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Abstract
Collective communication APIs equip MPI vendors with the necessary context to 
optimize cluster-wide operations on the basis of theoretical complexity models and 
characteristics of the involved interconnects. Modern HPC runtime systems with a 
programmability focus can perform dependency analysis to eliminate the need for 
manual communication entirely. Profiting from optimized collective routines in this 
context often requires global analysis of the implicit point-to-point communication 
pattern or tight constrains on the data access patterns allowed inside kernels. The 
Celerity API provides a high degree of freedom for both runtime implementors and 
application developers by tieing transparent work assignment to data access patterns 
through user-defined range-mapper functions. Canonically, data dependencies are 
resolved through an intra-node coherence model and inter-node point-to-point com-
munication. This paper presents Collective Pattern Discovery (CPD), a fully distrib-
uted, coordination-free method for detecting collective communication patterns on 
parallelized task graphs. Through extensive scheduling and communication micro-
benchmarks as well as a strong scaling experiment on a compute-intensive appli-
cation, we demonstrate that CPD can achieve substantial performance gains in the 
Celerity model.
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1 Introduction

As we enter the Exascale era with ever increasing parallelism and heterogeneity in clus-
ters, a growing number of HPC applications become bound primarily by memory and 
communication bottlenecks. Efficiently managing communication between memory 
hierarchies is now of the utmost importance for scaling any application beyond a small 
number of compute nodes.

With traditional HPC software stacks—i.e. MPI+X—these hardware developments 
necessitate an increasing level of expertise in parallelization and distributed software 
optimization on part of the application programmer. However, as the actual domain of 
the computations performed on HPC systems is generally some other physical science, 
such expertise is only available to large projects consortia, or by leveraging existing 
domain-specific software packages.

This state of the art hampers the development of new algorithms and science, as 
there is a clear trade-off: experiment with new algorithmic and scientific approaches 
while restricted to smaller-scale or less efficient computation; or accept the limits of 
existing software packages, but scale more easily to larger systems and problem sizes.

One approach towards bridging this gap between a focus on allowing relatively 
straightforward implementation of domain science on the one hand and the complex-
ities of large heterogeneous distributed memory clusters on the other hand are HPC 
runtime systems which seek to automate aspects like data distribution. While systems 
like Celerity [14] can greatly reduce the burden on the application programmer, meet-
ing the high degree of freedom necessary to target the vast cosmos of data access pat-
terns found in scientific computing will require a communication model built around 
point-to-point primitives in the general case.

For communication patterns involving a large number of cluster nodes however, col-
lective communication primitives as found in MPI can outperform point-to-point cas-
cades in network latency and throughput while also reducing tracking overhead in the 
runtime. In this paper, we suggest that the conflict in requirements between API expres-
siveness, programmability and communication efficiency can best overcome by auto-
mated pattern detection and optimization on an existing point-to-point model.

To substantiate this claim, we present Collective Pattern Discovery for the Celerity 
model, a method which automates detection of data access patterns that map to collec-
tive communication steps and inserts eager collective communication steps where pos-
sible. Our approach is deterministic and fully distributed without coordination between 
participating nodes and exhibits low overhead. It neither requires training, observation 
of previous communication nor guidance from the application developer.
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1.1  MPI Collectives

The MPI Standard [10] defines five categories of non-mutating collective operations 
that can replace equivalent, hand-rolled point-to-point communication cascades for 
improved latency and throughput  (Table 1).

These collectives are either symmetric or revolve around one root node; and 
transmitted data is either personalized (nodes receive disjoint buffer sub-ranges) or 
non-personalized (every node receives the full buffer range).

The significance of efficient collectives for MPI application performance 
becomes apparent in the extensive library of research on optimizing these operations 
in popular implementations [9, 13]. Accurate theoretical models allow latency- and 
throughput-optimized implementations to select optimal communication patterns 
depending on cluster topology [5] and problem size [11].

1.2  Celerity

Celerity is a high-level C++ runtime system for accelerator clusters, focusing on 
programmability in the complex environment of distributed-memory accelerator 
computing  [14]. It provides developers with a dataflow-based parallelism model 
reminiscent of single-GPU programming while transparently distributing computa-
tion across compute nodes. In order to ease adoption and leverage existing stand-
ards as far as possible, its programming interface is closely related to the estab-
lished SYCL API, with minimal extensions required for operation on distributed 
memory [6].

Celerity is built around fully distributed and asynchronous task and command 
graph generation, which has previously been shown to scale up to 128 GPUs for 
compute-intensive algorithms [12]. However, prior to this work, Celerity’s implicit 
communication model was exclusively implemented through asynchronous MPI 
point-to-point operations.

Table 1  Non-mutating collective operations provided by MPI

Collective Operation MPI function

Broadcast Non-personalized one-to-all MPI_Bcast, MPI_Ibcast
Scatter Personalized one-to-all MPI_Scatter[v], MPI_Iscatter[v]
Gather All-to-one MPI_Gather[v], MPI_Igather[v]
All-gather Non-personalized all-to-all MPI_Allgather[v], MPI_Iallgather[v]
All-to-all Personalized all-to-all MPI_Alltoall[vw], MPI_Ialltoall[vw]
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1.3  Case Study: Direct N‑Body Simulation

To familiarize the reader with the Celerity model and demonstrate the performance 
impact of collective communication later in this paper, we showcase the implemen-
tation of a direct gravitational N-body simulation as defined by

where p are 3-dimensional body positions, v their velocities, m their masses, G the 
gravitational constant and t are time steps of length Δt.

The abbreviated Celerity program in listing 1 represents this system in two virtu-
alized buffers P and V. In a loop, it submits two kernels per time step: time_step 
computes vi,t+1 from vi,t by integrating over the entirety of P for each work item i; 
then update_p updates pi,t+1 in-place from pi,t and vi,t+1.

Each kernel is submitted as part of an asynchronous command group, which ties 
the kernel function to an execution geometry (lines 12 and 21) and any number of 
buffer accessors (lines 10–11 and 19–20).

The execution geometry describes parallelization through a dimensionality (here 
1), an execution range (here N), a work item offset (implicitly 0 here) and a work-
group size (implicit and implementation-defined here).

(1)vi,t+1 ∶= vi,t +
�

j≠i

Gmj(pj − pi)

‖pj − pi‖3
Δt, pi,t+1 ∶= pi,t + vi,t+1Δt,
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Through lambda captures, accessors inject device-buffer pointers into the kernel 
while providing the scheduler with metadata in the form of an access mode (here 
read_only, read_write) and a range mapper (here all and one_to_one).

1.4  Range Mappers

Range mappers are an essential concept of the Celerity model, mapping sub-ranges 
of the execution range to sub-ranges of the buffer in an accessor. This enables the 
discovery of data requirements after arbitrary work assignment.

Given an execution range E, a range mapper r ∶ P(E) → P(E) is any pure func-
tion that forms a homomorphism over the union of execution sub-ranges:

Any range mapper r that is used in a writing access is further required to be non-
overlapping to allow tracking of the unique producer for any buffer item:

Celerity ships a selection of built-in range mapper functions. Relevant to the follow-
ing discussion are one_to_one (the identity function, requires equal kernel and 
buffer dimensions), all (constant, accessing the entire buffer range) and trans-
posed (an isomorphic shuffling of dimensions). Out of these, one_to_one and 
transposed exhibit the non-overlapping property, while all does not.

1.5  Graph‑Based Scheduling

Celerity’s parallel schedule is derived from the flow of command group submissions 
in two steps: The high level task graph, constructed synchronously on all participat-
ing nodes, describes execution on a cluster-wide level. From this task graph, each 
rank generates an individual command graph that models the kernel launches and 
communication steps performed within the node.

Work is assigned to accelerators by splitting the global execution range into near-
equally-sized sub-ranges while observing any constraints imposed by the execution 
geometry. As one Celerity process usually drives all accelerators of a cluster node, 
scheduling will produce multiple execution sub-ranges locally. The graph generation 
process itself does not involve communication.

State-of-the-art Celerity resolves data-flow dependencies between nodes to point-
to-point transfers. In this approach, each node tracks the buffer sub-ranges produced 
by kernels within its address space through a combination of R-trees [3], from which 
inbound communication sub-ranges (await-push commands) and outbound commu-
nication targets (push commands) are derived. Lowered to MPI point-to-point primi-
tives, these commands satisfy any data access pattern that can be described by the 
range-mapper model. We refer the reader to [12] for more details about how Celerity 
implements its graph-based scheduling and dependency tracking.

(2)r(E1 ∪ E2) = r(E1) ∪ r(E2) ∀E1,E2 ⊂ E

(3)E1 ∩ E2 = � ⇒ r(E1) ∩ r(E2) = � ∀E1,E2 ⊂ E
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Figure 1 shows an excerpt of the task and command graphs resulting from Listing 1. 
Here, as Celerity decides to assign the same execution sub-ranges to the same nodes 
across kernels, only the all-read requirement of time_step necessitate communi-
cation. The corresponding command graph contains M − 1 push commands and one 
await-push command on every node out of M.

1.6  Multi‑device Execution and Memory Coherence

Each Celerity process generates and streams its command graph to its executor thread, 
which drives all accelerators addressable by the node. The executor dynamically estab-
lishes memory coherence between host and device memories by tracking buffer writes 
and replications in separate R-trees, issuing memory transfers before passing kernels to 
the SYCL backend.

While this lazy-update approach effectively balances irregular workloads, missing 
context about the higher-level operation each sequence of commands is part of can lead 
to sup-optimal execution patterns at times. This holds especially true for the all-gather 
pattern found in our N-body simulation, for which the executor will issue a coherence 
update for every incoming transfer ( M − 1 for M nodes) instead of coalescing them into 
a single transfer.

Fig. 1  Task graph (left) and command graphs (right) of a point-to-point communication schedule for 
direct N-body simulation from listing 1 on M = 2 nodes. We show tasks up to the second time_step 
kernel submission and hint at the additional push commands (grey) that would be required for a com-
mand graph on M > 2 nodes
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2  Related Work

Uncovering and exploiting opportunities for collective communication in user 
programs has been examined from different angles in recent literature.

These approaches can be broadly categorized into bottom-up schemes discov-
ering collective patterns through centralized analysis of existing point-to-point 
programs, and top-down methods which derive these patterns from high-level 
cluster-wide representations and can frequently be coordination-free.

Knüpfer et  al.  [7] perform post-hoc, bottom-up analysis of application traces 
with MPI point-to-point communication, hinting potential sites for collective 
communication to the application developer help manual refactoring.

Hoefler et al. [4] use compiler transformations to replace point-to-point oper-
ations with library function calls that build a communication DAG at runtime. 
In a centralized bottom-up analysis pass, this approach reliably detects all regu-
lar (i.e. non-MPI_*[vw]) collective patterns. By re-using optimized schedules 
across program iterations, the authors are able to amortize the overhead of their 
optimization.

libWater [2] is an OpenCL-based runtime that dynamically offloads work from 
a designated root node to devices attached to other MPI processes. In a bottom-up 
scheme, it detects gather, scatter and broadcast patterns among the point-to-point 
commands generated as part of data redistribution pass and inserts MPI collective 
operations accordingly.

Denis et  al.  [1] extend the PaRSEC runtime to opportunistically discover 
broadcast patterns bottom-up during task graph build time. To avoid the synchro-
nization penalty from orchestrating a call to MPI_Bcast from otherwise inde-
pendent schedulers, the sending node initiates a binomial-tree broadcast through 
point-to-point messages which are forwarded by intermediate nodes.

In a top-down approach, the cluster backend of SkePU [8] leverages MPI col-
lectives to exchange data between operations where applicable. The rigid skeleton 
model significantly eases the modelling of global data movement and computa-
tional patterns when compared to Celerity, which must allow near-arbitrary non-
overlapping writes based on range mappers.

Collective Pattern Discovery as presented in the remainder of this document 
falls into the top-down category, analyzing data requirements of a parallelized 
task-graph through a distributed and coordination-free algorithm.

3  Collective Pattern Discovery

Collective Pattern Discovery (CPD) is a novel, deterministic, synchronization- 
and coordination-free method for detecting instances of all five collective data 
exchange patterns found in Sect. 1.1. In two phases, CPD transforms both the rep-
licated task graph and the per-node individual command graph to identify data-
flow edges that can profit from eager collective communication.
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By guaranteeing that all nodes generate collective commands in identical order 
regardless of individual work assignment, it satisfies the MPI requirement that all 
ranks in a communicator participate in every collective operation.

3.1  Forward Task Generation

The first step in Collective Pattern Discovery (CPD) locates potential edges in task 
graph, where an eager collective operation may preempt later point-to-point buffer 
updates that would be inserted lazily on command generation.

Although the task graph is oblivious to communication and fully independent of 
the underlying cluster configuration (including the number of participating nodes), 
it must still keep track of collectives to guarantee that all nodes participate in the 
same operations. This also avoids inadvertently exchanging buffer ranges multiple 
times, as the task graph will reveal whether a dataflow dependency terminates at the 
original data producer or whether there are intermediate tasks for which the data has 
potentially been exchanged before.

CPD thus inserts a forward task whenever a read-requirement of task c (the con-
sumer) would introduce the first task-level dependency on the original writer task p 
(the producer) for the accessed region (Algorithm 1).

To maximize the number of forward tasks that result in non-trivial collective 
communication after work assignment, CPD ignores any task edges it deems to be 
communication-free by assuming that tasks which share an execution geometry will 
receive identical work assignment in the scheduler.
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3.2  Eager Collective Command Generation

In the Celerity model, work assignment and thus the number of nodes participat-
ing in a task is a function of the execution geometry and the number of nodes and 
accelerators in the system. This ensures that command graph generation, while 
distributed, agrees on a single global schedule. Our implementation guarantees 
this through fully-static scheduling. Dynamic scheduling methods remain com-
patible with CPD, provided that their schedules are deterministic and reproduc-
ible around forward tasks.

After work assignment, the second step of CPD materializes forwards between 
producer and consumer tasks as collective commands if they match one of the 
patterns found in Table 2. Any non-matching forward task is dropped, and com-
munication will proceed through the generic point-to-point algorithm.

The pattern matching approach is independent of the exact buffer regions each 
node accesses, rather, the collective operation is determined in constant time 
from the number producer and consumer commands and range-mapper metadata. 
The non-overlapping property of producer (writer) range mappers is assumed to 
hold by definition (see Sect. 1.4). Our implementation detects constant and non-
overlapping consumer range mappers as well as transpositions through meta-pro-
gramming on the range-mapper functions.

The common gather, all-gather, scatter and broadcast patterns are identified 
by analyzing read- and write range mappers in separation.

The all-to-all communication pattern is identified through a consumer access 
that forms a non-trivial transposition of the corresponding producer, i.e. one that 
is not communication-free after work assignment: 

1. Producer task p has exactly one write range mapper w; consumer task c exactly 
one read range mapper r participating in the forwarded region F

2. It holds that w(Ep) = r(Ec) = F

3. For any dimension d, all mappings of nodes i to produced buffer ranges wd(Ep,i) 
and rd(Ec,i) are either constant or the identity function

4. There exists d such that wd(Ep,i) is constant while rd(Ec,i) is the identity
5. There exists d such that wd(Ep,i) is the identity while rd(Ec,i) is constant.

Table 2  Discovery patterns for collective operations on M > 1 nodes

Collective Producer
nodes

Consumer
nodes

Producer
range mappers

Consumer
range mappers

Gather M 1 Non-overlapping Any
All-gather M M Non-overlapping Constant
Broadcast 1 M Non-overlapping Constant
Scatter 1 M Non-overlapping Non-overlapping
All-to-all M M —   Non-trivial transposition   —
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Figure  2 visualizes the effects of Collective Pattern Discovery on command-
graph generation for the N-body simulation in listing 1.

Collective Pattern Discovery first analyzes the data flow between the initial 
time_step and update_p tasks. Since producer and consumer both access 
buffer V through the same identity range mapper and the tasks have identical execu-
tion geometry, the edge is considered to be communication-free and no forward task 
is generated.

The read of P{1…N} by the second time_step kernel however applies a dif-
ferent range mapper than the producer update_p. As the buffer has not been read 
by any task since, CPD inserts a forward task on P{1…N}.

After work assignment, the producer–consumer relationship around P connects 
an M-node non-overlapping producer to a M-node constant consumer, matching the 
all-gather pattern of Table 2. Celerity thus inserts an all-gather command on each 
node, which becomes the new writer of P{1…N}.

Since all data requirements of the second time_step are now fulfilled, no addi-
tional push-await pairs are generated during dependency analysis.

3.3  Collective Command Execution

Celerity lowers all collective commands to their non-blocking MPI counterparts 
(e.g. MPI_Iallgatherv). As required by the standard, these operations are initi-
ated in-order, but can overlap for the remainder of their execution time.

Since each process potentially drives multiple accelerators, the runtime compiles 
larger device-to-device collectives from the host-to-host MPI operations by issuing 
local memory transfers before and after the MPI invocation.

Fig. 2  Task graph (left) and command graphs (right) of a direct N-body simulation with Collective Pat-
tern Discovery. The forward task on P materializes as a all-gather operation, replacing the push-await 
cascade seen in Fig. 1
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Knowledge about the cluster-wide collective operation provides optimization 
potential beyond the lazy coherence update mechanism (Sect.  1.6) employed for 
point-to-point transfers: Celerity will issue a parallel device broadcast to update all 
accelerator memories after completing an MPI collective operation with receiver-
broadcast semantics (broadcast and all-gather patterns).

4  Evaluation

To assess the performance characteristics of Collective Pattern Discovery in isola-
tion, we implement a set of synthetic benchmarking applications that require com-
munication between device memories (Table 3).

Where applicable, one-to-all communication is paired with an all-to-one opera-
tion to maintain meaningful dataflow throughout the programs. As control we study 
the overhead of CPD on a stencil-like program with a neighborhood exchange pat-
tern that does not benefit from collective communication.

All benchmarks in this section were run on the Marconi-100 supercomputer in 
Bologna, Italy, rank 26 of the TOP500 list as of June 2023.1 It is a cluster of 980 
IBM Power AC922 nodes with four Nvidia Volta V100 GPUs each, intra-node 
NVLink 2.0, and dual Infiniband EDR system interconnect.

Celerity was built using Clang 12.0.1 and OpenSYCL 0.9.22 with -O3 optimiza-
tion, linking against CUDA 11.7 and IBM Spectrum MPI 10.4.0. All binaries were 
executed with mimalloc 2.0.93 replacing the system allocator.

Table 3  Access patterns of the synthetic benchmarks examined in this section

Executing the steps of each program in a loop generates detectable collective communication patterns 
(except stencil). After each iteration, buffers B and B′ are swapped

Benchmark Step Kernel Reads Writes

All-gather N B ← {1…N} B
′
← identity

Gather-scatter 1 1 B ← {1…N} B ← {1…N}

2 N B ← identity B
′
← identity

Gather-bcast 1 1 B ← {1…N} B ← {1…N}

2 N B ← {1…N} B
′
← identity

All-to-all N×N B ← transpose(0, 1) B
′
← identity

Stencil (control) N×N B ← neighborhood(1, 1) B
′
← identity

1 https:// www. top500. org/ lists/ top500/ list/ 2023/ 06/.
2 https:// github. com/ OpenS YCL/ OpenS YCL/ relea ses/ tag/ v0.9.2.
3 https:// github. com/ micro soft/ mimal loc/ relea ses/ tag/ v2.0.9.

https://www.top500.org/lists/top500/list/2023/06/
https://github.com/OpenSYCL/OpenSYCL/releases/tag/v0.9.2
https://github.com/microsoft/mimalloc/releases/tag/v2.0.9
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4.1  Scheduling Microbenchmarks

Celerity generates task- and command graphs concurrently with kernel execution 
and data transfers. Scheduling latency can thus usually be hidden after startup, but 
applications with very short-running device kernels may become throughput-limited.

By isolating the scheduling process, we can analyze scheduler throughput as a 
function of node count. Each node must compute the work assignment of every 
other node in the system to detect potential non-collective data requirements. The 
number of communication commands tracked however remains constant with CPD 
while increasing linearly with point-to-point communication.

Figure 3 demonstrates that all patterns except gather-scatter greatly profit from 
CPD’s reduction in tracking complexity, with all-gather achieving a more than 3× 
throughput increase for 256 nodes. For small node counts, the constant-time over-
head of forward-task generation yields a visible drop in scheduler performance, both 
for collective and non-collective patterns. As we will show in Sect. 4.2, this reduc-
tion in throughput is negligible for large-scale runs.

4.2  Communication‑Only System Benchmarks

As Celerity is structured around accelerator computation, we benchmark device-
to-device transfer performance specifically by executing the synthetic benchmarks 
from Table 3 with and without CPD while disabling kernel execution.

Figure 4 visualizes the communication throughput achieved as benchmark itera-
tions per second. All collective patterns profit massively from reduced overheads on 
small buffer sizes, and all except gather-scatter can consistently take advantage of 
reduced bandwidth requirements on larger-sized buffers.

For large node counts, we can observe a high variance in the performance of MPI 
collective communication, which is caused by process scheduling differences on 
part of the SLURM workload manager.

The non-collective stencil program shows no difference in communication times 
between enabling or disabling CPD, demonstrating that the increase in scheduler 
latency seen in Fig. 3 can be fully hidden.

4.3  Strong Scaling Experiment: Direct N‑Body Simulation

To evaluate the efficacy of CPD on a full application, we implement and optimize 
the direct N-body simulation from Sect. 1.3 as a Celerity application. Compared to 
the simplified listing  1, we use an array-of-struct (AOS) to struct-of-array (SOA) 
transformation on P and V, increase parallelism in time_step by writing one item 
in V per 32 threads and reduce the required global-memory bandwidth in the same 
kernel by shared-memory tiling the read of V.

We choose a strong-scaling experiment specifically to showcase the effects of 
transitioning from a compute-bound to a communication-bound problem as the 
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node count increases. Figure 5 shows the speedup attained from a varying num-
ber of GPUs participating in the simulation of N = 1,048,576 bodies.

Up to 64 GPUs (16 nodes), both point-to-point and collective communication 
scale equally. Increasing beyond 128 GPUs yields no additional speedup for the 
point-to-point configuration, but does so significantly when Collective Pattern 
Discovery is enabled.

Profiling reveals that scalability in this case is limited primarily by latency of 
small host-to-device copies for every incoming message, which CPD can effec-
tively reduce through the use of a device broadcast (Sect. 3.3).

5  Conclusion

This work introduces Collective Pattern Discovery (CPD), a novel, determinis-
tic, distributed and coordination-free method for reliably identifying opportuni-
ties for collective communication in the parallelized task graphs of the Celerity 
model.

In a two-stage approach, CPD identifies task graph edges suitable for eager 
communication in the form of forward tasks and matches the concrete data 
exchange pattern after work assignment to generate per-node collective com-
mands. This transforms a large class of distributed-memory interactions into 
collective operations while reliably avoiding duplicated communication.

Through synthetic scheduling and communication benchmarks, we demon-
strated how CPD reduces tracking overhead of large runs in the runtime system 
by replacing a linear number of point-to-point communication pairs with sin-
gular collective operations. On large transfers, this transformation allow us to 
profit from decades of research on MPI collective optimization.

Fig. 3  Scheduler throughput for each program listed in Table 3 (higher is better). Reported is median of 
100 benchmarks together with minima and maxima
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Fig. 4  Throughput of communication-only system benchmarks from Table 3 with kernel execution disa-
bled (higher is better).Shown is a mixed bar-box plot containing the median, center quartiles and minima 
/ maxima over 20 runs on varying node configurations. Each measurement is the mean over 20 iterations

Fig. 5  Strong-scaling speedup 
of 20 time steps of the 
direct N-body simulation for 
N = 1,048,576 in double preci-
sion. We report the median, 
center quartiles and minima 
/ maxima over 20 benchmark 
runs allocated to varying node 
configurations by the workload 
manager
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In a strong-scaling experiment, we were able to prove sizable gains in scal-
ability over the point-to-point model, effectively scaling a direct N-body simula-
tion implemented in Celerity to 256 GPUs for the first time.

5.1  Limitations and Future Work

While demonstrably highly efficient in common settings, the graph transformations 
performed by Collective Pattern Discovery (CPD) cannot claim algorithmic opti-
mality in the general case. For example, the eager generation of forward tasks masks 
the original producer task of the forwarded buffer sub-region: if the forward is not 
materialized, or later tasks would benefit from a superset of the generated collective 
(e.g. a logical all-gather access following a simple gather), an opportunity for col-
lective communication will be missed. Future work could be able to improve CPD 
in these situations through a lookahead scheme analyzing longer sequences of tasks 
at once.

5.1.1  Applicability to Other Frameworks

As evident from the technical descriptions in this paper, Collective Pattern Dis-
covery is specialized for the execution model of Celerity. It assumes parallelized 
task graphs that are user-annotated with range mappers to express fine-grained data 
dependencies.

Other systems that wish to implement CPD will need their own method to stati-
cally discover eligible read- and write operations in the distributed program, equiv-
alent to Table  2. This task is easiest for an API that is explicit about data access 
patterns, as has already been demonstrated by the successful incorporation of MPI 
collective operations in skeleton libraries [8].
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