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Abstract
Perceptual evaluation of the patient’s voice is the most commonly used method in everyday clinical practice. We propose 
an automatic approach for the prediction of severity of some types of organic and functional dysphonia. By means of an 
unsupervised learning method, we have demonstrated that acoustic parameters measured on different phonetic classes are 
suitable for modelling the four grade assessments of the specialists (RBH subjective scale from 0 to 3). In this study, the 
overall hoarseness H was examined. Four specialists were asked to determine the severity of dysphonia. A k-means cluster 
analysis was performed for the decision of each specialist separately; the average accuracy of the four-grade classification 
was 0.46. The four-grade classification has been surprisingly close to the subjective judgements. Moreover, automatic esti-
mation of severity of dysphonia was also determined. Linear regression and RBF kernel regression models were compared. 
The average rating of the four specialists were used as target in the experiments. Low RMSE and high correlation measures 
were obtained between the automatically predicted severity and perceptual assessments. The best RMS value of H was 0.45 
for the model with RBF kernel, however, a simpler linear model provided the highest correlation value of 0.85, using only 
eight acoustic parameters.

Keywords  Speech analysis · Pathological speech production · Interrater reliability · Regression analysis · Cluster analysis · 
Diagnostics

1  Introduction

Dysphonia refers to the dysfunction in the ability to pro-
duce voice. Perceptually, dysphonia can be characterized 
by hoarse, breathy, harsh or rough vocal qualities, but some 
kind of phonation remains (Hirschberg et al. 2013). Any 
disorder occurring in phonation affects private life as well 
as professional position and livelihood. Consequently, there 
is a need for new, cheap and effective methods that help the 
work of professionals in recognizing dysphonic voices and 
follow the development of speech therapy in an easy way. 
Acoustic analysis-based automatic detection of dysphonia 
and its severity is exactly such a research area, as it gives 
the possibility of non-invasive and objective quantification 

of pathological information, using only the speech of the 
patient.

In the diagnosis and management of dysphonic speech, 
a voice clinician typically assesses the voice quality of a 
patient personally. The assessment is subjective by nature. 
The target severity of a voice is usually defined as one clini-
cian’s assessment or as the median or average severity rating 
determined by a group of experienced raters assessing the 
voice (Chien et al. 2017; Laaridh et al. 2017). If multiple 
raters are recruited for the objective assessment of sever-
ity of dysphonia, the assessment is done by listening to the 
previously recorded voice samples. The assessment can vary 
among raters; thus, analysis of rating consistency is advis-
able. In the work of Law et al. (2012), it was found that 
higher intra-rater reliability was achieved with continuous 
speech than with sustained vowel samples. In most voice 
clinics, acoustic measures are derived from sustained vowel 
samples; however, continuous speech has several advantages 
over analysis of sustained vowels. It contains a variation of 
fundamental frequency, pauses and phonation onsets, and 
there is the opportunity to examine different variations of 
speech sounds.
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Researchers have been focused on the development of 
those acoustic features that can efficiently represent the 
pathological condition of the speech production system. 
Selecting the right acoustic parameters and machine learn-
ing technics is essential for the recognition of several types 
of pathological voice disorders like Parkinson’s disease 
(Benmalek et al. 2018), depression (Kiss and Vicsi 2017), 
dysarthria (Nidhyananthan and Shenbagalakshmi 2016), etc.

The most widely used acoustic parameters regarding 
dysphonia include: jitter, shimmer and Harmonics-to-Noise 
Ratio (HNR). Zhang and his colleagues in Zhang and Jiang 
(2008) found that jitter and shimmer statistically differenti-
ate between normal and pathological sustained vowels but 
did not show such a significant difference between nor-
mal and pathological continuous speech. SNR, correlation 
dimension, and second-order entropy seemed to be capable 
of distinguishing normal groups from patient groups for sus-
tained vowels and for continuous speech as well. In Wang 
et al. (2016) a total of 65 dimensionality measures includ-
ing traditional acoustic methods, MFCC, Glottal-to-Noise 
Excitation methods and nonlinear dynamical analysis were 
measured on sustained vowels and used to compose a matrix 
of features. The multiclass classification results were mod-
erately correlated with GRBAS ratings of severity, with the 
best accuracy around 77.55 and 80.58%, respectively.

In this study we focus on the automatic assessment of the 
severity of voice in cases of organic and functional dyspho-
nia. Organic disorders include vocal cord nodules, polyps, 
recurrent paresis, gastroesophageal reflux disease (GERD), 
cyst, etc. We propose an automatic method for estimating 
dysphonia severity levels using read texts uttered by Hungar-
ian patients and by a healthy control population. Our pre-
vious research has confirmed that acoustic parameters like 
jitter, shimmer, HNR and the first component (c1) of the 
mel-frequency cepstral coefficients (referred to as ‘mfcc01’) 
are useful in the automatic classification of healthy and path-
ological voices using continuous speech (Vicsi et al. 2011; 
Kazinczi et al. 2015; Grygiel et al. 2012). Moreover, in 
Tulics and Vicsi (2017) we demonstrated that these param-
eters correlate with the severity of dysphonia, as well as Soft 
Phonation Index (SPI) and Empirical mode decomposition 
(EMD) based frequency band ratios acoustic parameters 
measured on different phonetic classes (for example nasals, 
vowels, fricatives, etc.). In this research jitter, shimmer, 
HNR mfcc01 and frequency band ratios were used as input 
features. Speech defect severity was determined by 4 special-
ists: one of them treated the patient and directly listened to 
and evaluated the quality of the patient’s speech during the 
consultations, while the other three specialists, not know-
ing the patient, only listened to the previously recorded 
sound files and determined the severity of dysphonia. The 
RBH scale, a four-grade subjective assessment scale from 
0 to 3, where R stands for roughness, B for breathiness, H 

for overall hoarseness (Schönweiler et al. 2000), gave the 
severity of dysphonia. A four-class classification by an unsu-
pervised learning method (k-means clustering) was used to 
examine whether acoustic parameters selected in our earlier 
research were suitable for modelling the four grade assess-
ments of the specialists. The RBH’s subjective nature was 
examined, as well as the consistency of the four specialists’ 
ratings. The system proposed can be useful for clinical prac-
tice, as it is designed to provide clinical decision support.

Section 2 briefly describes the speech material used in 
the experiments, the measured acoustic parameters and the 
evaluation methodology. Our results are shown in Sect. 3, 
followed by the discussion and the future direction in Sect. 4.

2 � Methods and materials

The system proposed in this study comprises several steps: 
the speech recordings of the patients are arranged into 
speech databases (Pathological and Healthy Adults Speech 
Database). The recordings are normalized and segmented on 
phoneme level. After selecting the phonemes to be analyzed, 
acoustic parameters are extracted and arranged into a fea-
ture vector. The feature vector is given to a classifier to per-
form the binary classification (healthy or unhealthy), or to a 
regression module, performing the estimation of the sever-
ity of dysphonia, in possession of prior knowledge. Prior 
knowledge is gained by the procession of a carefully built 
speech database and optimal classification and regression 
models. In case of a new speech sample the class (healthy/
pathological) or the severity of dysphonia is unknown. The 
preprocessing of the speech record is the same and after the 
acoustic parameters are measured on phoneme level a test-
ing feature vector is constructed that enters a comparative 
unit, thus the classification or regression is performed. This 
process is summarized in Fig. 1. This study focuses on the 
automatic assessment of voice severity, while analyzing the 
subjective nature of the specialists’ ratings, too.

2.1 � Pathological and healthy adults speech 
database

Sound samples from patients were collected during patient 
consultations in a consulting room at the Department of 
Head and Neck Surgery of the National Institute of Oncol-
ogy. Several types of diseases occurred during the survey: 
functional dysphonia, recurrent paresis, tumors at various 
points of the vocal tract, gastroesophageal reflux disease, 
chronic inflammation of the larynx, bulbar paresis, amyo-
trophic lateral sclerosis, leucoplakia, spasmodic dyspho-
nia, etc. Recordings from healthy people were collected as 
well. These recordings were used as comparison, and the 
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recordings were collected from people who had attended for 
unrelated check-ups.

2.2 � Recording environment and text material

The recordings were made using a near field microphone 
(Monacor ECM-100), Creative Soundblaster Audigy 2 NX 
outer USB sound card, with good quality A/D converter and 
low noise level (audio coding: PCM, sampling rate: 16 kHz, 
quantization: 16-bit). The recordings were made in a quiet 
office environment (medical office). Each patient had to read 
out aloud one of Aesop’s Fables, “The North Wind and the 
Sun”. This folktale is frequently used in phoniatrics as an 
illustration of spoken language. It has been translated into 
several languages, Hungarian included. The text is eight sen-
tences long. The database was annotated and segmented on 
phoneme level with the help of an automatic phoneme seg-
mentator which was developed in the Laboratory of Speech 
Acoustics (Kiss et al. 2013).

In the present study two datasets were used, the Initial 
database and the Selected database.

2.2.1 � Initial database

The database containing a total of 263 speech recordings, 
127 recordings from healthy subjects (62 male and 65 
female) and 136 recordings from patients suffering from 
functional or organic dysphonia (66 male and 70 female), 
thus each recording is from a separate subject. The special-
ist who treated the patient determined the diagnosis. The 
specialist directly listened to and evaluated the quality of the 
patient’s speech during the consultations. This database was 
used for the two-class classification experiment.

2.2.2 � Selected database

The Selected database contains a total of 148 recordings, 
and it was used for the unsupervised cluster and regression 

analysis. The database contains all the 136 pathologi-
cal recordings from the Initial database. Furthermore, 12 
healthy recordings were selected from the Initial database, 
because the number of samples for each hoarseness severity 
category (from H0 to H3) must be balanced for the unsuper-
vised cluster and regression analysis. Table 2 summarizes 
the diagnoses and their occurrences in the patient group. 
Four specialists examined these recordings. One of the four 
specialists set up the diagnosis and evaluated the quality of 
the patient’s speech during the consultations; the other three 
specialists did not know the patient and only listened to the 
previously recorded sound files and determined the severity 
of dysphonia. Every rater is experienced in working with 
patients with voice disorders. Table 1 summarizes the diag-
noses and their occurrences in the patient group.

Fig. 1   The framework of this study

Table 1   Diagnoses for the patient group

Diagnosis Frequency

Benignus 2
Closure insufficiency 4
Dysarthria 2
Functional dysphonia 57
GERD 6
Healthy 12
Laryngeal paralysis 1
Laryngitis 5
Partial laryngeal surgery 1
Recurrent paresis 35
Spasmodic dysphonia 1
Tongue resection 2
Tractional stenosis 1
Tumor 12
Vocal cord alteration 1
Vocal node 4
Vocal tremor 2
Total 148
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2.3 � RBH scale

The RBH scale gives the severity of dysphonia, where R 
stands for roughness, B for breathiness and H for overall 
hoarseness. The degree of the category H cannot be less than 
the highest rate of the other two categories. For example, 
if B = 3 and R = 2, H is 3, and cannot be 2 or 1. A healthy 
voice’s code is R0B0H0; the maximum H and respectively 
RBH value is 3, so a voice’s code with severe dysphonia 
is R3B3H3. Ptok and his colleagues demonstrated that the 
application of the RBH scale is suitable for clinical purposes 
(Ptok et al. 2006). In this study the overall hoarseness H was 
examined.

2.4 � Acoustic parameters

In Tulics and Vicsi (2017) we have done a detailed correla-
tion analysis experiment in the shaping an extended param-
eter set. The following parameter set has been selected: 
jitter(ddp), shimmer(ddp), Harmonics-to-Noise Ratio (HNR) 
and mfcc01 means and standard deviations were measured 
on the vowel [E] (SAMPA), being the most frequent vowel 
read out in the folk tale. Moreover, Soft Phonation Index 
(SPI) and Empirical mode decomposition (EMD) based fre-
quency band ratios were measured on the voiced parts of 
speech, and the measured parameter were grouped into dif-
ferent phonetic classes. While the quality of the continuous 
speech is determined not only by the quality of the vowels 
but also by the distortion of speech sounds of other voiced 
phonetic classes, like nasals, voices fricatives, etc. There-
fore, these acoustic parameters which were selected by the 
detailed correlation analysis were used in this study.

SPI is the average ratio of energy of the speech signal 
in the low frequency band (70–1600 Hz) to the high fre-
quency band (1600–4500 Hz). If the ratio is large it means 
the energy is concentrated in the low frequencies, indicating 
a softer voice (Roussel and Lobdell 2006). The parameter 
was calculated based on mel-frequency bands. The first band 
starts at 100 mel (64,95 Hz) and each band is 100 mel wide. 
Thus, SPI can be represented by the energy ratio of the band 

with the index from 1 to 13 to the bands with the index from 
14 to 22.

EMD decomposes a multicomponent signal into ele-
mentary signal components called intrinsic mode functions 
(IMFs) (Huang et al. 1998). Each of these IMFs contributes 
both in amplitude and frequency towards generating the 
speech signal. The IMFs are arranged in a matrix in sorted 
order according to frequency. The first few IMFs are the 
high frequency components of the signal, the latter IMFs 
represent the lower frequency components. We calculate 
the entropy (E) for each IMF. The frequency band ratios of 
entropy were calculated the following way:

Hd is the value of Shannon entropy for each d = 1, 2,… D of 
the log-transformed IMFs. D is the total number of extracted 
IMFs. Shannon entropy for a discrete signal is defined as

where K is a positive constant. To extract the parameter, the 
toolkit presented in Tsanas (2013) was used.

The means and standard deviations of Soft Phonation 
Index (SPI) and IMFentropy were also calculated on the 
vowel [E], moreover SPI and IMFentropy were measured 
on the whole voiced parts of the speech samples and were 
grouped according to the following phonetic classes:

•	 on nasal sounds marked with [m], [n] and [J]
•	 on high vowels marked with [E], [e:], [i], [2] and [y]
•	 on low vowels marked with [O], [A:], [o] and [u]
•	 voiced spirants marked with [v], [z] and [Z]
•	 voiced plosives and affricates marked with [b], [d], [g], 

[dz], [dZ] and [d’]

Moreover, SPI was calculated on the whole sample as 
well; no standard deviation was calculated here. Thus, a total 

(1)IMFentropy =

∑2

d=1
Ed

∑D

d=2
Ed

(2)E(pi) = −K

n
∑

i=1

pilogpi

Table 2   Two-class classification 
results

Bold values represent the best results (highest accuracies or lowest RMS values)

Kernel type Feature 
selection?

Hyperparameter 
optimalization?

Number of 
features

C Gamma Accuracy (%)

Linear No No 33 1 – 87
Linear No Yes 33 2 – 87
Linear Yes Yes 24 24 – 88
RBF No No 33 1 0.03 81
RBF No Yes 33 8 0.25 88
RBF Yes Yes 18 16 0.5 89
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of 33 acoustic parameters were measured per patient voice 
sample, as starting parameter set in this research.

2.5 � Decision methods

A two-class classification was performed on the Initial data-
base using leave-one-out cross validation, with SVM (sup-
port vector machine) classifier. SVM is a supervised machine 
learning algorithm which is used mainly for binary classi-
fication tasks. It uses the kernel trick to transform data and 
based on these transformations it finds an optimal bound-
ary between the possible outputs. The classifier was used 
successfully in our previous work achieving high accuracy 
separating the healthy and pathological voices (Kazinczi 
et al. 2015). The goal of the two-class classification was 
to find out whether the chosen acoustic parameters are rich 
enough in information to differentiate between healthy and 
pathological voices, while reducing the dimensionality of 
the input vector.

In order to reduce dimensionality of the input vector the 
forward feature selection (FFS) algorithm was used. For-
ward feature selection is an iterative algorithm, choosing 
the best feature that improves the performance in regard to 
a cost or objective function in each step and adding it to the 
already selected features. Here, the features were selected 
using maximum accuracy as an objective function.

It is also an important question whether the acoustic 
parameters selected by the correlation analysis are suitable 
for modelling the four grade assessments of the specialists 
(RBH subjective scale). For this reason, an unsupervised 
learning method, the k-means algorithm was used on the 
Selected database. The k-means is one of the simplest algo-
rithms that uses unsupervised learning method to solve 
known clustering issues. This method is a fast and simple 
approach to the problem: it is easy to implement, and it is 
easy to interpret the clustering results.

The consistency of the four specialists’ ratings was also 
examined with Cronbach’s Alpha and the Intra Class Cor-
relation Coefficient (ICC). Both methods are widely used to 
estimate the reliability of a composite score.

Our main aim is the automatic estimation of the severity 
of dysphonia. Linear regression and support vector regres-
sion (SVR) with radial basis function (RBF) kernel was used 
for model building. By its nature, linear regression only 
looks at linear relationships between dependent and inde-
pendent variables; linear regression also assumes that there 
is a straight-line relationship between the input variables and 
the target. SVR with RBF kernel has good generalization 
and strong tolerance to input noise.

3 � Results

3.1 � Two‑class classification results

Classification experiments were made using several com-
binations. Liner and RBF kernels were also tried out. The 
default value of C of support vector machine is 1, while 
Gamma is 1/number of features. In order to choose the opti-
mal hyperparameters for the SVM classifier grid search was 
used. Leave-one-out cross validation was used in all cases. 
Results are summarized in Table 2.

As Table 2 suggests, the highest accuracy of 89% was 
reached by using RBF kernel. The features selection 
algorithm reduced the input dimensionality to 18 acous-
tic parameters, while achieving higher accuracy than 
the default setting. The acoustic parameters selected by 
the FFS algorithm are the following: jittermean, jitterstd, 
shimmermean, shimmerstd, hnrmean, hnrstd, mfcc01mean, 
mfcc01std, SPI → Estd, SPI → Nasalmean, SPI → Nasalstd,  
SPI →  LowVowelsstd,  SPI →  VoicedSpirantsmean, 
SPI → VoicedSpirantsstd, IMF → Estd, IMF → Nasalmean, 
IMF → VoicedPlosivesmean, IMF → VoicedPlosivesstd. These 
parameters are referred to as ‘18 parameter set’ in further 
experiments.

3.2 � Unsupervised cluster analysis

It is an interesting question whether the chosen acoustic 
parameters (the 18-parameter set) can model the individ-
ual assessments. Cluster analysis is used to classify cases 
into relative groups called clusters, in this case: individual 
assessments of severity of dysphonia. In cluster analysis, 
there is no prior information about the cluster member-
ship for any of the data. If the acoustic parameter set and 
the unsupervised learning method are fixed, it is possible 
to compare four cluster models for each case labelled by a 
specialist’s judgement. In order to examine the subjective 
nature of RBH k-means cluster analysis was done.

The confusion matrices for each specialist are shown 
separately in Tables 3, 4, 5 and 6. The accuracies for the 

Table 3   Confusion matrix in 
case of Specialist 1

Bold values represent diagonal 
values in the confusion matrices

Predicted label Sum

0 1 2 3

Specialist 1 (true label of H)
 0 12 13 9 2 36
 1 1 33 25 4 63
 2 2 5 10 6 23
 3 1 3 5 17 26

Sum 16 54 49 29 148
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decision in case of each specialist in order is: 0.49, 0.44, 
0.45, 0.47. The average classification accuracy is 0.46.

From this experiment we can conclude that the acoustic 
parameter set is suitable for modelling the individual assess-
ments of dysphonia severity. Looking at the individual con-
fusion matrices, the following observations can be made. If 
the clustering process was not able to accurately determine 
the specialist’s assessment, it was classified into the adjacent 
cluster. The separation between healthy (H0) and unhealthy 
(H1, H2 and H3) is satisfactory. While Specialist 1 rated the 
voices less severe, Specialist 4 rated more voices H3. The 
results also show that the H1 and H2 classes are the least 
distinct from the clustering point, in the cases of all four 
specialists.

This demonstrates that in this case, a continuous scale 
prediction process, such as regression, would better approxi-
mate the subjective assessments than clustering with dis-
aggregated sets. In this way, we can get a more accurate 
system, with fewer errors.

3.3 � Reliability analysis

Perceptual evaluation of voice is the most commonly used 
tool in everyday clinical practice when assessing voice disor-
ders. Perceptual evaluation plays a crucial role in both clini-
cal outcome measures and our own task. In this section we 
analyze if the rater reliability is satisfying enough; moreo-
ver, if any difference can be observed between the clinician 
who was present during patient consultations and the three 
specialists who determined the severity of dysphonia while 
listening to the recordings.

According to Table 7, on average, the specialists gave 
a difference of 0.4 to the average. Specialists 2 and 4 gave 
the most average ratings, so their assessments will change 
the average H value the least; while Specialist 1’s assess-
ments differ the most from the average. It should be noted, 
however, that only Specialist 1 was present during the sound 
recordings. Having a different acoustic experience could 
have significantly influenced his assessment.

For measuring internal consistency (“reliability”) Cron-
bach’s Alpha was used. It has been proposed that Cron-
bach’s alpha values of 0.80 or above indicate a high level 
of internal consistency. In our case, Cronbach’s alpha was 
found to be 0.891, which indicates a high level of reliability. 
The removal of any expert assessment would not result in 
a higher alpha value. It is to be noted, though, that removal 

Table 4   Confusion matrix in 
case of Specialist 2

Bold values represent diagonal 
values in the confusion matrices

Predicted label Sum

0 1 2 3

Specialist 2 (true label of H)
 0 11 6 5 0 22
 1 3 24 26 2 55
 2 2 16 23 15 56
 3 0 3 0 12 15

Sum 16 49 54 29 148

Table 5   Confusion matrix in 
case of Specialist 3

Bold values represent diagonal 
values in the confusion matrices

Predicted label Sum

0 1 2 3

Specialist 3 (true label of H)
 0 11 2 3 0 16
 1 2 20 15 1 38
 2 2 25 16 9 52
 3 1 7 15 19 42

Sum 16 54 49 29 148

Table 6   Confusion matrix in 
case of Specialist 4

Bold values represent diagonal 
values in the confusion matrices

Predicted label Sum

0 1 2 3

Specialist 4 (true label of H)
 0 12 7 6 0 25
 1 2 24 18 6 50
 2 2 18 17 6 43
 3 0 5 8 17 30

Sum 16 54 49 29 148

Table 7   Average deviations from the average of H for individual spe-
cialists

Sum Special-
ist 1

Special-
ist 2

Special-
ist 3

Specialist 4

Average 
deviation 
from 
average 
of H

0.4 0.5 0.3 0.4 0.3

Table 8   Item reliability statistics if one rater is removed

If item dropped

Item-rest correlation Cronbach’s α

Specialist 1 0.714 0.881
Specialist 2 0.777 0.857
Specialist 3 0.782 0.852
Specialist 4 0.787 0.850



347International Journal of Speech Technology (2019) 22:341–350	

1 3

of Specialist 1 would ruin the internal consistency the least. 
The Item Reliability Statistics are shown in Table 8.

The Intra class correlation coefficient (ICC) was also cal-
culated. An ICC of 0.75 or above indicates good reliability. 
In our case, a high degree of reliability was found between 
the severity judgements. The average measure ICC was 
0.890 with a 95% confidence interval from 0.857 to 0.917 
(F(137;411) = 9.172; p < 0.001).

3.4 � Regression analysis

Regression has a significant advantage compared with clus-
ter analysis, since the prediction follows a function almost 
continuously. This property can significantly improve the 
quality of the model. Due to the small sample size, leave-
one-out cross validation was used. The performance of the 
regression methods is evaluated by the root mean square 
error (RMSE) value, the linear relationship between the 
target and the predicted H scores is described by Pearson 
correlation. To find the optimal hyperparameters grid search 
was used.

In this analysis linear regression and support vector 
regression (SVR) with radial basis function (RBF) kernel 
were used. To reach the best performance the 18-parameter 
set and the result of the FFS algorithm was used, for linear 
regression and SVR with RBF kernel separately.

Table 9 summarizes the results. The mean of the four 
specialists’ was used as target. The FFS algorithm reduced 
the original 33-dimension input to only eight param-
eters using linear kernel. The following parameters were 

selected: mfcc01mean, shimmermean, hnrstd, SPI → High-
Vowelsmean, SPI → LowVowelsstd, SPI → VoicedPlosivesstd, 
IMF → Nasalmean, IMF → LowVowelsstd. This configuration 
gave the highest 0.853 correlation. When RBF kernel was 
used, the FSS algorithm selected 14 parameters, these were 
the following: mfcc01mean, shimmermean, hnrmean, hnrstd, 
SPI → Emean, SPI → Estd, SPI → Nasalstd, SPI → HighVow-
elsmean, SPI → LowVowelsmean, SPI → LowVowelsstd, 
SPI → VoicedPlosivesmean, IMF → Nasalmean, IMF → Voiced-
Plosivesmean, IMF → VoicedPlosivesstd. The lowest RMSE 
value of 0.454 was obtained here. Furthermore, the FFS 
models gave only slightly better results than the models with 
the 18-parameter set, which demonstrates the generalizing 
ability of the acoustic parameters employed.

Figure 2 depicts the automatically predicted severity of 
the dysphonia compared to the reference perceptual assess-
ment of speaker severity. The figure shows the linear regres-
sion models created by the result of the FFS algorithm.

The figure illustrates once again the capacity of the pro-
posed approach in predicting the severity of dysphonia 
regardless of the speaker’s pathology or severity degree. It 
can be observed that the model gives good prediction of 
severity of H1.

Figure 3 shows the distribution of the predicted H values 
from the linear regression model and the mean of the four 
specialist’s ratings. The means are the same, but the pre-
dicted values have a lower standard deviation.

Table 9   Regression analysis 
results—the mean of the four 
specialist’s ratings as target

Bold values represent the best results (highest accuracies or lowest RMS values)

Acoustic parameter set Type of regression Correlation RMSE Hyperparameters

18-Parameter set Linear 0.837 0.502 C = 1
Result of FFS, 8-parameter set Linear 0.853 0.462 C = 1
18-Parameter set RBF kernel 0.808 0.506 C = 2, gamma = 0.125
Result of FFS, 14-parameter set RBF kernel 0.849 0.454 C = 4, gamma = 0.25

Fig. 2   Automatically predicted 
dysphonia severity degree 
according to perceptual assess-
ment of H, using linear regres-
sion with 8 parameters
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4 � Conclusion and discussion

This paper investigates an automatic approach for the predic-
tion of severity of dysphonia based on acoustic parameters 
measured on different phonetic classes. In these phonetic 
classes the type of excitation is different, thus several phona-
tion problems may appear differently in the phonetic classes. 
This research was based on continuous speech, since it is 
more applicable to practical work than sustained vowels 
(Kim et al. 2015).

Four specialists evaluated all the speech samples per-
ceptually: the specialist who heard the patient live and 
set up the diagnosis (Specialist 1), and three specialists 
who determined the severity of dysphonia while listening 
to the recordings (Specialists 2, 3 and 4). The specialists 
were asked to rate all the speakers by the RBH scale; in 
this study the overall hoarseness H was examined.

Generally speaking, in statistical model building meth-
ods, where only a limited number of samples are avail-
able, it is very important to choose the optimal set of the 
characteristic parameters, thus, to minimalize the noise 
entering the system. This is the case for modeling the 
assessment of pathological speech, where the database 
collection is very difficult. For this reason, the optimiza-
tion of the set of the input parameters is necessary for the 
construction of models for the automatic assessment of 
the severity of dysphonia. When creating a model overfit-
ting may also be problem, which happens when a model 
learns the detail and noise in the training data. This can 
have a negative impact on performance when the model 
is tested with new data. Overfitting happens more likely 

with nonparametric and nonlinear models as they have 
more flexibility when learning a target function. One 
should try to generalize the model as much as possible.

Based on our previous works (Kazinczi et al. 2015; 
Tulics and Vicsi 2017), a total of 33 acoustic parameters 
were selected and measured per patient voice sample, 
including jitter, shimmer, HNR and the first component 
(c1) of the mel-frequency cepstral coefficients meas-
ured on vowel [E], and Soft Phonation Index (SPI) and 
Empirical mode decomposition (EMD) based frequency 
band ratios on different phonetic classes. We can ask the 
question whether these acoustic parameters are really 
suitable for modelling the assessments of the specialists. 
To answer this question three different experiments were 
made.

4.1 � Two‑class classification and parameter selection

The goal of the two-class classification was to find out 
whether the chosen acoustic parameters are suitable for the 
automatic separation of healthy and pathological classes. 
With the help of FFS feature selection algorithm, the dimen-
sionality of the input vector was reduced to 18 parameters 
reaching accuracy of 89% between the two classes.

4.2 � Clustering

With k-means unsupervised learning method, four cluster 
models were compared, each case labelled by a specialist’s 
assessments using the four grade RBH subjective scale. The 
18-parameter set, selected in the two-class classification 

Fig. 3   Histogram of the mean 
of the four specialist’s ratings 
and the predicted H scores
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experiment was used to model the four grade individual 
assessments of dysphonia severity. The accuracies for each 
specialist’s model in order is: 0.49, 0.44, 0.45, 0.47.

RBH perceptual evaluation of experts was the bases 
for our classification and regression models. Thus, it was 
important to analyze if the rater reliability of the 4 experts 
is consistent enough. For measuring internal consistency, 
(“reliability”) Cronbach’s Alpha and Intra Class Correla-
tion Coefficient (ICC) method was used. Through the anal-
ysis, we have found that Specialist 1 rated more voices less 
severe than the other three specialists. One explanation of 
these phenomena can be that Specialist 1 was personally 
involved in the patient diagnosis and therapy; moreover, 
the specialist had a different acoustic experience than the 
other jury members. Despite the interesting differences 
among the decision of the specialists, a high degree of reli-
ability (Cronbach’s alpha = 0.891, ICC = 0.890) was meas-
ured between their severity judgements when measuring 
internal consistency. Despite its significance, we have not 
encountered such consistency testing so far in the scientific 
literature.

4.3 � Regression

The four-class clustering results show that the H1 and H2 
classes are the least distinct from the clustering point, for 
all four specialists. Our hypothesis was that in the case of 
a continuous scale prediction process, such as regression, 
the subjective assessments would be better approximated 
than in the case of clustering with disaggregated sets. In 
this way we can get a more accurate system with fewer 
errors. A method for dysphonia severity assessment has 
been presented, which is a regressor that uses acoustic 
parameters measured on different phonetic classes. The 
best RMS value of H was 0.45 for the model using RBF 
kernel, where the feature selection algorithm selected 14 
parameters. A simpler linear model has provided the high-
est correlation value of 0.85, using only eight acoustic 
parameters. The result of the FFS shows the importance 
of those acoustic parameters, which were measured on dif-
ferent phonetic classes. The distribution of the predicted 
values of the linear model is very similar to the H values’ 
mean given by the specialists, resulting in the same means, 
but the predicted values have a lower standard deviation. 
Using a linear model reduces the probability of overfit-
ting, as a linear model using only a few parameters has 
less flexibility when learning a target function. It is also 
important to mention that the regression model using the 
18-parameter set provides similar correlation and RMSE 
values as the linear regression model using only 8 acoustic 
parameters. This demonstrates the generalizing ability of 
the used acoustic parameters.

The end system proposed in this study can help young 
physicians or general practitioners filter out patients with 
dysphonia more efficiently and automatically determine 
the severity of dysphonia. Future work includes involv-
ing more specialists in the severity assessments, and the 
evaluation of our system on a larger dataset. Based on a 
larger dataset, the classification of the different types of 
dysphonia would also be possible. We also believe that the 
results are generalizable to other languages.
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