∈ [0,2π) together with hm̃(0) =
hm̃(2π) give

hm̃(ς) = e±i
√

−l(l+1)+λdς

= eim̃ς , m̃ = 0,±1,±2, . . . , (33)

where m̃ is the internal magnetic quantum number. Now, from the above equation we can
notice that λd is a quantum number which chooses the ladder of values:

λd = l(l + 1) + m̃2 = 0,1,2,3,4,6,6,7,9,10, . . . (34)

hence λd ≥ 0. For example λd = 1 in two cases: (l = 0 and m̃ = 1) and (l = 0 and m̃ = −1).
Let us also notice that under the assumption of m = 0 the case with λd = 0 was previously
excluded (Sect. 3.1).11

3.3 The Weak Interaction Limit

Let us focus on the case of the weak limit which means that we are far away (r � A) from
the central core of the dylatonic field given by (13). At first let us rewrite (25) as follows

11We will see in Sect. 4.3 that only the mass m = 0 satisfies the two physical requirements, the first one
of stability and the second one of the proper value of the total spin of the ‘nucleon’. Hence eventually only
λd > 0 will be possible.
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A
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r

r + A

)
∂ur

∂r
− 1

r2

∂

∂r

(
r2 ∂ur

∂r

)

+
(

r

r + A

)
L(L + 1)

r2
ur

= 1

�2c2

{
E2 − m2c4

(
r

r + A

)
− λd

�
2c2

d2

(
r

r + A

)2}
ur . (35)

Now, asymptotically (i.e. r → ∞) the first and third term of the LHS of the above equation
could be omitted as they are of smaller order than the others. Yet, the third term, with the
orbital angular momentum L, will be preserved as it is important in the angular momentum
analysis. From the point of view of the energies12 of the excited states (Sect. 4) it would be
better in the limit r → ∞ to omit consistently all terms which are proportional to 1

r2 since
leaving only the one with L leads, in light of the omission of the first one, to the appearance
of nonphysical states.

Nevertheless let us omit the first term in (35) only which then, after introducing the
variable x = A/r , could be rewritten as follows:

− 1

A2
x4 ∂2ur

∂x2
+ x2

1 + x

L(L + 1)

A2
ur

= 1

�2c2

(
E2 − m2c4 1

1 + x
− λd

�
2c2

d2

(
1

1 + x

)2)
ur . (36)

Now, let us expand the coefficients in (36) at point x = x0 = 0 (i.e. r −→ ∞) to the second
order in x. We obtain

−�
2c2

[
x4

A2

∂2ur

∂x2
− (p0 + p1x + p2x

2)
L(L + 1)

A2
ur

]

=
{
E2 − (μ0 + μ1x + μ2x

2)m2c4

− (λ0 + λ1x + λ2x
2)λd

(
�c

d

)2}
ur, (37)

where the coefficients of the expansions and their limits for x0 = 0 (r −→ ∞) are given in
Appendix B.

Finally, after coming back to variable r we obtain for r � A the radial part of the Klein-
Gordon-like equation, written in the spherical coordinates as follows

− 1

r2

∂

∂r

(
r2 ∂ur

∂r

)
+ (URep − UAttr)ur

= (E2 − m2
4c

4)

�2c2
ur, (38)

12The situation is similar to the problem of a better description of hydrogen states by the Schrödinger equation
than by the Klein-Gordon one.
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where

URep = L(L + 1) + (mcA
�

)2 + 3λd(
A
d
)2

r2
≡ J (2)

r2
, (39)

UAttr = 1

A

((mcA
�

)2 + λd(
A
d
)2)

r
≡ (m2

4c
4)

(�c)2

A

r
, (40)

and

J (2) = L(L + 1) +
(

mcA

�

)2

+ 3λd

(
A

d

)2

, (41)

m2
4c

4 = m2c4 + λd

(
�c

d

)2

. (42)

Here J (2) can be interpreted as the square of the total angular momentum and m2
4 as

the four-dimensional squared mass of the scalar field φ in the flat Minkowskian limit
(see [50, 79]). If the six-dimensional mass is zero (m = 0) then the four-dimensional mass at
spatial infinity would be solely of kinematical origin. It is also easy to notice that neglecting
the first term of (35) in the limit r → ∞ is at this stage indistinguishable from zeroing the
first derivative of the metric tensor13 in ( −r

r+A
)

∂grr

∂r

∂ur

∂r
which has its origin in the first term at

the LHS of (25).
Now, it is interesting to notice (see (38)) that the radial motion looks like the one dimen-

sional motion of a particle with a unit mass in the potential Veff

Veff (r) = �
2

2
[URep − UAttr]. (43)

The first component on the right hand side can be interpreted as a modified centrifugal
potential energy, and the second one as a potential energy related to some central attractive
force. The existence of the second term is connected with the appearance of the effective
coupling constant which is proportional to

ε = −(mcA
�

)2 − λd(
A
d
)2

A
= −m2

4c
2

�2
A. (44)

The value of ε depends both on the parameters and the quantum numbers of the model. After
introducing β = αr we see [78] that (38) can be rewritten in the following form:

1

β2

∂

∂β

(
β2 ∂ur

∂β

)
+

[
ι

β
− 1

4
− J (2)

β2

]
ur = 0, (45)

where

α2 = 4(m2
4c

4 − E2)

�2c2
, (46)

ι = −ε

α
, (47)

with J 2 given by (41).

13Performing physics in r → ∞ also means that we neglect in (35) a “radial force” proportional to ∂ur/∂r .
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Equation (45) has nearly the same formal shape as the radial equation obtained in the
Schrödinger’s model of the atom [78]. Now, converting (46) we obtain

E2 = m2
4c

4 − �
2c2α2

4
. (48)

From the analysis of (45) it can be shown that the finite solutions for β = 0 and β → ∞
exist only when

ι = n′ + j + 1, (49)

where n′ is zero or a natural number and j is a nonnegative solution of the equation

j (j + 1) = J (2) (50)

which is equal to

j = −1

2
+ 1

2
[1 + 4J (2)] 1

2 . (51)

Finally, using (47) we can eliminate α from (48) and rewrite it in the following form:

E2 = m2
4c

4 − 1

4
�

2c2 (−ε)2

ι2
= m2

4c
4

[
1 − 1

4

(−ε)

ι2
A

]
, (52)

where

ι = n′ + 1

2
+

[
1

4
+ J (2)

] 1
2

(53)

and in the last equality in (52) the expression for ε given by (44) has been used.
At the end of this section let us notice that the original quantum Klein-Gordon equation

given by (22) possesses the property of invariance according to which only the ratio r
A

matters. We will discuss the relevant symmetry below. Using this scale invariance, we could
move from the microscopic to the astrophysical scale. In this context the calculations point
to the similarity of both the ‘neutron’ and a galaxy dark matter structure (see also [50, 79]).

3.4 Scale Invariance

At this point the question concerning the value/s of A arises. Previously [34–36] we consid-
ered the model given by (2) which has the following invariance:

A → ωA, r → ωr, d → ωd, ct → ωct, (54)

where ω is the parameter of the transformation. This would mean that it is not the change of
A but rather of A

r
that matters. This is the invariance of the coupled Einstein (3) and Klein-

Gordon (5) equations but it is not the invariance of their solution given by (13) and (16).
This conclusion can also be drawn from (14). Hence we notice that the massless dilatonic
field ϕ is the Goldstone field [76]. What is more, using (11) and (14) in (15) we obtain

Rr
r = −κ6(∂rϕ)2grr = A2

2 r3(r + A)
. (55)
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We notice a similarity between this equation and its electromagnetic analog.14 Equation (55)
is the (anti)screening current condition in gravitation, analogous to the screening current
condition found in electromagnetism or in the electroweak sector in the self-consistent ap-
proach [36, 49].

On the level of the equations of motion (3) and (5) the theory is scale invariant unless
mass m enters. It would seem that invariance (54) leads to the invariance

A → ωA, r → ωr, d → ωd, ct → ωct, m → 1

ω
m (56)

of the Klein-Gordon equation (22). Yet the inclusion of any term with mass m into the
model given by (2) will inevitably lead to the gravitational coupling of the new matter with
the metric tensor part of the Lagrangian, causing the breaking of the original invariance (54).

Hence the conclusion emerges that there appears a relation between the four-dimensional
mass m4 and the parameter A. It results from the Einstein equations which fix the value of
A after the self-consistent inclusion of the field φ with mass m into the fields configuration.
This means that the symmetry connected with the scaling (54) of A is broken. Hence in (41)
the dependance of J 2 on A for given m4 is established, where A is not a free parameter. In
view of the lack of a full (self-consistent) analysis, A should be estimated somehow and as
we shall see this will appear possible in the weak limit approximation.

3.5 Wave Mechanical Limit

As we have proven that the global solution with λd = 0 and m = 0 does not exist (Sect. 3.1)
hence its weak limit does not exist also. Therefore from now on we will investigate the cases
with λd > 0 only. The reason is that, as it has been discussed in Sect. 3.1, they only slightly
perturb the metric-dilaton configuration given by (13) and (16). At the moment let us also
suppose that m = 0, a value which will be dynamically chosen in the next section.

We began with the Klein-Gordon equation (21) in which φ is the wave function, which
in quantum mechanics is usually identified as the cause of angular momentum generators
commutation relations.15 In our model the square of the total angular momentum J 2 =
j (j + 1) appears according to (41) as the combination of terms 3λd(

A
d
)2 and L(L + 1)

which originate from the internal two-dimensional and orbital three-dimensional angular
momenta, respectively. Yet, in the weak approximation regime these are j and L which take
quantum mechanical values, therefore this means that 3λd(

A
d
)2 chooses quantum mechanical

values as a result of the proper addition of j and L only. Furthermore, since j , L and λd

have quantum values hence A
d

also has this kind of values. The strange thing is that term
A
d

appears as a result of the pure (field theory) classical interaction witch originates in the
background metric and now has its part in J 2. Next, as J manifests itself on the arena of the
tree-dimensional space as the total angular momentum, we impose on it the usual quantum
mechanical rules which lead to different representations for different values of J 2.

This leads us to the indication of the place of wave mechanics (quantum mechanics)
which from the point of view of the self-consistent field theory is discussed in [48, 49].
Wave mechanics appears as a theory for building a model of a system (e.g. an atomic one)
with the lost of self-consistency, yet it partly works by describing its main characteristics.

14That is ∇2A = m2
A

A, where A is the electromagnetic vector potential.
15Yet they may be obtained from the commutation relations of rotation operations even before the quantum
mechanics rules enter [80].
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By “partly” I mean that to receive a correction to the wave mechanics prediction the self-
consistency has to be reestablished. Yet this is the realm of quantum field theory or the
self-consistent field theory [37–49, 81, 82]. To obtain both the main characteristics and the
corrections the gravitational interactions should also be included in a self-consistent manner
where the linear part of field fluctuations would be described by the quantum field theory.
For the detailed discussion of the place of the quantum field theory see [37–47].

Below two examples for the presented ‘gravitational Klein-Gordon’ neutral particle-
like solution in the weak interaction limit are given. The first one for a solution with the
mass of 940 MeV, which could be called a ‘neutron’, and the second one with the mass of
1455 MeV for a neutral meson named ‘ρo’ (presented briefly).

4 Numerical Example: A ‘Neutron’ and Its Excited States

Although the (internal) spin wave function could not have the (Θ,Φ) space representation
for the physical (half)-integer spin state, yet it does not eliminate motion as the origin of the
spin in some kind of the classical space at all. Besides unknown, mainly three possibilities
could be taken into account. The first one states that the parameters of the spin representa-
tions are “seen” in the interactions only without further inner explanation. The second one
exists by extending the space by the Grassmann coordinates [83]. The third one, consid-
ered in this paper, constructs the spin of the particle from the motion in the geometry of the
parametric space. The (half)-integer spin is then, as any other, just the numerical result.

The other spin representations of fields could have the similar origin (see Sect. 1.1). Yet
there is a reason to consider them as having the different dimensions of their parametric
spaces. The proof goes via the Fisherian statistical analysis performed by Frieden [62–70]
and the conclusion is that the dimension of the parametric space depends on the species
of the field of the rank ℵ which is the dimension of the sample collected by the field alone
during its sampling of the space-time. For the complex scalar field the dimension of the extra
parametric space is equal to ℵ = 2. For the other fields this dimension is bigger, e.g ℵ = 4
for the electromagnetic field and ℵ = 8 for the Dirac one. Hence, as it has been mentioned
previously, the four-dimensional space-time could be extended simultaneously to the variety
of the multi-dimensional ones.

4.1 ‘Neutron’

Let us make some numerical adjustments for the parameters of the presented model (ℵ = 2).
For this purpose we begin with the state which possesses the following value of the internal
quantum number (see Sects. 3.1–3.2):

λd = 1, (57)

choosing the following value of the four dimensional mass:

m4 ≈ 952.893194 MeV/c2, (58)

which is a little bit bigger than the observed mass of the neutron 939.56536 MeV/c2. Solving
(42) we obtain

d = dl ≈ 2.071 · 10−16 m = 0.2071 fm (59)



2148 Int J Theor Phys (2010) 49: 2131–2157

as the limit value, i.e. from (42) we see that for d > dl we obtain m2 > 0 and for d < dl we
obtain m2 < 0 which is a tachion. For the limit value m2 = 0 the second term of J 2 at the
RHS of (41) is equal to

(
mcA

�

)2

= 0. (60)

Now, it is interesting to notice that the RHS of (41) might be interpreted as j (j + 1)

(see (50)), which means that

J (2) = L(L + 1) +
(

mcA

�

)2

+ 3λd

(
A

d

)2

= j (j + 1). (61)

After taking L = 0 and j = 1/2 for the ‘neutron’ the equation on the relative value of A and
d is obtained from the above equation. Moreover, we see that (61) gives us

A

d
= 1/2 for d = dl (m2 = 0). (62)

Now, according to (52) and (44) we obtain for m = 0 and A
d

as in (62) the following equation

E2 = m2
4c

4

[
1 − 1

4

(−εA)

ι2

]
= m2

4c
4

[
1 − 1

36

(
3/2

ι

)2]
(63)

and using in this equation m4 from (58) we find that the energy of the ‘neutron’ in the ground
state (n′ = 0, j = 1/2 and ι = 3/2, see (49)) is equal to

E = 939.565 MeV/c2 (64)

which is the observed mass of the neutron. From the second term of (63) it results that
the gravitational correction to the energy of the ‘nucleon’ in the ground state (n′ = 0 and
j = 1/2 and ι = 3/2), i.e. the gravitational bounding energy, is equal to

ΔE = E − m4c
2 ≈ −0.0139867 m4c

2. (65)

Finally, let us recall that the solution for λd = 1 has according to (33) and (34) the double
degeneracy: (l = 0 and m̃ = 1—which we interpret as the spin up solution) or (l = 0 and
m̃ = −1—which we interpret as the spin down solution). This assignment is very natural but
by its own it does not lead to the conclusion that the particle is the neutron. The calculation of
the energy of the ground state of a field having the “quantum” numbers characteristic for the
neutron entitles only to the conclusion that the formalism could describe the neutron. Hence
we see that the model points to the origin of the spin of the nucleon as connected with the
geometry of the internal manifold and with motion inside its two compactified parametric
dimensions. Moreover, it indicates that gravitational effects give a visible change of the
spectrum of the levels in the proposed model of the nucleon.

As it has been shown, the background gravity-dilatonic configuration given by (13)
and (16) is stable (see Sect. 2.1). Also the ground state solution obtained in Sect. 3 for
the scalar field φ is the stationary one. Moreover, it perturbs the background configuration
slightly only (see Sect. 3.1) and in the discussed weak approximation we could argue that the
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whole configuration of the fields, gMN , ϕ and φ, is stable. Finally, for a particle with another
value of its spin the dimension ℵ of the parametric space is different, yet the conclusion, if
the relevant calculations are performed, would be similar.

4.2 The Value of m = 0

Let us still consider one particular state (e.g. neutron) with m2
4 fixed, i.e. m and d may vary

leaving m2
4 unchanged. Now, with the use of (42) we notice that (61) can be rewritten as

follows

J (2) = j (j + 1)

= L(L + 1) + m2
4c

4

(
A

c�

)2

+ 2λd

(
A

d

)2

(66)

hence we see that J 2 for λd > 0 is not proportional to m2
4c

4 (no matter what the integer L

is) and it is worth noting that to keep J 2 equal to j (j + 1) for j equal to the multiplicity of
1/2, it is necessary to have m = 0 (hence m2

4c
4 = λd(

�c
d

)2) without any variation from this
particular value of m.

4.3 Excited States

As in Sect. 4.1 the value of m4 for the ‘neutron’ has been chosen to fit the value of the
observed energy E of the neutron hence it is important to calculate the predictions for values
of the energy of its excited states. Let us make the following assumption on the relation
between the total angular momentum number and the orbital one:

j = L + 1

2
. (67)

For the mass m = 0 we may notice from (61) that the characteristic radius A has to change
with j , L and λd in the following way

A = d
√

j (1 + j) − L(1 + L)√
3
√

λd

for m = 0, (68)

where d is kept equal to dl = 0.2071 [fm] as in (59). Then, with m4 given for each particular
state by (42), the energy E is calculated according to (52). The numerical values of the
energy E for the ground state (j = 1

2 , λd = 1) and excited states of the ‘neutron’ are given
in the Table 1 below.

Except for the ground state (which has been chosen to fit the neutron observed energy)
all other energies are equal to the observed ones approximately only [84–88]. Nevertheless
this might not be a big shortcoming of the model since we use the weak approximation only.
This statement appears to be sensible, especially in the light of the agreement of the order of
the discrepancies between energies of the states belonging to the same column and different
rows, which are of the order found in the experiment. As the spacial configurations for the
first column in the Table 1 are the most simple ones (L = 0) hence the feeling is that only
they should lie in the neighborhoods of the true states (see also the discussion after (35)).
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Table 1 Values of energies E MeV for the ground state and excited states of the ‘neutron’ as the function of
the total angular momentum number j and internal quantum number λd . For the ‘neutron’ itself j = 1

2 and
λd = 1. The last two columns present the gravitational bounding energy ΔE MeV and the ratio A/d for the
‘neutron’ and its excited states with j = 1/2 and L = 0. All states in Table 1 have m = 0 and d = dl = 0.2071
fm (see the text)

λd j = 1/2 3/2 5/2 7/2 ΔE (j = 1
2 ) A/d (j = 1

2 )

1 939.565 941.71 943.938 945.512 −13.3278 0.5

2 1328.75 1331.78 1334.93 1337.16 −18.8484 0.3536

3 1627.37 1631.09 1634.95 1637.67 −23.0845 0.2887

4 1879.13 1883.42 1887.88 1891.02 −26.6557 0.25

6 2301.46 2306.71 2312.17 2316.02 −32.6464 0.2041

L = 0 1 2 3 L = 0 L = 0

4.3.1 The Gravitational Bounding Energy

Additionally, in the two last columns of the Table 1, the values of the gravitational bounding
energy

ΔE = E − m4c
2 = m4c

2

[√
1 − 1

4

(−εA)

ι2
− 1

]
, (69)

for the states with j = 1
2 and L = 0 are given. Here, according to (44) and (42) the effective

coupling constant ε and the four-dimensional squared mass m2
4 are for m = 0 equal to

ε = −m2
4c

2

�2
A and m2

4c
4 = λd

(
�c

d

)2

for m = 0, (70)

where A is given by (68).
The important result is that for fixed j and L, the increase of the energy E of the con-

figuration causes the system to become more tightened (as the ratio A/d decreases) and
simultaneously its gravitational bounding energy bigger. As an example, for the ‘neutron’
and its excited states (with j = 1/2 and L = 0) this result has been presented in the first and
in the two last columns of the Table 1 (in bold).

The model could be applied to the other known particles also, yet the present calculations
show that the best agreement is achieved for the neutron and its excited states. For example,
for the neutral meson ‘ρo’ taken as the ground state (for ρ(1450) inside 1465 ± 25 MeV)
and for its first five excited states (for all of them j = 1, n′ = 0, ι = 2 and L = 0), we
obtain the energies equal to 1454.5, 2056.97, 2519.26, 2909.0, 3562.78, 3848.24 MeV for
λd equal to 1, 2, 3, 4, 6, 7, respectively. In this case the matching with the experimental
values [84–88] is worse than in the case of the neutron. The explanation of this fact might
be that the gravitational factor in the structure of the neutron, which is the lowest known
barionic neutral ground state, is more prominent than in the case of other neutral barions.

4.3.2 The Problem with the Degeneracy for λd

The principal problem seems to be connected with the ladder of the energy state values in
each particular row since in each row a few or may be only one are physical. This problem
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might be connected with the zeroing of the term with the first derivative of the metric tensor
and hence with the removal of the first derivative of the radial wave function ur on passing
from (35) to (36). Unfortunately, after this zeroing, the weak limit approximation was ap-
plied. This leads effectively to the introduction of an extra force term (equal to the neglected
one with the opposite sign) connected with the mathematics of the weak approximation only.
The addition of this unphysical extra force into the system results in the appearance of row
ladders of the unphysical states. Yet the unphysical differences between states of the ladder
in one particular row with the established value of λd are two order of magnitude smaller
than the physical ones from the columns. This agrees with the fact that the differences in
one row appear as the result of the change in the value of L. Now, according to Sect. 3.3
the orbital angular momentum L remained with the third term ( r

r+A
)L(L+1)

r2 ur of (35). Yet it

remained inconsistently since the first term A

r2 ( r
r+A

) ∂ur

∂r
of this equation, also proportional to

1
r2 , has been neglected. Since the third term of (35) is, for r → ∞, of an order smaller than
the ones which remained together with it in (36) (and consequently in (38)) then the energy
differences in a particular row are also smaller than in a particular column. The analysis
of (38)–(40) is in agreement with the remarks above, i.e. the change of L in URep ∼ 1

r2 is
connected with the small energy differences in a particular row whereas the change of λd

in UAttr ∼ 1
r

is connected with big energy differences in a particular column in Table 1. In
Sect. 3.3 the term with L has been left for the sake of the angular momentum considerations.

5 Conclusions

Till now there is no established experimental evidence for multi-dimensionality of the world
or it is possible that our understanding of potential manifestations of higher dimensions is
still poor. Yet at the same time there exist noticeable literature references indicating that
the pursued effects of extra dimensions could have already been noticed earlier both in the
astrophysical [34–36, 50, 79, 89–97] and in the elementary particle scale [48, 98–104].
These findings are in contradistinction to the standard expectations that extremely high
energies are necessary to probe higher dimensions. The renewed interest in the Kaluza-
Klein theories, to which the presented six-dimensional model belongs, stems from the fact
that multidimensional analogues of general relativity are able, among others, to generate
the four dimensional mass. This would be the outcome of the interaction which proceeds
both from the four-dimensional world and the internal space dimensions (here two paramet-
ric ones) with currents of the matter which modify masses in the four-dimensional world
(see also [50]). Our approach to the modelling of a system, e.g. of one particle (here neutron),
reflects the hope that its structure can be described by the dynamics in the six-dimensional
space-time. Especially the characteristics of the structure such as its spin and, at least partly,
its inertia have their origin in the internal two-dimensional parametric space. This is the rea-
son for perceiving multi-dimensional (here six-dimensional)16 theories as still attractive for
understanding the fundamental interactions.

To fulfil this aim the present paper examines the implementation of the geometrical prop-
erties of the previously [34, 35] worked out six-dimensional Kaluza-Klein type model. These
properties may manifest themselves in the realm of particle physics, e.g. by affecting the
structure of the neutron and its excited states. The obtained ground state solution appeared
to have two spinorial degrees of freedom since the total angular momentum with j = 1/2

16For example, in the case of electromagnetism for which ℵ = 4, the space-time would be eight-dimensional.
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goes (for the main internal angular quantum number λd = 1) with two internal magnetic
quantum number possibilities, m̃ = 1 or m̃ = −1.

In Sect. 1.1, the statistical Fisherian reasons for the six-dimensionality of the space-time
are given. The basics of the model are presented in Sect. 2. We recall here the static spheri-
cally symmetric “reference” back-ground solution of the six-dimensional Einstein equations
coupled with the Klein-Gordon equation, where the dilatonic field is the basic one and the
gravitational field is the self-field [34, 35]. A more detailed discussion of its properties is pre-
sented in [34–36, 50, 79]. The metric tensor part of the “reference” solution seems analogous
to the familiar four-dimensional Schwarzschild solution, however it differs fundamentally
since it is horizon free. In Sect. 2.1 the stability of the “reference” self-consistent solution is
shown. Section 3 is devoted to the derivation of the weak limit approximation of the general
wave mechanical (quantum mechanical) approach defined in the context of physical mod-
elling which loses its self-consistency (here the gravitational one). Hence a new scalar field
has been added to the original “reference” configuration of fields and the non self-consistent
case for its Klein-Gordon equation is defined. Here the main purpose is to find the solution
of this Klein-Gordon equation and the reason for doing this is twofold. Firstly it is con-
nected with the derivation of the energy of states and secondly with the indication of the
spin origin of the configuration as the manifestation of both the geometry of the internal
two-dimensional parametric space and of the kinematics of the fields inside it. In Sect. 3.1
the problem of the departure from the (gravitational) self-consistent calculations of the met-
ric and other fields of the configuration is discussed. The loss of self-consistency is due to
the neglect of the total energy-momentum tensor perturbation term, which is proportional
to �

2. In Sect. 4 the implementation of the model to the description of the ‘neutron’ and its
excited states is performed together with the derivation of their energy. Finally, in Sect. 4.3
the discussion of the consequences of the zeroing of the first derivative term in the radial
Klein-Gordon equation is given.

The question arises on the status of the presented model of the neutron. As discussed in
Sects. 3 and 4 it is interpreted as the wave mechanical departure from the fully (i.e. including
gravitation) self-consistent field theory understood in accordance with Schrödinger’s sub-
stantial interpretation of the wave function [48, 49]. The wave mechanical approach means
that the self-consistency is lost. However with any hope a fully self-consistent model in-
corporating all the necessary fields and interactions will result not only in the refinement
of the proposed model of the neutron and its excited states but also in the construction of
better models for all other elementary matter particles. Yet this is a difficult task to perform
[37–49, 81, 82]. In today’s physics mainly the wave mechanical (weak approximation case)
and quantum field theory (linear) regimes are noticed. Yet self-consistent exceptions are also
quoted, developed only for the description of the linear fluctuations of the matter wave func-
tion [37–47]. The concept which lies behind this approach is not the one of the quantum
theory of interactions, with quantum gravity included [105], where the second quantiza-
tion procedure for a set of aggregated quanta is realized. But, it is rather the concept of a
relativistic self-consistent field theory which takes into account all interactions including
gravity. The theoretical basis which is stronger than the mean-field theory concept guaran-
tees the consistency of this approach since both wave mechanics and classical field theories
can be understood as having the same, Fisher-information origin with finite ℵ [62–73].

Finally, in this paper the mass of a particle originates from both the external and the in-
ternal dimensions, where the internal part of the mass is of purely kinetic origin. The final
mass of the particle may be calculated in accordance with a broadened version of Thrirring’s
and Einstein’s analysis of Einstein’s geometrodynamics or in accordance with an effective
gravity theory of the Logunov type [75]. In both cases the internal contribution to the mass
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should appear as the result of self-consistent calculations. Interestingly the same conclu-
sions were drawn by Frieden and Soffer [62–71] from the statistical method of estimating
the physical models. It has recently been proven in [72, 73], where the entanglement be-
tween the kinematical and structural degrees of freedom has been rigorously established.
Now from our considerations it results that since the mass has its origin in the dynamics
and in the kinetic motion of the (extended) field of every elementary particle inside the
parametric space, then we can conclude that every particle is a continuously extended ob-
ject.

Yet, the presented model is obviously not the final one. The reason is twofold. At first,
from its beginning it was formulated for the neutral particle only. The inclusion, for instance,
of the electric or effective weak charges, which would be necessary, changes the results.17

Secondly, the first particle in every chosen ladder of states should really be the ground state
of the configuration of all fields, which are introduced to describe self-consistently both
the ground state and the excited ones. Hence, further calculations should take into account
more realistic shapes of the main charge densities incorporating their fluctuations for the
extended basic matter sources to which proper self-fields are coupled. These shapes should
follow, for instance, from the Einstein equations coupled to Klein-Gordon-Maxwell’s18 or
Dirac-Maxwell’s set of equations for charge densities with fluctuations included, as required
for self-consistent models [49]. This means that from the mathematical point of view, a
matter particle seems to be a self-consistent solution of field equations for the basic fields
including fluctuations and their self-fields. These self-fields have to be interwoven in the
description of the matter particle. The presented model indicates the point where the weak,
wave mechanical limit of the theory should be placed. It is also a step towards the con-
struction of a self-consistent formalism of the classical theory for a single, continuously
extended, elementary particle. The final model, however, still belongs to the realm of the
unknown.
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Appendix A: The Components of the Ricci Tensor of the Background Metric

Using (7)–(8), we can calculate the components of the Ricci tensor. The nonvanishing com-
ponents are [34–36]

Rt
t = (42rν ′ + 4r2′ν ′ − r22μ′ν ′ + r22(ν ′)2

+ 2r22ν ′′)(4 eμr22)−1 (71)

17For the self-consistent analysis in the classical counterpart of the electroweak model see [49].
18Instead of Maxwell equations, the Yang-Mills ones are sometimes taken into considerations. However it is
probable that in future theories they will be replaced by the still unknown equations.
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Rr
r = (−42rμ′ − 4r2′μ′ − r22μ′ν ′ + r22(ν ′)2

+ 8r2′′ + 2r22ν ′′)(4eμr22)−1 (72)

RΘ
Θ = RΦ

Φ = (−4 eμ2 + 42 + 8r′ − 2r2μ′

+ 2r2ν ′)(4eμr22)−1 (73)

Rϑ
ϑ = Rς

ς = (8r′ + 4r2(′)2 − 2 r2′μ′

+ 2r2′ν ′ + 4r2′′)(4eμr22)−1 (74)

Appendix B: The Weak Interaction Limit Coefficients

The coefficients of expansions of the radial equation (37) and their limits for x0 = 0
(r −→ ∞) are equal to

p0 = − x3
0

(1 + x0)3
= 0, p1 = 3x2

0 + x3
0

(1 + x0)3
= 0,

(75)
p2 = 1

(1 + x0)3
= 1,

μ0 = 1 + 3x0 + 3x2
0

(1 + x0)3
= 1, μ1 = − 1 + 3x0

(1 + x0)3
= −1,

(76)
μ2 = 1

(1 + x0)3
= 1,

λ0 = 1 + 3x0 + 5x2
0

(1 + x0)4
= 1, λ1 = − 1 + 7x0

(1 + x0)4
= −1,

(77)
λ2 = 3

(1 + x0)4
= 3.
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