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Abstract
One of the most challenging techniques for speech analysis applications in mobile phones is acoustic feature extraction. The 
adverse environment noises, diversity of microphone specifications, and various recording software have a significant effect 
on the values of the extracted acoustic features. In this study, we investigate the robustness of different types of acoustic 
features related to time-based, frequency-based, and sustained vowel using 11 different mobile recording devices. 49 record-
ings of subjects reciting the Rainbow Passage and 25 recordings of sustained vowel /a/ were collected. By way of synchro-
nous recording, we analyzed and compared the extracted 253-dimensional acoustic feature vectors in order to examine how 
consistent the data values between the different recording devices. The variability of data values was measured using the 
method of coefficient of variance. Data values with low variability were identified to be from features such as the transition 
parameters, amplitude modulation, contrast, Chroma, mean fundamental frequency and formants. These groups of features 
turn out to be more reliable than others in their dependency on the recording device specifications.
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Abbreviations
AFE  Acoustic feature extraction
SER  Speech emotion recognition
ASR  Automatic speech recognition
ADD  Automatic depression detection
ASC  Automatic scene classification
AGC   Automatic gain control
MEMS  Micro electromechanical system
TP  Transition parameter
ILpdf  Interval length probability density function
PSD  Power spectral density
MFCC  Mel-frequency cepstral coefficient
AM  Amplitude modulation
VUS  Voiced, unvoiced and silence
ch  Chroma
con  Contrast
f0  Fundamental frequency

HNR  Harmonics-to-noise ratio
COV  Coefficient of variance

1 Introduction

1.1  Motivation and objective of the study

Smart technologies can be made a significant contributor to 
improve peoples’ lives especially with the new information 
technologies such as big data, cloud computing, the internet 
of things and artificial intelligence. However, in the field 
of speech or acoustic technology such as speech emotion 
recognition (SER), automatic speech recognition (ASR), 
automatic depression detection (ADD) and automatic scene 
classification (ASC), capturing the embedded information 
can be quite challenging. For example, the human voice is 
encoded with a wealth of information regarding mood, stress 
condition, affective state and mental state of the subject. 
When most variabilities are removed and conditions are ful-
filled, acoustic analysis of voice offers significant benefits 
in understanding the vocal output parameters depending on 
the objectives. These conditions include high-quality and 
consistent data acquisition, controlled environment with 
minimal noise background, powerful system and software 
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analysis, robust model algorithm and proper set up of speech 
task. Therefore, if either one of these variabilities is not 
eliminated, the information gathered can be challenging to 
compare and analyse.

Slight attention has been given to the speech technol-
ogy in the mobile service environment. There are multiple 
applications that uses mobile application for sound analysis 
such as to assess noise exposure risk from the consumers’ 
perspective (Sinha et al., 2016), for remote noise monitor-
ing and data acquisition (Dickerson, 2016) and the accuracy 
study of using iPhone’s app for routine collection of infants’ 
noise exposures inside the isolette during air transport (Clark 
& Saunders, 2016). Mainly, the studies conducted in this 
field use a high-quality type of microphone with minor noise 
condition. A technical review by Svec and Granqvist (2010) 
suggested that microphone recommendation depends on 
phonation task and proximity, but not necessarily the price or 
quality. They also reported that spectral properties of sound 
are independent of proximity effect and dynamic range due 
to the production of voice is always at the comfortable levels, 
instead, it depends on the signal-to-noise ratio. However, for 
a more general and broader implementation such as mobile 
apps, the basis of these experiments tend to fail when speech 
signal query contains background noises that vary with the 
subjects’ environments and obtained through variability of 
microphone types. Overall, due to the multiple microphones 
and environmental noises (Deliyski et al., 2006), a speech 
signal acquired by recording devices may cause significant 
performance reduction to the extracted speech features and 
parameters. However, combining findings by Svec and Gran-
qvist and also by Faber (Faber, 2017), with a careful selec-
tion of device, app and microphone specification, accurate 
measurement can also be made with approximately high 
level of precision.

The essential problem in mobile phone technology for 
monitoring-based or detection-based application that uses 
voice as an input is that various built-in microphones in 
mobile devices are manufactured with customized auto-
matic gain control (AGC), active noise cancellation, noise 
rejection strategy using directionality of two or more micro-
phones and beamforming for speech enhancement. The 
built-in micro electromechanical system (MEMS) micro-
phones cannot provide the same performance as compared 
to the professional microphone used in acoustic fields. For 
example, the presence of AGC is a unique circuit designed 
by the manufacturer to adjust the recording level when the 
input sound is too loud, or too soft. However, AGC is not 
able to distinguish between actual sound information or 
noise. The effect of AGC might significantly reduce the 
overall accuracy of sound level measurement but the effect 
on specific frequency components of the acoustic signal may 
or may not be influenced. In addition, the measurement per-
formance is also influenced by the hardware components 

which possess variation in its frequency response, dynamic 
range and sensitivity. The study of acoustical energy in typi-
cal human speech conversation has typically been restricted 
to the frequency range of less than 8 kHz, where the term 
‘higher frequency’ usually refers to frequencies within 2 
to 8 kHz. Different smartphones have attenuation at differ-
ent frequency ranges but minimizes the attenuation in the 
middle band of around 200 Hz to 2 kHz for human voice 
recording.

This work was proposed due to the limitation we encoun-
tered in the research of automatic depression detection using 
speech during the pandemic. Our movement was restricted 
and thus, we were not able to visit the hospitals for data col-
lection. We then proceeded with gathering voice recordings 
through online platform such as using mobile phone devices. 
The research question we attempt to address is whether there 
are voice acoustic features that are not altered by different 
mobile recording devices. These unaltered features can be 
used to eliminate the bias in the multiple recording devices 
and apply the feature for further classification analysis. 
Although current trend may suggest the use of deep learning 
frameworks to learn robust features and see these variations 
in training, research in this field has one major challenges, 
which is limitation of database quantity. Even with a well-
designed backend (classifier or regressor), it still requires 
sufficient amount of data in order to be robust to noise or 
disturbances in the features. Since this is the limitation, we 
had to focus on identifying the robust features in order to 
apply it to classifiers. These robust features can be collected 
and used for any application that requires voice as input. 
However, for this work, we demonstrated the application of 
robust features on depression detection.

1.2  Related work

The study on comparing vocal acoustic changes was initiated 
by Karnell et al. (1991) where the author began the investi-
gation on particularly jitter and shimmer perturbation analy-
sis across three voice laboratories. It was conducted in an 
attempt to find a standardize procedures in voice recording 
analysis and hardware in order to facilitate the interpretation 
of results from various laboratories. Jitter and magnitude of 
shimmer measurements differed significantly between the 
three laboratories due to multiple analysis techniques, dif-
ferent hardware digitization resolution and inadequate noise-
free amplification.

Another study by Titze and Winholtz (1993) explored the 
effects of microphones on the voice perturbation measures 
from sustained phonation. The study was designed based on 
five microphone characteristics and settings; (i) professional-
grade and consumer-grade, (ii) microphone types which are 
dynamic and condenser, (iii) omnidirectional and cardioid 
pattern, (iv) distance and (v) angle between the source and 
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the microphone. Based on the analysis, the author recom-
mended a professional-grade cardioid or omnidirectional 
condenser microphone which can be placed a few centime-
tres from the mouth at an angle of 45° to 90°. However, 
the sampled recordings were limited in number and analysis 
was only performed on sustained phonation. The results also 
demonstrate the variability of acoustic measures when mul-
tiple hardware characteristics were used.

The work done by Parsa et al. (2001) was an extend from 
Titze and Winholtz (1993) with an inclusion of glottal noise 
measure using three cardioid microphones and an omnidi-
rectional microphone. The comparison between acoustical 
measurements reveals that the absolute jitter, which is calcu-
lated using the mean absolute difference of successive pitch 
periods, was not significantly different for all microphone 
types. This result contradicts the one reported by Karnell 
et al. However, other acoustic measures derived from the 
fundamental frequency were significantly different due to 
the alteration of temporal structure of the signals caused by 
the frequency responses of the microphones. Parsa’s find-
ings were then confirmed with the work done by Bottalico 
et al. (2018) where they stated that jitter and smooth cepstral 
peak prominence were the most independent to variations in 
microphones. Bottalico et al. also reported that the effect of 
room is higher than the incompatibility associated with the 
effect of microphones.

Kisenwether and Sataloff (2015) continued studying the 
effect of different microphone types to the acoustic meas-
urements. This study compared the acoustical measurement 
from nine synthesized stimuli with the recorded stimuli 
sound through six types of microphones. They performed 
a mean subtraction of each acoustical measurement  (f0,  f0 
standard deviation, absolute jitter shimmer, peak-to-peak 
amplitude, and Noise Harmonic Ratio) between synthesized 
and measured values and reported that the means were not 
statistically significant. However, they were cautious about 
generalizing the results due to the limited number of micro-
phones tested. Similar to the previous studies, Krik et al. 
(2019) performed analysis on recordings from two differ-
ent microphones using  f0, jitter, shimmer and Glottal Noise 
Excitation ratio on sustained vowel. They extracted the 
descriptive statistics and compared them between the two 
microphones. Results revealed that all three features were 
robust towards different microphones except for shimmer.

It would be an ideal method for an affective or mental 
health monitoring by voice if the features can be shown to be 
robust to be used on various mobile applications or devices. 
The issue for researchers is the distortions contained in the 
features of the query sound that are introduced by record-
ing the sound through various mobile devices. If multiple 
microphones produce different acoustical measures, it will 
be difficult to identify which values are correct in repre-
senting the true measurement. Thus, comparability with the 

human voice and results can be questionable. This paper 
is a preliminary study which focuses on identifying robust 
acoustic features from voice recordings that are gathered 
through different mobile devices which also means that the 
devices have multiple microphone settings. The main ques-
tion this paper addresses is what are the acoustic features 
from voice recordings that are not affected by the various 
mobile devices? The analysis will be performed on extracted 
multiple acoustic features of time-based and frequency-
based using query speech captured by mobile phones.

The structure of the paper begins with presenting pre-
vious literatures that have particularly studied changes in 
speech acoustic features using multiple microphone types 
and specifications. Next section talks about the experiment 
including information on database and the extracted fea-
tures Next, we presented our analysis on identifying which 
features are less affected by different microphones and dis-
cuss the results, specifically focusing on features that are 
robust. Finally, we presented our conclusion of the overall 
investigation.

2  Experiment

2.1  Data collection

Table 1 lists the brand, model and specifications for the 
mobile phones used in the recording, obtained from infor-
mation on mobile specifications that are available online. 
A special test track was inputted into the device and played 
through the audio output and into the M-Audio Fast Track 
Pro external audio interface. The generated recordings 
were then analysed through the RightMark Audio Analyzer 
(RMAA) software which produces sound quality measure-
ments such as frequency response, dynamic range, and har-
monic distortion. Other specifications were obtained on the 
mobile’s manual information.

For this work, two types of speech recordings were col-
lected in order to determine the robustness of the acous-
tic measurements. All procedures performed in studies 
involving human participants were in accordance with 
the ethical standards and has been approved by the IIUM 
Research Ethical Committee (IREC 2019-006). Subject 
Informed Consent (SIC) was also obtained from all indi-
vidual participants included in the study. Approximately 
1.5–2 min of speech utterances reciting the rainbow pas-
sage were recorded using seven mobile phone devices, 
simultaneously. The rainbow passage is a short passage 
that contains alliterations and irregular consonant and 
vowel combinations that is commonly used by speech 
therapist to assess vocal abilities. The recordings were col-
lected using the mobile phone’s default recording applica-
tion and then sent through the mobile application called 
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Whatsapp voice note for collection. Each recording was 
prepared in a closed room from a single speaker. A total 
of 49 recordings were gathered from seven speakers that 
participated in the experiment.

We decided to gather additional acoustic measurements 
related to sustained vowel considering that the previous lit-
erature (Kisenwether & Sataloff, 2015; Krik et al., 2019; 
Parsa et al., 2001), studied these features in their experi-
ments. In another session, approximately six seconds of 
sustained vowel /a/ were recorded following the previous 
methods on five mobile phone devices (device ID B1-B5) 

listed in Table 1 from five participants. A total of 25 record-
ings were collected from five speakers.

The recordings received in the voice note were in.OGG 
and.MP4 format. Speech files were converted to.WAV using 
the audio.online-convert.com at a sampling rate of 44.1 kHz 
and 32 bits per sample, with a mono channel. The recordings 
were normalized prior to the feature extraction.

Figure 1 shows the overall process for the analysis of 
robust features. Each subject will be recorded individually 
using all seven mobile devices simultaneously. After that, 
we perform feature extraction and measure the variability 

Table 1  Brands and specifications of mobile phones used for recording voice samples

ID Brand Model Specifications

Frequency response Dynamic range Total harmonic 
distortion

Bit rate (Kb/s) Channel Sampling 
rate 
(KHz)

Speech utterance (rainbow passage)
 A1 Apple iPhone 7  + 0.06, − 0.10 92.3 0.0015 64 1 48
 A2 Apple iPhone XR  + 0.03, − 0.04 93.5 0.0016 64 1 48
 A3 Oppo A71  + 0.03, − 0.07 93.9 0.0012 320 2 48
 A4 Samsung Galaxy S10  + 0.03, − 0.04 92.0 0.0015 128 1 44.1
 A5 Huawei Y9  + 0.01, − 0.03 93.0 0.0013 148 2 48
 A6 Apple iPhone 6  + 0.03, − 0.04 93.5 0.0016 64 1 44.1
 A7 Oppo Reno 2  + 0.04, − 0.05 93.0 0.0015 320 2 48

Sustained vowel
 B1 Apple iPhone SE  + 0.01, − 0.06 93.0 0.0013 64 1 48
 B2 Apple iPhone 8 Plus  + 0.07, − 0.01 93.2 0.0013 64 1 48
 B3 Samsung A30s  + 0.03, − 0.05 93.0 0.0068 128 1 44.1
 B4 Samsung Note 9  + 0.01, − 0.03 93.7 0.0017 256 1 48
 B5 Apple iPhone 6  + 0.03, − 0.04 93.5 0.0016 64 1 44.1

Fig. 1  Process flow for robust feature analysis
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of each feature’s data value using the method of coefficient 
of variance.

2.2  Feature extraction

Once the speech signals are obtained and pre-processed, 
the acoustic features were extracted. The same number of 
features are used for each voice sample. In other words, a 
242-dimensional and 11-dimensional feature vectors are 
extracted from the utterance speech signal and sustained 
vowel, respectively. Table 2 lists the extracted speech fea-
tures. Features ID 1 to 6 were extracted using MATLAB 
following the previous work done by Hashim et al. (2017), 
sustained vowel feature ID 7 was extracted using Praat soft-
ware (Styler, 2013) and features ID 8 to 12 were extracted 
using Librosa library in Python. These features were chosen 
because they are commonly used in the studies related to 
voice or sound analysis.

These features can be divided into three categories which 
are the time-based features (ID 1, 2, 3 and 6 in Table 2), 
frequency-based features (ID 4, 5, and 8 to 12 in Table 2) 
and sustained vowel features (ID 7 in Table 2).

Figure 2 shows the overall process for acoustic feature 
extraction using MATLAB. The Transition Parameter (TP) 
feature captures the nine probabilities between each 40 ms 
frames labeled as voiced, unvoiced and silence (VUS) within 
one speech sample using the method of Markov Model. 
Parameter t11 represents transition probability from voiced-
to-voiced frames in one whole voice sample and so on. For 
the interval length probability density function (ILpdf), the 
frequencies of consecutive interval ratios of 40 ms VUS 

frames were plotted in histogram and normalized on 4 bands 
of 40 ms to 0.8 s voiced segments and 5 bands of 40 ms to 
2 s silence segments.

The method used to obtain the Amplitude Modulation 
(AM) is the ‘square-law envelope detector’ which squares 
the input signal and sends it through an averaging repre-
sented by a low-pass filter (gain = 1). The square root is then 
taken in order to reverse the scaling distortion from squar-
ing the signal and to characterize a more accurate statistical 
measure.

Acoustic features based on pitch, loudness, and timber 
are psychoacoustic properties of auditory signals commonly 
used for speech and music analysis. These types of features 
can be categorized as spectrum-based features. Research-
ers in this field suggest aggregating acoustic features such 
as PSD, Chroma, Mel Spectrogram, MFCC, Spectral Con-
trast, and Tonnetz over performed single features in the auto-
matic speech recognition systems (Ghosal & Kolekar, 2018; 
Su et al., 2020). These features are extracted by utilizing 
Librosa Python library (Mcfee, et al., 2015).

Power Spectral Density (PSD) describes the power pre-
sent in the speech signal as a function of frequency and 
for this work, we obtained PSD using the method of Peri-
odogram and normalized on the 4 bands of 0 to 2000 Hz.

Mel Frequency Cepstral Coefficients (MFCC) are com-
monly used in automatic speech and speaker recognition 
which are introduced by Davis and Mermelstein (Davis & 
Mermelstein, 1980). The MFCC feature extraction technique 
includes windowing the signal, applying the discrete fourier 
transform, taking the log of the magnitude, and then warp-
ing the frequencies on a Mel scale, followed by applying the 

Table 2  List of extracted acoustic features

*Using Malcolm Slaney algorithm (Slaney, 1993)
** Using librosa library (Mcfee et al., 2015)

ID Feature Dimension Parameter labels

1 Transition parameter (TP) 9 t11, t12, t13, t21, t22, t23, t31, t32, t33
2 Interval length probability density function 

(ILpdf)—silence
5 sil1 (0.4 s), sil2 (0.8 s), sil3 (1.2 s), sil4 (1.6 s), sil5 (2 s)

3 ILpdf—voiced 4 v1(0.2 s), v2(0.4 s), v3(0.8 s), v4(1.2 s)
4 Power spectral density (PSD) 4 PSD1 (0–50 Hz), PSD2 (501–1000 Hz), PSD3 (1001–1500 Hz), PSD4 

(1501–2000 Hz)
5 Mel-frequency cepstral coefficient (MFCC)* 13 c1 to c13
6 Amplitude modulation (AM) 8 Minimum, maximum, range, variation, average, skewness, kurtosis, coefficient 

of variance
7 Sustained vowels 11 Mean fundamental frequency (f0), pitch std. dev., pitch sigma, jitter, shimmer, 

harmonics to noise ratio (HNR), formants (F1, F2, F3, F4)
8 MFCC** 40 mfcc1 to mfcc40
9 Chroma 12 ch1 to ch12
10 Mel-Spectrogram 128 m1 to m128
11 Contrast 7 con1 to con7
12 Tonnetz 6 tn1 to tn6
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inverse discrete cosine transform. Two methods of obtaining 
MFCC are used here. The first method uses Malcolm Slaney 
algorithm (Slaney, 1993) and the other uses the Python 
Librosa library (Mcfee, et al., 2015).

Chromagram or Chroma (ch) feature is recognized for its 
robustness to the changes in timbre and closely correlate to 
the musical aspect of harmony. It is also known as pitch class 
profiles. For feature extraction, the audio file is translated 
into a series of chroma features, and each sequence explains 
how the short-time energy of the signal is spread over the 
twelve chroma band (Ellis, 2007).

According to Cohn (1998), tonal centroid features or 
known as the Harmonic Network (Tonnetz), signifies pitch. 
The tonal centroid vector t

n
 of time frame n is the result of 

multiplication of the chroma vector c
n
 and a transformation 

matrix T. Then, the t
n
 divided by the L1 norm of chroma vec-

tor to prevent numerical instability and ensure that the tonal 
centroid vector dimension is always six. The tonal centroid 
vector is given as:

where d is the index of which of six dimensions is being 
evaluated, and l is the chroma vector pitch class index.

In the Spectral Contrast feature, each frame of a spec-
trogram is divided into sub-bands. For each sub-band, the 
energy contrast is estimated by difference between the mean 
energy in the top quantile (peak energy) and that of the bot-
tom quantile (valley energy). Clear, narrow-band signals 
mostly have high contrast values, while broad-band noise 
have low contrast values (Jiang et al., 2002).

A Mel-Spectrogram is a spectrogram where the frequen-
cies are converted to the Mel scale. The spectrogram can 
be found by computing the FFT on overlapping windowed 
segments of the signal.

Sustained vowels are commonly used in voice analysis 
for perturbation measures and vocal characteristics. These 

t
n(d) =

1

‖c
n
‖
1

11�

i=0

T(d, l)cn(l)
0 ≤ d ≤ 5

0 ≤ l ≤ 11

Fig. 2  Overall process of the feature extraction in MATLAB
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features were extracted using Praat software. Features that 
are obtained from sustained vowels are fundamental fre-
quency (f0), jitter, shimmer, pitch, harmonics-to-noise 
ratio (HNR) and formants. f0 can be used to represent 
the number of cycles of opening/closing of the glottis; 
however, the measurements vary with sex and age. Pitch 
measure the quality of sound and has a non-linear cor-
relation with the f0. Jitter is a parameter that measures 
the frequency variation or instability from cycle to cycle 
whereas, shimmer relates to the amplitude variation or 
instability of a sound wave. The HNR represents the ratio 
between periodic and non-periodic components in a voiced 
speech. Finally, formant represents the resonant frequen-
cies of the vocal tract and are especially prominent in 
vowels. In this work, four formant peak frequencies were 
extracted for analysis.

3  Results

3.1  Identification of robust features

The extracted feature values in this dataset have different 
order of magnitude and we consider these feature sets to 
be different from each other. Therefore, in order to cap-
ture the variability between data values, we decided to use 
the method of coefficient of variance (COV). The COV 
measures how consistent the values of each set from their 
respective mean of the data set. The smaller the percentage 
COV value, the higher is the uniformity within the values 
present in the data set. Even if the set of data has a low 
standard deviation, it does not mean the data has less vari-
ability. There are sets of data with low standard deviation 
but high COV. The COV can be calculated as the ratio of 
the standard deviation to the mean.

Figures 3 and 4 plots the COV for all features listed in 
Table 2, for each subject. The graphs were shown for COV 
up to 100 percent. However, the COV percentage can go 
beyond 100% if the standard deviation exceeds the mean 
value. This usually happens when the data set has majority 
values that are too small or close to zero.

There are no standard threshold values for the percent-
age of COV and it commonly depends on the field of study. 
For this study, we consider the percent of COV of less than 
10% to be significantly low variability, less than 20% to be 
marginally low variability and less than 30% to be accept-
able. Table 3 list all the features that are within these range 
of COV.

%CV =
�

�
⋅ 100%

3.2  Validation of robust features on depression 
detection

We demonstrated the use of robust features in one experi-
ment related to depression detection. For this experiment, 
we gathered speech recordings of depressed and healthy 
subjects via an online application called WhatsApp Voice 
Note due to the limitation of visiting the hospitals and 
risk of having a face-to-face meeting with subjects on site 
during the pandemic. All procedures performed in stud-
ies involving human participants were in accordance with 
the ethical standards and has been approved by the IIUM 
Research Ethical Committee (IREC 2019-006). The data-
base was divided based on gender and diagnostic groups of 
depressed and healthy. Subjects consisted of 43 depressed 
and 47 healthy were required to sign an informed consent. 
Subjects were then asked to read a standardized Bahasa 
Malaysia passage called Cerita Datuk that is commonly 
used by speech therapists and to fill in the Malay Beck 
Depression Inventory-II (Malay BDI-II) and Patient Health 
Questionnaire-9 (PHQ-9) for ground truth reference.

The recordings received in the Voice Note were in.OGG 
and.MP4 format. Speech files were converted to.WAV 
using the audio.online-convert.com at a sampling rate of 
44.1 kHz and 32 bits per sample, with a mono channel. The 
recordings were normalized prior to the acoustic parameter 
extraction. Each audio signal was then divided into 20 s 
segments and acoustic features were extracted for each 
segment. The total number of 20 s segments for female-
controlled speech and male-controlled speech are 198 
and 73, respectively. We proceed with the classification 
analysis on the robust features obtained using MATLAB 
as shown in Table 3, which are the time-based features and 
the Power Spectral features from the spectrum-based cat-
egory. We performed Exhaustive Feature Selection (EFS) 
on four selected classifiers which are the Support Vector 
Machine (SVM), K-Nearest Neighbour (KNN), Random 
Forest (RF) and Extreme Gradient Boosting (XGBoost). 
We present the classifier and feature set with the best per-
formance for female and male speech depression detection 
in Table 4.

For the male speech, the diagnostic accuracy and Area 
Under the Curve (AUC) score of the XGBoost classifier 
shows a good performance of 86% and 79%, respectively. 
The precision and recall values are also in the high range 
(above 80%) which shows a balance high true positive and 
high true negative rate. For the female speech, KNN classi-
fier was able to achieve an acceptable performance of AUC 
score and accuracy with a percentage of an approximately 
in the low range of 70%. KNN produced a consistent value 
of precision and recall, captured by the f1 score of 70%. F1 
score conveys the balance between the value of precision 
and recall.
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4  Discussion

For the TP feature, transition probabilities with unvoiced 
frames have significantly higher COV due to the fact that the 
utterance of rainbow passage is mostly made up of voiced 
and silence segments. Thus, the transition probability that 
has unvoiced frames, are mostly zeros. This includes t12, 
t21, t22, t23 and t32. Referring to Fig. 5a–g, the variability 
in the time-domain signals of the waveforms is greatly vis-
ible in the form of noise interference. However, the horizon-
tal axis of the time-domain signals and the envelope of the 
signals are not significantly different from each other, espe-
cially after filtering the high frequency noise interference. 
Lower order silence (sil1) and voiced (v1 and v2) segments 
are more certain due to the fact that their consecutive 40 ms 
frames are wider and are considerably detectible. Higher 
order silence and voiced segments are too small and prone 
to be mislabelled within the respective bands.

In musical analysis, chroma feature has been used in the 
application of music synchronization and is known to be 
robust to variation in instrumentation, timbre and dynamics 
(Müller et al., 2009). The steps of obtaining chroma are sim-
ilar to MFCC. Müller et al. reported that the lower MFCC 
coefficients are related to the variation of timbre. However, 
after applying the discrete cosine transform (DCT), the vari-
ation to timbre was removed by discarding all the lower Mel-
cepstral coefficients and keeping only the upper coefficients. 
The resulting vector was then transformed using inverse-
DCT and projected onto the 12 chroma bins.

Another spectrum-based feature that is robust towards 
multiple mobile recording devices is the spectral contrast. 
Although this feature is considered to be in the spectrum-
based, the feature values are obtained by calculating the 
vertical difference between peaks and valleys that are meas-
ured in octave-scale filter sub-bands. Thus, the amplitude 
difference of the spectral might be robust towards multiple 
microphone frequency responses.

The components in MFCC are derived from the DCT 
coefficients that represents the uneven spectral shape. 
Table 3 lists the second Mel-cepstral coefficient (mfcc2) as 
one of the robust features. This feature estimates the broad 
shape of the spectrum and is commonly associated with the 
spectral centroid. The higher order of MFCC are used to 
represent the shape of the spectrum and capture the pitch and 
tone information. Although, MFCC is a widely used feature 
in the field of music, sound, and speech analysis, this feature 

is not robust towards different recording devices and might 
also be more prone to get affected by the noise environment. 
A study by Pan and Waibel (2000) demonstrated the influ-
ence of background noise in MFCC with the signal-to-noise 
ratio affecting the frequency bands differently. This is due to 
the noise spectrum produced by the microphone proximity 
where the noise mean spectrum of distant microphone is 
much higher than the close one.

The power spectral density (PSD) also demonstrates the 
characteristic of robustness, although not in the most signifi-
cant category of COV. In this work, four equal PSD bands 
of 500 Hz were extracted. Commonly in voice signals, more 
than 90% of voice energy is in the first two bands (PSD1 and 
PSD2) with the ratio of PSD1 higher than PSD2. Therefore, 
we assume that less variability will occur due to the bulk of 
energy in these bands.

On the sustained vowel category, mean fundamental fre-
quency (f0) and formants have shown significant precision 
in the feature values with COV percentage of less than 10. 
The sustained vowel was used instead of speech utterance in 
order to avoid performing the voiced and unvoiced frames 
characterization and minimizing the range variability of f0 
values. We extracted the features using PRAAT software. 
For the f0 estimation algorithm, PRAAT uses the time-
domain approach that relies on autocorrelation (Boersma, 
1993). For formants, the speaker’s vocal tract resonance 
frequencies are estimated using the method of Linear Pre-
diction. In PRAAT, formant tracks appear as red lines over-
laid the spectrogram of the selected signal. Meanwhile, the 
HNR feature or also known as the degree of periodicity, 
was calculated based on the relative heights of the maxi-
mum normalized autocorrelation (Boersma, 1993). We can 
conclude that due to the timing aspects of these algorithms, 
these features were shown to be more robust towards multi-
ple mobile recording devices.

In this work, the selected robust features were then used in 
a classification analysis. The classifiers were able to identify 
86% of male depressed speech and 70% of female depressed 
speech using combination of time-based and spectrum-based 
features. We have shown that although the speech recordings 
were collected using multiple mobile devices, we were able 
to proceed with performing the classification and the results 
are validated due to the removal of features variability.

5  Conclusion

For applications that require input signals from multiple 
devices or microphones especially in a mobile applica-
tion, it is important to recognize whether different micro-
phones alter the acoustic measurements of voice signals. 
Researchers also have to be aware that the instrumenta-
tions used for collecting acoustic signals and algorithms 

Fig. 3  Plot of Coefficient of Variances (COV) for seven mobile phone 
recordings for each seven subjects on the utterance speech. The fea-
tures are, a transition matrix, silence, voiced, power spectral density, 
13-MFCC coefficients and amplitude modulation statistics. b 40-Mel-
cepstral coefficients, contrast and tonnetz. c Chroma and mel-spectro-
gram

◂
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used for the analysis, are not standardized. Especially 
when dealing with clinical research, value objective meas-
ures that are generated from the experiments are mostly 
of concern. In this study, we identified acoustic features 
that are robust towards multiple mobile recording devices. 

Acoustic features extracted using the time-domain infor-
mation are less prone to suffer from feature variability 
due to different microphone specifications. However, we 
would consider this as a preliminary study and requires 
further numerical justification on a larger dataset in order 

Fig. 4  Plot of coefficient of variances (COV) for seven mobile phone 
recordings for each of the seven subjects on the sustained vowel 
/a/. List of features are mean fundamental frequency, pitch standard 

deviation, pitch sigma, jitter, shimmer and harmonics-to-noise ratio 
(HNR), Formants (F1–F4)

Table 3  List of features that are 
less than 10% COV, 20% COV 
(*) and 30% COV (**)

*less than 20% COV
**less than 30% COV

Feature type List of features

Time-based t11, t31, t33, sil1, avgAM, covAM, t13*, v1*, v2*
varAM**, rangeAM**, maxAM**

Spectrum-based mfcc2, con2, con3, con4, con5, con6, con7, ch1, 
ch2, ch3, ch4, ch5, ch6, ch7, ch8, ch9, ch10, 
ch11, ch12, m128

PSD1*
PSD2**

Sustained vowels Mean f0, F1, F2, F3, F4
HNR**

Table 4  Best feature set and classifier model for female and male speech

Speech signal type Classifier Features Mean AUC 
score (cv = 10)

Accuracy score Classification report

Class/avg Precision Recall f1

Male speech XGBoost t33, sil1, psd1 0.7903 0.8636 Healthy 0.66 0.75 0.70
Depressed 0.75 0.66 0.70
Macro avg 0.70 0.70 0.70
Weighted avg 0.71 0.70 0.70

Female speech KNN 13, t33 0.7548 0.7000 Healthy 0.91 0.83 0.87
Depressed 0.82 0.90 0.86
Macro avg 0.86 0.87 0.86
Weighted avg 0.87 0.86 0.86
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to conclude the accuracy and repeatability of the robust 
features.
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