
Vol.:(0123456789)

International Journal of Parallel Programming
https://doi.org/10.1007/s10766-024-00767-y

1 3

Automatic Discovery of Collective Communication Patterns
in Parallelized Task Graphs

Fabian Knorr1 · Philip Salzmann1 · Peter Thoman1 · Thomas Fahringer1

Received: 22 November 2023 / Accepted: 29 February 2024
© The Author(s) 2024

Abstract
Collective communication APIs equip MPI vendors with the necessary context to
optimize cluster-wide operations on the basis of theoretical complexity models and
characteristics of the involved interconnects. Modern HPC runtime systems with a
programmability focus can perform dependency analysis to eliminate the need for
manual communication entirely. Profiting from optimized collective routines in this
context often requires global analysis of the implicit point-to-point communication
pattern or tight constrains on the data access patterns allowed inside kernels. The
Celerity API provides a high degree of freedom for both runtime implementors and
application developers by tieing transparent work assignment to data access patterns
through user-defined range-mapper functions. Canonically, data dependencies are
resolved through an intra-node coherence model and inter-node point-to-point com-
munication. This paper presents Collective Pattern Discovery (CPD), a fully distrib-
uted, coordination-free method for detecting collective communication patterns on
parallelized task graphs. Through extensive scheduling and communication micro-
benchmarks as well as a strong scaling experiment on a compute-intensive appli-
cation, we demonstrate that CPD can achieve substantial performance gains in the
Celerity model.

Keywords Task graph · Scheduling · MPI · Collective communication · Runtime
system

 * Peter Thoman
 peter.thoman@uibk.ac.at

 Fabian Knorr
 fabian.knorr@uibk.ac.at

 Philip Salzmann
 philip.salzmann@uibk.ac.at

 Thomas Fahringer
 thomas.fahringer@uibk.ac.at

1 University of Innsbruck, Innsbruck, Austria

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-024-00767-y&domain=pdf

 International Journal of Parallel Programming

1 3

1 Introduction

As we enter the Exascale era with ever increasing parallelism and heterogeneity in clus-
ters, a growing number of HPC applications become bound primarily by memory and
communication bottlenecks. Efficiently managing communication between memory
hierarchies is now of the utmost importance for scaling any application beyond a small
number of compute nodes.

With traditional HPC software stacks—i.e. MPI+X—these hardware developments
necessitate an increasing level of expertise in parallelization and distributed software
optimization on part of the application programmer. However, as the actual domain of
the computations performed on HPC systems is generally some other physical science,
such expertise is only available to large projects consortia, or by leveraging existing
domain-specific software packages.

This state of the art hampers the development of new algorithms and science, as
there is a clear trade-off: experiment with new algorithmic and scientific approaches
while restricted to smaller-scale or less efficient computation; or accept the limits of
existing software packages, but scale more easily to larger systems and problem sizes.

One approach towards bridging this gap between a focus on allowing relatively
straightforward implementation of domain science on the one hand and the complex-
ities of large heterogeneous distributed memory clusters on the other hand are HPC
runtime systems which seek to automate aspects like data distribution. While systems
like Celerity [14] can greatly reduce the burden on the application programmer, meet-
ing the high degree of freedom necessary to target the vast cosmos of data access pat-
terns found in scientific computing will require a communication model built around
point-to-point primitives in the general case.

For communication patterns involving a large number of cluster nodes however, col-
lective communication primitives as found in MPI can outperform point-to-point cas-
cades in network latency and throughput while also reducing tracking overhead in the
runtime. In this paper, we suggest that the conflict in requirements between API expres-
siveness, programmability and communication efficiency can best overcome by auto-
mated pattern detection and optimization on an existing point-to-point model.

To substantiate this claim, we present Collective Pattern Discovery for the Celerity
model, a method which automates detection of data access patterns that map to collec-
tive communication steps and inserts eager collective communication steps where pos-
sible. Our approach is deterministic and fully distributed without coordination between
participating nodes and exhibits low overhead. It neither requires training, observation
of previous communication nor guidance from the application developer.

1 3

International Journal of Parallel Programming

1.1 MPI Collectives

The MPI Standard [10] defines five categories of non-mutating collective operations
that can replace equivalent, hand-rolled point-to-point communication cascades for
improved latency and throughput (Table 1).

These collectives are either symmetric or revolve around one root node; and
transmitted data is either personalized (nodes receive disjoint buffer sub-ranges) or
non-personalized (every node receives the full buffer range).

The significance of efficient collectives for MPI application performance
becomes apparent in the extensive library of research on optimizing these operations
in popular implementations [9, 13]. Accurate theoretical models allow latency- and
throughput-optimized implementations to select optimal communication patterns
depending on cluster topology [5] and problem size [11].

1.2 Celerity

Celerity is a high-level C++ runtime system for accelerator clusters, focusing on
programmability in the complex environment of distributed-memory accelerator
computing [14]. It provides developers with a dataflow-based parallelism model
reminiscent of single-GPU programming while transparently distributing computa-
tion across compute nodes. In order to ease adoption and leverage existing stand-
ards as far as possible, its programming interface is closely related to the estab-
lished SYCL API, with minimal extensions required for operation on distributed
memory [6].

Celerity is built around fully distributed and asynchronous task and command
graph generation, which has previously been shown to scale up to 128 GPUs for
compute-intensive algorithms [12]. However, prior to this work, Celerity’s implicit
communication model was exclusively implemented through asynchronous MPI
point-to-point operations.

Table 1 Non-mutating collective operations provided by MPI

Collective Operation MPI function

Broadcast Non-personalized one-to-all MPI_Bcast, MPI_Ibcast
Scatter Personalized one-to-all MPI_Scatter[v], MPI_Iscatter[v]
Gather All-to-one MPI_Gather[v], MPI_Igather[v]
All-gather Non-personalized all-to-all MPI_Allgather[v], MPI_Iallgather[v]
All-to-all Personalized all-to-all MPI_Alltoall[vw], MPI_Ialltoall[vw]

 International Journal of Parallel Programming

1 3

1.3 Case Study: Direct N‑Body Simulation

To familiarize the reader with the Celerity model and demonstrate the performance
impact of collective communication later in this paper, we showcase the implemen-
tation of a direct gravitational N-body simulation as defined by

where p are 3-dimensional body positions, v their velocities, m their masses, G the
gravitational constant and t are time steps of length Δt.

The abbreviated Celerity program in listing 1 represents this system in two virtu-
alized buffers P and V. In a loop, it submits two kernels per time step: time_step
computes vi,t+1 from vi,t by integrating over the entirety of P for each work item i;
then update_p updates pi,t+1 in-place from pi,t and vi,t+1.

Each kernel is submitted as part of an asynchronous command group, which ties
the kernel function to an execution geometry (lines 12 and 21) and any number of
buffer accessors (lines 10–11 and 19–20).

The execution geometry describes parallelization through a dimensionality (here
1), an execution range (here N), a work item offset (implicitly 0 here) and a work-
group size (implicit and implementation-defined here).

(1)vi,t+1 ∶= vi,t +
�

j≠i

Gmj(pj − pi)

‖pj − pi‖3
Δt, pi,t+1 ∶= pi,t + vi,t+1Δt,

1 3

International Journal of Parallel Programming

Through lambda captures, accessors inject device-buffer pointers into the kernel
while providing the scheduler with metadata in the form of an access mode (here
read_only, read_write) and a range mapper (here all and one_to_one).

1.4 Range Mappers

Range mappers are an essential concept of the Celerity model, mapping sub-ranges
of the execution range to sub-ranges of the buffer in an accessor. This enables the
discovery of data requirements after arbitrary work assignment.

Given an execution range E, a range mapper r ∶ P(E) → P(E) is any pure func-
tion that forms a homomorphism over the union of execution sub-ranges:

Any range mapper r that is used in a writing access is further required to be non-
overlapping to allow tracking of the unique producer for any buffer item:

Celerity ships a selection of built-in range mapper functions. Relevant to the follow-
ing discussion are one_to_one (the identity function, requires equal kernel and
buffer dimensions), all (constant, accessing the entire buffer range) and trans-
posed (an isomorphic shuffling of dimensions). Out of these, one_to_one and
transposed exhibit the non-overlapping property, while all does not.

1.5 Graph‑Based Scheduling

Celerity’s parallel schedule is derived from the flow of command group submissions
in two steps: The high level task graph, constructed synchronously on all participat-
ing nodes, describes execution on a cluster-wide level. From this task graph, each
rank generates an individual command graph that models the kernel launches and
communication steps performed within the node.

Work is assigned to accelerators by splitting the global execution range into near-
equally-sized sub-ranges while observing any constraints imposed by the execution
geometry. As one Celerity process usually drives all accelerators of a cluster node,
scheduling will produce multiple execution sub-ranges locally. The graph generation
process itself does not involve communication.

State-of-the-art Celerity resolves data-flow dependencies between nodes to point-
to-point transfers. In this approach, each node tracks the buffer sub-ranges produced
by kernels within its address space through a combination of R-trees [3], from which
inbound communication sub-ranges (await-push commands) and outbound commu-
nication targets (push commands) are derived. Lowered to MPI point-to-point primi-
tives, these commands satisfy any data access pattern that can be described by the
range-mapper model. We refer the reader to [12] for more details about how Celerity
implements its graph-based scheduling and dependency tracking.

(2)r(E1 ∪ E2) = r(E1) ∪ r(E2) ∀E1,E2 ⊂ E

(3)E1 ∩ E2 = � ⇒ r(E1) ∩ r(E2) = � ∀E1,E2 ⊂ E

 International Journal of Parallel Programming

1 3

Figure 1 shows an excerpt of the task and command graphs resulting from Listing 1.
Here, as Celerity decides to assign the same execution sub-ranges to the same nodes
across kernels, only the all-read requirement of time_step necessitate communi-
cation. The corresponding command graph contains M − 1 push commands and one
await-push command on every node out of M.

1.6 Multi‑device Execution and Memory Coherence

Each Celerity process generates and streams its command graph to its executor thread,
which drives all accelerators addressable by the node. The executor dynamically estab-
lishes memory coherence between host and device memories by tracking buffer writes
and replications in separate R-trees, issuing memory transfers before passing kernels to
the SYCL backend.

While this lazy-update approach effectively balances irregular workloads, missing
context about the higher-level operation each sequence of commands is part of can lead
to sup-optimal execution patterns at times. This holds especially true for the all-gather
pattern found in our N-body simulation, for which the executor will issue a coherence
update for every incoming transfer (M − 1 for M nodes) instead of coalescing them into
a single transfer.

Fig. 1 Task graph (left) and command graphs (right) of a point-to-point communication schedule for
direct N-body simulation from listing 1 on M = 2 nodes. We show tasks up to the second time_step
kernel submission and hint at the additional push commands (grey) that would be required for a com-
mand graph on M > 2 nodes

1 3

International Journal of Parallel Programming

2 Related Work

Uncovering and exploiting opportunities for collective communication in user
programs has been examined from different angles in recent literature.

These approaches can be broadly categorized into bottom-up schemes discov-
ering collective patterns through centralized analysis of existing point-to-point
programs, and top-down methods which derive these patterns from high-level
cluster-wide representations and can frequently be coordination-free.

Knüpfer et al. [7] perform post-hoc, bottom-up analysis of application traces
with MPI point-to-point communication, hinting potential sites for collective
communication to the application developer help manual refactoring.

Hoefler et al. [4] use compiler transformations to replace point-to-point oper-
ations with library function calls that build a communication DAG at runtime.
In a centralized bottom-up analysis pass, this approach reliably detects all regu-
lar (i.e. non-MPI_*[vw]) collective patterns. By re-using optimized schedules
across program iterations, the authors are able to amortize the overhead of their
optimization.

libWater [2] is an OpenCL-based runtime that dynamically offloads work from
a designated root node to devices attached to other MPI processes. In a bottom-up
scheme, it detects gather, scatter and broadcast patterns among the point-to-point
commands generated as part of data redistribution pass and inserts MPI collective
operations accordingly.

Denis et al. [1] extend the PaRSEC runtime to opportunistically discover
broadcast patterns bottom-up during task graph build time. To avoid the synchro-
nization penalty from orchestrating a call to MPI_Bcast from otherwise inde-
pendent schedulers, the sending node initiates a binomial-tree broadcast through
point-to-point messages which are forwarded by intermediate nodes.

In a top-down approach, the cluster backend of SkePU [8] leverages MPI col-
lectives to exchange data between operations where applicable. The rigid skeleton
model significantly eases the modelling of global data movement and computa-
tional patterns when compared to Celerity, which must allow near-arbitrary non-
overlapping writes based on range mappers.

Collective Pattern Discovery as presented in the remainder of this document
falls into the top-down category, analyzing data requirements of a parallelized
task-graph through a distributed and coordination-free algorithm.

3 Collective Pattern Discovery

Collective Pattern Discovery (CPD) is a novel, deterministic, synchronization-
and coordination-free method for detecting instances of all five collective data
exchange patterns found in Sect. 1.1. In two phases, CPD transforms both the rep-
licated task graph and the per-node individual command graph to identify data-
flow edges that can profit from eager collective communication.

 International Journal of Parallel Programming

1 3

By guaranteeing that all nodes generate collective commands in identical order
regardless of individual work assignment, it satisfies the MPI requirement that all
ranks in a communicator participate in every collective operation.

3.1 Forward Task Generation

The first step in Collective Pattern Discovery (CPD) locates potential edges in task
graph, where an eager collective operation may preempt later point-to-point buffer
updates that would be inserted lazily on command generation.

Although the task graph is oblivious to communication and fully independent of
the underlying cluster configuration (including the number of participating nodes),
it must still keep track of collectives to guarantee that all nodes participate in the
same operations. This also avoids inadvertently exchanging buffer ranges multiple
times, as the task graph will reveal whether a dataflow dependency terminates at the
original data producer or whether there are intermediate tasks for which the data has
potentially been exchanged before.

CPD thus inserts a forward task whenever a read-requirement of task c (the con-
sumer) would introduce the first task-level dependency on the original writer task p
(the producer) for the accessed region (Algorithm 1).

To maximize the number of forward tasks that result in non-trivial collective
communication after work assignment, CPD ignores any task edges it deems to be
communication-free by assuming that tasks which share an execution geometry will
receive identical work assignment in the scheduler.

1 3

International Journal of Parallel Programming

3.2 Eager Collective Command Generation

In the Celerity model, work assignment and thus the number of nodes participat-
ing in a task is a function of the execution geometry and the number of nodes and
accelerators in the system. This ensures that command graph generation, while
distributed, agrees on a single global schedule. Our implementation guarantees
this through fully-static scheduling. Dynamic scheduling methods remain com-
patible with CPD, provided that their schedules are deterministic and reproduc-
ible around forward tasks.

After work assignment, the second step of CPD materializes forwards between
producer and consumer tasks as collective commands if they match one of the
patterns found in Table 2. Any non-matching forward task is dropped, and com-
munication will proceed through the generic point-to-point algorithm.

The pattern matching approach is independent of the exact buffer regions each
node accesses, rather, the collective operation is determined in constant time
from the number producer and consumer commands and range-mapper metadata.
The non-overlapping property of producer (writer) range mappers is assumed to
hold by definition (see Sect. 1.4). Our implementation detects constant and non-
overlapping consumer range mappers as well as transpositions through meta-pro-
gramming on the range-mapper functions.

The common gather, all-gather, scatter and broadcast patterns are identified
by analyzing read- and write range mappers in separation.

The all-to-all communication pattern is identified through a consumer access
that forms a non-trivial transposition of the corresponding producer, i.e. one that
is not communication-free after work assignment:

1. Producer task p has exactly one write range mapper w; consumer task c exactly
one read range mapper r participating in the forwarded region F

2. It holds that w(Ep) = r(Ec) = F

3. For any dimension d, all mappings of nodes i to produced buffer ranges wd(Ep,i)
and rd(Ec,i) are either constant or the identity function

4. There exists d such that wd(Ep,i) is constant while rd(Ec,i) is the identity
5. There exists d such that wd(Ep,i) is the identity while rd(Ec,i) is constant.

Table 2 Discovery patterns for collective operations on M > 1 nodes

Collective Producer
nodes

Consumer
nodes

Producer
range mappers

Consumer
range mappers

Gather M 1 Non-overlapping Any
All-gather M M Non-overlapping Constant
Broadcast 1 M Non-overlapping Constant
Scatter 1 M Non-overlapping Non-overlapping
All-to-all M M — Non-trivial transposition —

 International Journal of Parallel Programming

1 3

Figure 2 visualizes the effects of Collective Pattern Discovery on command-
graph generation for the N-body simulation in listing 1.

Collective Pattern Discovery first analyzes the data flow between the initial
time_step and update_p tasks. Since producer and consumer both access
buffer V through the same identity range mapper and the tasks have identical execu-
tion geometry, the edge is considered to be communication-free and no forward task
is generated.

The read of P{1…N} by the second time_step kernel however applies a dif-
ferent range mapper than the producer update_p. As the buffer has not been read
by any task since, CPD inserts a forward task on P{1…N}.

After work assignment, the producer–consumer relationship around P connects
an M-node non-overlapping producer to a M-node constant consumer, matching the
all-gather pattern of Table 2. Celerity thus inserts an all-gather command on each
node, which becomes the new writer of P{1…N}.

Since all data requirements of the second time_step are now fulfilled, no addi-
tional push-await pairs are generated during dependency analysis.

3.3 Collective Command Execution

Celerity lowers all collective commands to their non-blocking MPI counterparts
(e.g. MPI_Iallgatherv). As required by the standard, these operations are initi-
ated in-order, but can overlap for the remainder of their execution time.

Since each process potentially drives multiple accelerators, the runtime compiles
larger device-to-device collectives from the host-to-host MPI operations by issuing
local memory transfers before and after the MPI invocation.

Fig. 2 Task graph (left) and command graphs (right) of a direct N-body simulation with Collective Pat-
tern Discovery. The forward task on P materializes as a all-gather operation, replacing the push-await
cascade seen in Fig. 1

1 3

International Journal of Parallel Programming

Knowledge about the cluster-wide collective operation provides optimization
potential beyond the lazy coherence update mechanism (Sect. 1.6) employed for
point-to-point transfers: Celerity will issue a parallel device broadcast to update all
accelerator memories after completing an MPI collective operation with receiver-
broadcast semantics (broadcast and all-gather patterns).

4 Evaluation

To assess the performance characteristics of Collective Pattern Discovery in isola-
tion, we implement a set of synthetic benchmarking applications that require com-
munication between device memories (Table 3).

Where applicable, one-to-all communication is paired with an all-to-one opera-
tion to maintain meaningful dataflow throughout the programs. As control we study
the overhead of CPD on a stencil-like program with a neighborhood exchange pat-
tern that does not benefit from collective communication.

All benchmarks in this section were run on the Marconi-100 supercomputer in
Bologna, Italy, rank 26 of the TOP500 list as of June 2023.1 It is a cluster of 980
IBM Power AC922 nodes with four Nvidia Volta V100 GPUs each, intra-node
NVLink 2.0, and dual Infiniband EDR system interconnect.

Celerity was built using Clang 12.0.1 and OpenSYCL 0.9.22 with -O3 optimiza-
tion, linking against CUDA 11.7 and IBM Spectrum MPI 10.4.0. All binaries were
executed with mimalloc 2.0.93 replacing the system allocator.

Table 3 Access patterns of the synthetic benchmarks examined in this section

Executing the steps of each program in a loop generates detectable collective communication patterns
(except stencil). After each iteration, buffers B and B′ are swapped

Benchmark Step Kernel Reads Writes

All-gather N B ← {1…N} B
′
← identity

Gather-scatter 1 1 B ← {1…N} B ← {1…N}

2 N B ← identity B
′
← identity

Gather-bcast 1 1 B ← {1…N} B ← {1…N}

2 N B ← {1…N} B
′
← identity

All-to-all N×N B ← transpose(0, 1) B
′
← identity

Stencil (control) N×N B ← neighborhood(1, 1) B
′
← identity

1 https:// www. top500. org/ lists/ top500/ list/ 2023/ 06/.
2 https:// github. com/ OpenS YCL/ OpenS YCL/ relea ses/ tag/ v0.9.2.
3 https:// github. com/ micro soft/ mimal loc/ relea ses/ tag/ v2.0.9.

https://www.top500.org/lists/top500/list/2023/06/
https://github.com/OpenSYCL/OpenSYCL/releases/tag/v0.9.2
https://github.com/microsoft/mimalloc/releases/tag/v2.0.9

 International Journal of Parallel Programming

1 3

4.1 Scheduling Microbenchmarks

Celerity generates task- and command graphs concurrently with kernel execution
and data transfers. Scheduling latency can thus usually be hidden after startup, but
applications with very short-running device kernels may become throughput-limited.

By isolating the scheduling process, we can analyze scheduler throughput as a
function of node count. Each node must compute the work assignment of every
other node in the system to detect potential non-collective data requirements. The
number of communication commands tracked however remains constant with CPD
while increasing linearly with point-to-point communication.

Figure 3 demonstrates that all patterns except gather-scatter greatly profit from
CPD’s reduction in tracking complexity, with all-gather achieving a more than 3×
throughput increase for 256 nodes. For small node counts, the constant-time over-
head of forward-task generation yields a visible drop in scheduler performance, both
for collective and non-collective patterns. As we will show in Sect. 4.2, this reduc-
tion in throughput is negligible for large-scale runs.

4.2 Communication‑Only System Benchmarks

As Celerity is structured around accelerator computation, we benchmark device-
to-device transfer performance specifically by executing the synthetic benchmarks
from Table 3 with and without CPD while disabling kernel execution.

Figure 4 visualizes the communication throughput achieved as benchmark itera-
tions per second. All collective patterns profit massively from reduced overheads on
small buffer sizes, and all except gather-scatter can consistently take advantage of
reduced bandwidth requirements on larger-sized buffers.

For large node counts, we can observe a high variance in the performance of MPI
collective communication, which is caused by process scheduling differences on
part of the SLURM workload manager.

The non-collective stencil program shows no difference in communication times
between enabling or disabling CPD, demonstrating that the increase in scheduler
latency seen in Fig. 3 can be fully hidden.

4.3 Strong Scaling Experiment: Direct N‑Body Simulation

To evaluate the efficacy of CPD on a full application, we implement and optimize
the direct N-body simulation from Sect. 1.3 as a Celerity application. Compared to
the simplified listing 1, we use an array-of-struct (AOS) to struct-of-array (SOA)
transformation on P and V, increase parallelism in time_step by writing one item
in V per 32 threads and reduce the required global-memory bandwidth in the same
kernel by shared-memory tiling the read of V.

We choose a strong-scaling experiment specifically to showcase the effects of
transitioning from a compute-bound to a communication-bound problem as the

1 3

International Journal of Parallel Programming

node count increases. Figure 5 shows the speedup attained from a varying num-
ber of GPUs participating in the simulation of N = 1,048,576 bodies.

Up to 64 GPUs (16 nodes), both point-to-point and collective communication
scale equally. Increasing beyond 128 GPUs yields no additional speedup for the
point-to-point configuration, but does so significantly when Collective Pattern
Discovery is enabled.

Profiling reveals that scalability in this case is limited primarily by latency of
small host-to-device copies for every incoming message, which CPD can effec-
tively reduce through the use of a device broadcast (Sect. 3.3).

5 Conclusion

This work introduces Collective Pattern Discovery (CPD), a novel, determinis-
tic, distributed and coordination-free method for reliably identifying opportuni-
ties for collective communication in the parallelized task graphs of the Celerity
model.

In a two-stage approach, CPD identifies task graph edges suitable for eager
communication in the form of forward tasks and matches the concrete data
exchange pattern after work assignment to generate per-node collective com-
mands. This transforms a large class of distributed-memory interactions into
collective operations while reliably avoiding duplicated communication.

Through synthetic scheduling and communication benchmarks, we demon-
strated how CPD reduces tracking overhead of large runs in the runtime system
by replacing a linear number of point-to-point communication pairs with sin-
gular collective operations. On large transfers, this transformation allow us to
profit from decades of research on MPI collective optimization.

Fig. 3 Scheduler throughput for each program listed in Table 3 (higher is better). Reported is median of
100 benchmarks together with minima and maxima

 International Journal of Parallel Programming

1 3

Fig. 4 Throughput of communication-only system benchmarks from Table 3 with kernel execution disa-
bled (higher is better).Shown is a mixed bar-box plot containing the median, center quartiles and minima
/ maxima over 20 runs on varying node configurations. Each measurement is the mean over 20 iterations

Fig. 5 Strong-scaling speedup
of 20 time steps of the
direct N-body simulation for
N = 1,048,576 in double preci-
sion. We report the median,
center quartiles and minima
/ maxima over 20 benchmark
runs allocated to varying node
configurations by the workload
manager

1 3

International Journal of Parallel Programming

In a strong-scaling experiment, we were able to prove sizable gains in scal-
ability over the point-to-point model, effectively scaling a direct N-body simula-
tion implemented in Celerity to 256 GPUs for the first time.

5.1 Limitations and Future Work

While demonstrably highly efficient in common settings, the graph transformations
performed by Collective Pattern Discovery (CPD) cannot claim algorithmic opti-
mality in the general case. For example, the eager generation of forward tasks masks
the original producer task of the forwarded buffer sub-region: if the forward is not
materialized, or later tasks would benefit from a superset of the generated collective
(e.g. a logical all-gather access following a simple gather), an opportunity for col-
lective communication will be missed. Future work could be able to improve CPD
in these situations through a lookahead scheme analyzing longer sequences of tasks
at once.

5.1.1 Applicability to Other Frameworks

As evident from the technical descriptions in this paper, Collective Pattern Dis-
covery is specialized for the execution model of Celerity. It assumes parallelized
task graphs that are user-annotated with range mappers to express fine-grained data
dependencies.

Other systems that wish to implement CPD will need their own method to stati-
cally discover eligible read- and write operations in the distributed program, equiv-
alent to Table 2. This task is easiest for an API that is explicit about data access
patterns, as has already been demonstrated by the successful incorporation of MPI
collective operations in skeleton libraries [8].

Author Contributions Conceptualization: FK, PS, PT; Design, Implementation, Validation and Evalua-
tion: FK; Writing: FK, PT; Reviewing and Editing: FK, PS, PT; Resources and Supervision: TF.

Funding Open access funding provided by University of Innsbruck and Medical University of Innsbruck.
This research is supported by the European High-Performance Computing Joint Undertaking (JU) project
LIGATE under grant agreement No 956137.

Data Availability The source code used in all experiments is available under https:// github. com/ fknorr/
celer ity- runti me/ tree/ hlpp- 2023.

Declarations

Conflict of interest The authors have no financial or non-financial interests to disclose that are relevant to
the content of this article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this

https://github.com/fknorr/celerity-runtime/tree/hlpp-2023
https://github.com/fknorr/celerity-runtime/tree/hlpp-2023

 International Journal of Parallel Programming

1 3

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

 1. Denis, A., Jeannot, E., Swartvagher, P., Thibault, S.: Using dynamic broadcasts to improve task-
based runtime performances. In: Euro-Par 2020, Warsaw, Poland, August 24–28, 2020, Proceedings
26. pp. 443–457. Springer (2020)

 2. Grasso, I., Pellegrini, S., Cosenza, B., Fahringer, T.: libWater: Heterogeneous distributed computing
made easy. In: Proceedings of the 27th International ACM Conference on International Conference
on Supercomputing, pp. 161–172. ICS ’13, ACM, New York, NY, USA (2013). https:// doi. org/ 10.
1145/ 24649 96. 24650 08

 3. Guttman, A.: R-trees: a dynamic index structure for spatial searching. ACM SIGMOD Rec. 14(2),
47–57 (1984). https:// doi. org/ 10. 1145/ 971697. 602266

 4. Hoefler, T., Schneider, T.: Runtime detection and optimization of collective communication pat-
terns. In: Proceedings of the 21st International Conference on Parallel Architectures and Compila-
tion Techniques, pp. 263–272. PACT ’12, ACM/doi, New York, NY, USA (2012). https:// doi. org/
10. 1145/ 23708 16. 23708 56

 5. Kielmann, T., Hofman, R.F.H., Bal, H.E., Plaat, A., Bhoedjang, R.A.F.: MagPIe: MPI’s collective
communication operations for clustered wide area systems. In: Proceedings of the Seventh ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 131–140. PPoPP
’99, ACM, New York, NY, USA (1999). https:// doi. org/ 10. 1145/ 301104. 301116

 6. Knorr, F., Thoman, P., Fahringer, T.: Declarative data flow in a graph-based distributed memory
runtime system. Int. J. Parallel Programm. 1–22 (2022)

 7. Knüpfer, A., Kranzlmüller, D., Nagel, W.E.: Detection of collective MPI operation patterns. In:
Recent Advances in Parallel Virtual Machine and Message Passing Interface: 11th European PVM/
MPI Users’ Group Meeting Budapest, Hungary, September 19-22, 2004. Proceedings 11, pp. 259–
267. Springer (2004)

 8. Majeed, M., Dastgeer, U., Kessler, C.: Cluster-SkePU: A multi-backend skeleton programming
library for GPU clusters. In: Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA), p. 468. Citeseer (2013)

 9. Mamidala, A.R., Kumar, R., De, D., Panda, D.K.: MPI collectives on modern multicore clusters:
Performance optimizations and communication characteristics. In: 2008 Eighth IEEE International
Symposium on Cluster Computing and the Grid (CCGRID), pp. 130–137. IEEE (2008)

 10. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.0. https://
www. mpi- forum. org/ docs/ mpi-4. 0/ mpi40- report. pdf

 11. Pjesivac-Grbovic, J., Angskun, T., Bosilca, G., Fagg, G.E., Gabriel, E., Dongarra, J.J.: Performance
analysis of MPI collective operations. In: 19th IEEE International Parallel and Distributed Process-
ing Symposium, pp. 8–pp. IEEE (2005)

 12. Salzmann, P., Knorr, F., Thoman, P., Gschwandtner, P., Cosenza, B., Fahringer, T.: An asynchronous
dataflow-driven execution model for distributed accelerator computing. In: 2023 23rd IEEE Interna-
tional Symposium on Cluster, Cloud and Internet Computing (CCGrid). p. (to appear). IEEE (2023)

 13. Thakur, R., Rabenseifner, R., Gropp, W.: Optimization of collective communication operations in
MPICH. The Int. J. High Perf. Comput. Appl. 19(1), 49–66 (2005)

 14. Thoman, P., Salzmann, P., Cosenza, B., Fahringer, T.: Celerity: High-level C++ for accelerator clus-
ters. In: Euro-Par 2019: Parallel Processing: 25th International Conference on Parallel and Distrib-
uted Computing, Göttingen, Germany, August 26–30, 2019, Proceedings 25, pp. 291–303. Springer
(2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/2464996.2465008
https://doi.org/10.1145/2464996.2465008
https://doi.org/10.1145/971697.602266
https://doi.org/10.1145/2370816.2370856
https://doi.org/10.1145/2370816.2370856
https://doi.org/10.1145/301104.301116
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

	Automatic Discovery of Collective Communication Patterns in Parallelized Task Graphs
	Abstract
	1 Introduction
	1.1 MPI Collectives
	1.2 Celerity
	1.3 Case Study: Direct N-Body Simulation
	1.4 Range Mappers
	1.5 Graph-Based Scheduling
	1.6 Multi-device Execution and Memory Coherence

	2 Related Work
	3 Collective Pattern Discovery
	3.1 Forward Task Generation
	3.2 Eager Collective Command Generation
	3.3 Collective Command Execution

	4 Evaluation
	4.1 Scheduling Microbenchmarks
	4.2 Communication-Only System Benchmarks
	4.3 Strong Scaling Experiment: Direct N-Body Simulation

	5 Conclusion
	5.1 Limitations and Future Work
	5.1.1 Applicability to Other Frameworks

	References

