
Vol.:(0123456789)

International Journal of Parallel Programming
https://doi.org/10.1007/s10766-024-00766-z

1 3

Yet Another Lock‑Free Atom Table Design for Scalable
Symbol Management in Prolog

Pedro Moreno1 · Miguel Areias1 · Ricardo Rocha1 · Vítor Santos Costa1

Received: 16 October 2023 / Accepted: 29 February 2024
© The Author(s) 2024

Abstract
Prolog systems rely on an atom table for symbol management, which is usually
implemented as a dynamically resizeable hash table. This is ideal for single threaded
execution, but can become a bottleneck in a multi-threaded scenario. In this work,
we replace the original atom table implementation in the YAP Prolog system with
a lock-free hash-based data structure, named Lock-free Hash Tries (LFHT), in
order to provide efficient and scalable symbol management. Being lock-free, the
new implementation also provides better guarantees, namely, immunity to priority
inversion, to deadlocks and to livelocks. Performance results show that the new
lock-free LFHT implementation has better results in single threaded execution and
much better scalability than the original lock based dynamically resizing hash table.

Keywords  Prolog · Concurrency · Hash tries · Lock-freedom · Performance

This work is financed by National Funds through the Portuguese funding agency, FCT - Fundação
para a Ciência e a Tecnologia, within project LA/P/0063/2020. Pedro Moreno is funded by the FCT
Grant SFRH/BD/143261/2019.

 *	 Pedro Moreno
	 pmoreno@dcc.fc.up.pt

	 Miguel Areias
	 miguel-areias@dcc.fc.up.pt

	 Ricardo Rocha
	 ricroc@dcc.fc.up.pt

	 Vítor Santos Costa
	 vsc@dcc.fc.up.pt

1	 CRACS/INESC TEC and Department of Computer Science, Faculty of Sciences, University
of Porto, Rua do Campo Alegre, 1021/1055, 4169‑007 Porto, Portugal

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-024-00766-z&domain=pdf

	 International Journal of Parallel Programming

1 3

1  Introduction

The initial programming languages were designed to abstract the computer hardware
where, to achieve reasonable performance, a developer would have to learn first
how to express the algorithmic problems in machine-oriented terms. Higher-level
languages were created to allow developers to program algorithmic resolutions
in terms closer to the problem’s conceptualization. It is believed that higher-level
languages are particularly helpful in developing succinct and correct programs
that are easy to write and also easy to understand. Logic programming languages,
together with functional programming languages, form a major class of such
languages, called declarative languages, and because logic programming languages
are based on the predicate calculus, they have a strong mathematical basis.

Prolog is the most popular and powerful logic programming language. Prolog
gained its popularity mostly because of the success of the sophisticated compilation
technique and abstract machine known as the Warren’s Abstract Machine (WAM)
presented by David H.D. Warren in 1983 [24]. Nowadays, it is widely used in
multiple domains, such as, machine learning [16], program analysis [7], natural
language analysis [15], bioinformatics [14] and semantic web [8]. Prolog systems
represent data as terms, that can be number, strings, or atoms, or a composition of
terms. Prolog atoms are particularly important, as they are both used as symbols and
as a convenient representation of strings. In this work, we focus on the Atom Table
used for atom management and we investigate whether the traditional design can
still be a good solution for recent challenges Prolog systems face.

One such challenge is to make better use of multi-core/multi-threaded
architectures, arguably one of the most popular and impactful recent hardware
developments. This type of architectures allows greater performance, but resources
must be properly managed and exploited. Many languages and systems were not
originally designed for multi-processing, which required them to be later extended
to support this type of architectures, and Prolog systems were no exception.

Multi-threading in Prolog is the ability to perform concurrent computations,
in which each thread runs independently but shares the program clauses [13].
Almost all Prolog systems support some sort of multi-threading. In particular, the
multi-threading library in the YAP Prolog system [18] can be seen as a high-level
interface to the POSIX threads library, where each thread runs on a separate data
area but shares access to the global data structures (code area, atom table and
predicate table). As each thread operates its own execution stack, it is natural to
associate each thread with an independent computation that can run in parallel as
threads already include all the machinery to support shared access and updates to
the global data structures and input/output structures.

In this paper, we replace the original atom table implementation in the
YAP system with a lock-free hash-based data structure, named Lock-free Hash
Tries (LFHT), in order to investigate whether an efficient and scalable symbol
management can make a difference in a multi-threaded environment. Performance
results show that the new implementation shows better results both in single
threaded execution and much better scalability than the original atom table.

1 3

International Journal of Parallel Programming	

The remainder of the paper is organized as follows. First, we introduce relevant
background and present the main ideas of our design. Next, we describe in detail the
points required to easily reproduce our implementation. Then, we present a set of
experiments comparing the new atom table against the original one. At the end, we
present conclusions and draw further work directions.

2 � Background

In this section, we describe the context of our work with particular focus on the YAP
system, the concurrent access to the atom table, and the LFHT design.

2.1 � The YAP Prolog System

YAP is a Prolog system originally developed in the mid-eighties and that has been
under almost constant development since then [19].

Figure 1 presents a high-level picture of the YAP system. The system is written in
C and Prolog. Interaction with the system always starts through the top-level Prolog
library. Eventually, the top-level refers to the core C libraries. The main functionality
of the core C libraries includes starting the Prolog engine, calling the Prolog clause
compiler, and maintaining the Prolog internal database. The engine may also call the
just-in-time indexer (JITI) [20]. Both the compiler and the JITI rely on an assembler
to generate code that is stored in the internal database. The C-core libraries further
include the parser and several built-ins (not shown in Fig. 1). An SWI-Prolog com-
patible threads library [25] provides support to thread creation and termination, and
access to locking.

YAP includes two main components, the Engine and the Database. The Engine
maintains the abstract machine internal state, such as abstract registers, stack
pointers, and active exceptions. The Database maintains the root pointers to the
internal database, which includes the Atom Table and the Predicate Table. In order
to support multi-threading, YAP’s data structures are organized as follows:

Fig. 1   The YAP Prolog system

	 International Journal of Parallel Programming

1 3

•	 the GLOBAL structure is available to all threads and references the global data
structures; locks should protect access to these data structures.

•	 the LOCAL structure is a per-thread array referencing the thread’s local data
structures, e.g., the engine abstract registers, internal exceptions, and thread
specific predicates. The data is accessible through the thread’s LOCAL
structure, whose address is available from thread-local storage.

Figure 2 presents in more detail YAP’s internal data structures with particular
emphasis on the atom table. It assumes support for two threads, hence it requires
two LOCAL structures, each containing a copy of the corresponding WAM
registers.

The main structure inside GLOBAL is the Atom Table, which contains objects of
the abstract type Atom. As discussed above, atoms are used to represent symbols
and text. The latter usage stems because the same text can appear in different parts
of a program. Storing text as atoms can save both space and time, once to compare
two segments one just has to compare atoms, e.g., two text segments match if and
only if they are the same atom, that is, if they have the same entry in the atom table.
At the implementation level, the atoms are stored in a linked-list and each node
within that linked-list has a reference to a secondary linked-list, that holds the prop-
erties of the atoms. Predicates with atoms as name are also stored in the atom table.
Predicates are also often present in a Prolog program and there might exist several
predicates with the same name (but with a different arity or belonging to different
modules), and in such situations, there is a direct hash-table for them.

Fig. 2   YAP’s internal data structures

1 3

International Journal of Parallel Programming	

The abstract type Atom has a single concrete type, AtomEntry. Thus, the
atom table is implemented as a single-level bucket array hash table with a separate
chaining mechanism, implemented as linked lists, to support collisions among
AtomEntry objects. Once the bucket array data structure is saturated, the hash
table duplicates its size, and the AtomEntry objects are placed in the newly
created data structure. Each AtomEntry contains

1.	 StrOfAE: a C representation of the atom’s string;
2.	 NextOfAE: a pointer to the next atom in the linked list for this hash entry;
3.	 PropsOfAE: a pointer to a linked list of atom properties;
4.	 ARWLock: a readers-writer lock that serializes access to the atom.

The Prop type abstracts objects that we refer to by the atom’s name. Example
subtypes of Prop include functors, modules, operators, global variables, blackboard
entries, and predicates. All of them are available by looking up an atom and
following the linked list of Prop objects.

Figure 2 shows an atom table with four atoms: hello, +, port, and $live.
Notice that only atoms + and $live have associated properties. The atom + has
two properties, one of type op and another of type functor, and the atom $live
has a property of type predicate. In practice, most atoms do not have properties.
Every concrete type of Prop implements two fields:

1.	 KindOfPE gives the type of property;
2.	 NextOfPE allows organizing properties for the same atom as a linked list.

Each property extends the abstract property in its own way. As an example, functors
add three extra fields: a back pointer to the atom, the functor’s arity, and a list of
predicates that share the same name and arity, but belong to different modules.

This design is based on LISP implementations, and has been remarkably stable
throughout the history of the system. Main optimizations and extensions include:

1.	 Older versions of YAP support two atom tables: one groups all ISO-Latin-1
atoms, where each character code c is such that 0 < c < 255 , and the other stores
atoms that need to be represented as wide strings. Recent versions of YAP use
UTF-8 internally.

2.	 As discussed above, functors have their own Prop objects, namely, predicates
and internal database keys with that functor. This was implemented to improve
performance of meta-calls.

3.	 The case where we have predicates with the same functor but belonging to
different modules is addressed by a predicate hash-table, which allows direct
access to a predicate from a functor-module key. A typical example is the
TildeCRF machine learning algorithm, implemented in YAP by Guttman and
Kersting [10]. TildeCRF uses learning from interpretations, where each example
is a small program containing different combinations of the same concepts, such
that, each example is associated to a module and each concept to a predicate.

	 International Journal of Parallel Programming

1 3

2.2 � Lock‑Free Hash Tries

YAP’s atom table uses single-level hash buckets that triple in size once they are
saturated. Concurrent accesses to the atom table are serialized by the use of readers-
writer locks.

Lock-freedom is an alternative to lock based data structures that allows individual
threads to starve but guarantees system-wide throughput. Lock-free data structures
offer several advantages over their lock-based counterparts, such as, being immune
to deadlocks, lock convoying and priority inversion, and being preemption tolerant,
which ensures similar performance regardless of the thread scheduling policy.
Lock-freedom takes advantage of the Compare-And-Swap (CAS) atomic primitive
that nowadays is widely found on many common architectures. CAS reduces the
granularity of the synchronization when threads access concurrent areas, but still
suffers from contention points where synchronized operations are done on the same
memory locations, leading to problems such as false sharing or cache memory ping
pong effects.

Hash tries [6] minimize these problems by dispersing the concurrent areas
as much as possible. Hash tries (or hash array mapped tries) are a trie-based data
structure with nearly ideal characteristics for the implementation of hash tables.
An essential property of the trie data structure is that common prefixes are stored
only once [9], which in the context of hash tables allows us to efficiently solve the
problems of setting the size of the initial hash table and of dynamically resizing it in
order to deal with hash collisions. Several approaches exist in the literature for the
implementation of lock-free hash tables, such as Shalev and Shavit split-ordered lists
[21], Triplett et al. relativistic hash tables [23] or Prokopec et al. CTries [17].

The Lock-Free Hash Tries (LFHT) design, as originally proposed by Areias and
Rocha [1, 2], is a tree based data structure implementing two types of nodes: hash
nodes, used to represent the hierarchy of hash levels where keys are indexed; and
leaf nodes, used to store the key-value pairs. Figure 3 shows the general architecture
of the LFHT design.

Each key is used to compute a hash h, which is then used to map the corresponding
key-value pair in the LFHT hierarchy. For that, it uses chunks of w bits from h to
index the entry in the appropriate hash level, i.e., for each hash level H

i
 , it uses the

i
th group of w bits of h to index the entry in the appropriate bucket array of H

i
 .

All bucket entries in a hash node are initialized with a reference to the hash node
itself. During execution, each bucket entry stores either a reference to a hash node
(itself or a deeper hash node) or a reference to a separate chaining mechanism of leaf
nodes, that deals with the hash collisions for that entry. Intermediate leaf nodes hold
a reference to the next-on-chain leaf node.

To find the value associated with a given key, it begins by computing the
corresponding hash value. Then, nodes are searched in the LFHT structure by
following the path given by the hash value. If the key exists, it will be found in a leaf
node and the corresponding associated value is returned.

The original LFHT design was implemented in C and proposed in the context of
YAP’s concurrent tabling engine [1]. In a nutshell, tabling is a refinement of Prolog’s
standard resolution that stems from one simple idea: save intermediate answers for

1 3

International Journal of Parallel Programming	

current computations, in a specific data area called the table space, so that they can
be reused when a similar computation appears during the resolution process. This
means that in a traditional tabling environment, only concurrent search and insert
operations are executed. The authors of LFHT took advantage of this fact to create
a table space design that would be as efficient as possible in these two operations.
Since no remove operations were executed concurrently, no emphasis was given to
memory reclamation. All memory used to represent the table space would remain
valid during the execution of a concurrent tabled logic program. Only at the end,
when running in single-threaded mode, could memory resources be released to the
operating system.

As LFHT obtained interesting results, the authors consider the possibility of
extending it to support the remove operation in order to make LFHT available as
a standalone data structure. However, supporting removals implied that the design
would have to support some sort of memory reclamation or garbage collection
mechanism or, alternatively, to be implemented on top of a framework that would
do that by default. The authors decided to exploit the advantages of the Java Virtual
Machine (JVM) and re-implemented the design from scratch in Java, adding the
support for the remove operation [3].

To maintain LFHT’s lock-freedom property, the remove operation was
implemented in three stages. On the first stage, the memory is logically removed,
i.e., the block of memory m being removed is marked with some sort of tag in such
a way that all other threads know that the information in m is no longer valid. On the
second stage, all the memory references to m stored in other structures are deleted,
meaning that, from a given instant of time, threads entering the LFHT data structure
no longer see or reach the memory m. Finally, on the third stage, the memory is
physically released, i.e., the memory m can be reused in other context or freed to
the host operating system. In this three stages scenario, JVM’s garbage collector is
very useful as it already implements the third stage by default, leaving the focus on

Fig. 3   General architecture of the LFHT design

	 International Journal of Parallel Programming

1 3

the implementation of the first and second stages. In 2021, the LFHT design was
dully formalized to prove its correctness, in particular the expand operation that
handles key collisions [4], and more recently, the design evolved as a standalone
Java application with new features and operations, such as, the compress operation
that is able to free unused hash levels [5].

At the same time, and starting from the ideas in the Java implementation with
the remove operation, the LFHT implementation in C was adapted and extended
to support a memory reclamation scheme that could fully support the three stages
described above without losing the lock-freedom property [12], meaning that the
design could finally meet the goal of being used as a standalone data structure and
application. Experimental results showed that such a design is very competitive and
scalable, when compared against the Concurrent Hash-Map implementation used in
the Intel’s Thread Building Blocks (TBB) library. More recently, the LFHT design
was improved even further with a compression based design that would improve
throughput [11].

3 � Our Proposal

This section describes our proposal to improve the performance of YAP’s atom
table in concurrent environments. For that, we replaced the original version of the
atom table, based in single level hashing, by the LFHT design in such a way that,
instead of having a specialized version of a concurrent hash table implementing the
atom table, we can simply use the general purpose LFHT design and allow it to
manage everything, which goes from managing the concurrent accesses, to indexing
the atoms for a faster access and handling atom collisions through a highly efficient
chaining mechanisms. Moreover, to free memory from the atom table, we also take
advantage of LFHT’s memory reclamation mechanism, which will automatically
handle the physical removal of atoms and corresponding internal data structures.

In what follows, we show in more detail how the LFHT data structure was inte-
grated into the YAP system. To make the integration as smooth as possible, we need
to understand all the details regarding YAP’s internal database and how it is acces-
sible from all internal and external libraries and data structures. Figure 4 presents
the new organization of YAP’s internal data structures based in the LFHT design
(for comparison with Fig. 2, we left in gray the parts that were not changed from the
original design). For the sake of presentation, the LFHT hash levels shown at the
left of the figure are presented in a compact way as a single level, representing the
initial configuration, which will be expanded during executing to multiples levels as
described in the previous section.

When comparing the new organization in Fig. 4 with the previous one in Fig. 2,
one can observe two main modifications. The original NextOfAE field was
removed, since the chaining mechanism will be managed by LFHT’s design, and
the readers-writer lock ARWLock, used to serialize the access to the atoms in the
original version of the atom table, was also removed, since now the LFHT design
only uses CAS operations.

1 3

International Journal of Parallel Programming	

Using CAS operations instead of readers-writer locks has some advantages. It
can potentially reduce significantly the number of write operations done in memory
during the execution of a program. At the implementation level, a readers-writer lock
requires writing operations even when threads are only reading information from a
protected memory region. This happens because readers-writer locks need to keep
track of the number of threads that are in a protected memory region and, to do so,
they use standard atomic counters. Moreover, these writing operations also require
memory barriers to ensure the consistency of memory operations. A memory barrier
is a low-level mechanism that ensures an ordering constraint between all memory
operations limiting the optimizations that can be done by both the compilers and the
CPUs.1

Note that LFHT does not completely avoid memory barriers, as the CAS
operation also uses them when executing a write operation. The gain comes from
the fact that the design is lock-free, which means that reading operations do not
require any write operations.

The remaining data structures and references are unchanged. This is the case of
the PropsOfAE pointer to the atom’s properties and the StrOfAE representation
of the atom’s string, therefore allowing the other YAP’s data structures, such as

Fig. 4   The new organization of YAP’s internal data structures

1  Memory barriers prevent, for example, the reordering and merging of memory operations, such as
loads and stores. Note that these memory barriers might have a considerable cost in the performance of a
system, since they may force to implicit hardware synchronizations.

	 International Journal of Parallel Programming

1 3

the Predicate Table, to still access the atoms’ information as they do in the original
design.

In order to fully replace YAP’s atom table with LFHT’s design, some additional
extensions were required to ensure full compatibility with the original design. These
extensions include: (i) support for arbitrary keys and full-hashing collisions; and (ii)
an iteration mechanism capable of traversing all keys stored in the atom table in a
given instant of time. In the following subsections, we discuss how these extensions
were implemented.

3.1 � Arbitrary Keys

By default, the LFHT implementation assumes that the hash function is good
enough to avoid key collisions, meaning that it relies only on the generated hash
value to find a key, thus not considering the case of two keys generating the same
hash value. To also consider this situation, when searching for a key K, we still use
the hash value h to move through the hash levels but, when a node N corresponding
to h is found, we need to confirm that N holds K. And, if this is not the case, we keep
searching for the next node corresponding to h that may hold K.

YAP’s atom table uses strings as keys, and although we could add support for
strings to LFHT’s design, we decided to implement a more general solution inde-
pendently of the type of the key. During LFHT’s initialization, now we must give
the following parameters: (i) a key comparison function; (ii) a hash function; and
(iii) a key destructor function. The key comparison function should implement the
comparison of keys to be used in the hash value searching mechanism. The hash
function allows to simplify the API, since now we only need the key as argument to
the LFHT operations instead of both the key and the hash value. The key destructor
functions allow to free memory used by the key when we remove a node. We also
allow for any of these parameters to be undefined, and in such case we disable the
associated feature. For example, if no hash function is defined, we assume that the
given key is the hash itself, if no key comparison function is passed, we assume that
the user knows that hash values will not collide, and if no key destructor is passed,
we assume that the key will never be deleted during the execution. Figure 5 shows
the new C language high-level API of the LFHT data structure.

3.2 � The Iteration Procedure

During the execution of a program, a Prolog system might be required to iterate over
all atoms present in the atom table. YAP is no exception, thus LFHT data structure
was extended to support this additional operation. In a nutshell, the iterator of LFHT
data structure presents atoms by the natural order that their hash value appears in the
data structure for collision free atoms, otherwise, the LFHT data structure consumes
the atoms by the natural order of their keys.

1 3

International Journal of Parallel Programming	

At the implementation level, the iterator begins by presenting the atom with
the lowest hash value. And then, to present the next atom it uses the previously
presented atom, and the process continues until there are no more atoms to be
presented. If there are atoms with the same hash value, it presents the next smallest
key with the same hash value. Otherwise, returns the smallest key of the next
available smallest hash. By iterating this way, it ensures that iteration is done over all
keys that were present when the iteration began and that were not removed during
the iteration process. Keys that are inserted concurrently during an iteration might
not be presented, this will happen if the iterator is iterating over a hash value which
is higher than the hash value of the key that was inserted.

Algorithm 1 shows how the iteration process is done over the hash nodes, in order
to find the next key. Note that we use the hash value from the most significant bits to
the least significant bits from the first level to the last level, so that we can have the
property that nodes in a bucket B[i] always have smaller hash values than nodes in a
bucket B[k] in the same hash node (for i < k ). To find the first key we pass the Null
key to the Iterator function which lets us start at the bucket entry corresponding to
the hash with value 0. Otherwise, we compute the hash value from the key and start
iterating from the corresponding bucket. We begin in the root hash node and, if in
the corresponding bucket we find a new hash node, we try to recursively find a next
key in such hash node. If the bucket contains leaf nodes we call the IterateChain()
function described in Algorithm 2 in order to find a next key in the chain. In both
situations, if we find such a key we return it, otherwise we continue searching in the
next bucket. If we reach the end of the hash node without finding a key, we return
Null in order to indicate no key was found.

Fig. 5   C language high-level API of the LFHT data structure

	 International Journal of Parallel Programming

1 3

Algorithm 1   Iterate(Key K, Node Hn)

Algorithm 2 shows how we find the next node in a chain. We need to iterate over
the whole chain as the nodes are unordered in the chain. We start by filtering the
nodes that are actually ordered after the key provided, then we start by assigning the
1st node to N and replace it if we find a node that is ordered before it.2

Algorithm 2   IterateChain(Key K, Hash H, Node Ln)

4 � Experimental Results

In order to evaluate the impact of our proposal, we next show experimental results
comparing the original and new versions of YAP’s atom table. To put the results
in perspective, we also compare both YAP’s implementations with SWI-Prolog, a
well-known and popular Prolog system that also implements concurrent support
for the atom table in a lock-free fashion [26]. SWI-Prolog uses a single-level hash

2  Note that, for the sake of simplicity, we are omitting how the iterator proceeds when a concurrent
expansion of hash nodes occurs.

1 3

International Journal of Parallel Programming	

design to implement the atom table with lock-free operations, except for the resizing
of the hash table, which is not lock-free because it uses a standard readers-writer
locking scheme. This happens because while the resize is in progress, the next
pointers linking atoms in the same bucket are generally incorrect, and dealing with
this incorrectness is not a trivial task, which is solved with a standard readers-writer
lock.

The hardware used was a machine with 4 AMD Opteron™ Processor 8425 HE
with 6 cores each, 64 KiB of L1 cache per core, 512 KiB of L2 cache per core
and 5 MiB of usable shared L3 cache per CPU. It had a total of 128 GiB of DDR3
memory. The machine was running the Ubuntu 22.04 operating system with Linux
kernel version 5.15.0-69. The results shown in the following figures were obtained
by taking the mean of 10 benchmark runs.

4.1 � Benchmark

We describe next the benchmark used to evaluate the performance of our imple-
mentation. In a nutshell, the benchmark will generate a huge stress over the Prolog’s
atom table, by inserting an enormous amount of atoms in a multi-threaded fashion.
Although it is an artificial benchmark, it is designed to expose all the potential bot-
tlenecks in the atom table, allowing a deeper study about using the LFHT design in
YAP. Next, we show the pipeline of predicates used in the benchmark.

We begin with Fig. 6 showing the Prolog code for the initial setup of the bench-
mark and the benchmark/2 predicate, which is the top predicate to be called. We
start by compiling an initial set (file seq.pl) of 240, 000 different sequences that
will be used as base sequences to generate a combination of multiple atoms to be
inserted in the atom table. The benchmark/2 predicate is then used to mark the
initial and final times, create and join threads, and to show the execution time. It
receives two arguments, the worker offset WO, used to batch a set of sequences from

Fig. 6   Initial setup and top query call

	 International Journal of Parallel Programming

1 3

the initial set that will be used to create the combination of atoms, and the total
number of threads T to be executed. For this benchmark, we used a batch of 2, 000
sequences of work to be done.

The second stage of the pipeline is the scheduler. Figure 7 shows the code that
implements the naive parallel scheduler used in the benchmark. It uses a dynamic
predicate qsize/1 to mark the number of the next sequence from the initial set
that is available to be used for the generation of atoms and a standard lock named
qlock to synchronize threads when they are getting work. To get work, a thread T
begins by gaining access to the lock, then it reads the next sequence I stored in
qsize/1 and, if there is work to be done, T prepares the queue with the next avail-
able sequence IL, releases the lock and goes to executing work. Otherwise, there
is no more work to be done, thus T keeps qsize/1 in the same state, releases the
lock, and proceeds to the thread join predicate.

The third and final stage of the pipeline implements the process of generating
atoms to be inserted and stored in the atom table. Figure 8 shows both compute/2
and combine_atoms/2 predicates. For each batch of work, a thread uses the
compute/2 predicate to get the corresponding sequences from the initial set, and,
for each sequence, it calls the combine_atoms/2 predicate to generate all possible
combination of atoms from the sequence. Each generated atom is then automatically
inserted by the Prolog system in the atom table.

Fig. 7   The naive parallel scheduler

1 3

International Journal of Parallel Programming	

4.2 � Results

To analyze the behavior caused by having different ratios of searches and inserts in
the benchmark, we experimented it by pre-loading the atom table with a varying
portion of the dataset in order to pre-insert part of the atoms in the atom table and
thus increase the ratio of searches when running the benchmark. We considered
three different scenarios: no pre-insertion of atoms; pre-insertion of 50% of the
atoms; and pre-insertion of all atoms (i.e., only searches are done during benchmark
execution).

Each benchmark run results in a total of 7,680,000 atom table operations,
of which 3,737,741 are inserts in the scenario with no pre-insertion, thus
corresponding to a ratio around 51% searches and 49% insertions in the atom table,
and to a total of 562,723 expansions in the LFHT data structure. In the original YAP
implementation, the atom table grows in size a total of 4 times, tripling in size in
each time it grows, which happens when the program is being loaded and so before
the benchmark begins. The scenario with 50% pre-insertion results in 1,924,444
insert operations, which corresponds to around 75% searches and 25% insertions.
With 100% pre-insertion, all operations are searches.

Figure 9 shows the speedup obtained by YAP with the atom table replaced by the
LFHT data structure against YAP’s original implementation for every combination
of 1 to 24 threads with no pre-insertion. The results show that, on average, we can
achieve a minimum speedup of 1.8 with a single thread and a maximum speedup
around 3.4 with 23 threads. The speedup for 24 threads is slightly worse than for 23
threads because, as the LFHT version has better CPU utilization, it is more affected
by background/operating system processes when all cores are in use.

These results show that we can achieve not only better overall performance, but
also much better scalability. In particular, the readers-writer locks present in the
original atom table can be a significant bottleneck that the LFHT data structure is
able to avoid.

To put the results in perspective, we also compared the YAP results with SWI-
Prolog. Figures 10, 11 and 12 show the throughput in input sequences computed
per second in both the YAP (original and LFHT-based atom tables) and SWI-Prolog
implementations for the three pre-insertion scenarios.

Fig. 8   Generation of the atoms
to be inserted in the atom table

	 International Journal of Parallel Programming

1 3

Figure 10 shows the throughput without any pre-insertion which results in values
from 15658.8 sequences per second with 1 thread to 121872.6 sequences per second
for 24 threads in the original YAP implementation resulting in a speedup of 7.78,
values from 28549.4 sequences per second with 1 thread to 402064.4 sequences per
second for 24 threads in the YAP implementation with LFHT resulting in a speedup

Fig. 9   Speedup of YAP’s LFHT version against YAP’s original implementation (no pre-insertion sce-
nario)

Fig. 10   Throughput for YAP and SWI-Prolog (no pre-insertion scenario)

1 3

International Journal of Parallel Programming	

of 14.08 and values from 19106.2 sequences per second with 1 thread to 16365.9
sequences per second for 24 threads in the SWI-Prolog implementation resulting in
a (negative) speedup of 0.86. Figure 11 shows the throughput with 50% pre-inser-
tion which results in values from 15476.4 sequences per second with 1 thread to
181063.9 sequences per second for 24 threads in the original YAP implementation
resulting in a speedup of 11.70, values from 28187.6 sequences per second with 1

Fig. 11   Throughput for YAP and SWI-Prolog (50% pre-insertion scenario)

Fig. 12   Throughput for YAP and SWI-Prolog (100% pre-insertion scenario)

	 International Journal of Parallel Programming

1 3

thread to 598618.9 sequences per second for 24 threads in the YAP implementa-
tion with LFHT resulting in a speedup of 21.24 and values from 19010.8 sequences
per second with 1 thread to 24247.0 sequences per second for 24 threads in the
SWI-Prolog implementation resulting in a speedup of 1.28. Figure 12 shows the
throughput with 100% pre-insertion which results in values from 14096.4 sequences
per second with 1 thread to 255306.8 sequences per second for 24 threads in the
original YAP implementation resulting in a speedup of 18.11, values from 30363.8
sequences per second with 1 thread to 696013.3 sequences per second for 24 threads
in the YAP implementation with LFHT resulting in a speedup of 22.92 and values
from 19544.7 sequences per second with 1 thread to 39331.4 sequences per second
for 24 threads in the SWI-Prolog implementation resulting in a speedup of 2.01.

As one can observe, the original YAP implementation already provides much
better performance and scalability than SWI-Prolog, and the LFHT-based atom
table is able to provide a considerable improvement on top of it. For example,
with 24 threads, our LFHT-based implementation is able to achieve 24.6 times the
throughput of SWI-Prolog in the no pre-insertion scenario. In the scenarios with
pre-insertion we see better throughput overall as the amount of insert operations
are replaced by the cheaper search operations. The original YAP implementation
sees the most relative benefit due too its use of readers-writer locks, specially in the
100% pre-insertion scenario where it achieves almost linear scalability, but even so
is unable to come close to the lock-free implementations throughput.

5 � Conclusions and Future Work

We have presented an approach to replace the original atom table implementation in
the YAP system with a lock-free hash-based data structure, named LFHT. Our main
motivation was to refine the previous atom table design in order to be as effective
as possible in the concurrent search and insert operations over the atom table. We
discussed the relevant details of the approach and described the main algorithms.
We based our discussion on YAP’s concurrent atom table data structure, but our
approach can be applied to other Prolog systems or to other generic systems that use
similar concurrent atom tables.

A key design decision in our approach was to adapt the LFHT design to work as a
fully standalone C application, allowing the hash function to be defined by the user,
and implementing a new iterate operator. This facilitated the migration from the old
lock-based atom table to the new lock-free atom table, where threads do not block
when accessing the data structure. Experimental results showed that our approach
can effectively reduce the execution time and scale better than the previous design.

As future work, we plan to test our approach on real world Prolog applications
widely-used in the community, such as, the Aleph Machine Learning system [22]
and the ClioPatria Semantic Web system.3

3  http://​cliop​atria.​swi-​prolog.​org.

http://cliopatria.swi-prolog.org

1 3

International Journal of Parallel Programming	

Author Contributions  The authors declare that all contributed equally in the multiple roles of the work.

Funding  Open access funding provided by FCT|FCCN (b-on). This work is financed by National Funds
through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia, within project
LA/P/0063/2020. Pedro Moreno is funded by the FCT Grant with reference SFRH/BD/143261/2019.

Declarations 

Conflict of interest  The authors declare that they have no Conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

	 1.	 Areias, M., Rocha, R.: On the correctness and efficiency of lock-free expandable tries for tabled
logic programs. In: International Symposium on Practical Aspects of Declarative Languages, no.
8324 in LNCS, pp. 168–183. Springer (2014)

	 2.	 Areias, M., Rocha, R.: A lock-free hash trie design for concurrent tabled logic programs. Int. J. Par-
allel Prog. 44(3), 386–406 (2016)

	 3.	 Areias, M., Rocha, R.: Towards a lock-free, fixed size and persistent hash map design. In: M. Valero,
A. Melo (eds.) Proceedings of the International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD 2017), pp. 145–152. IEEE Computer Society, Campinas,
Brazil (2017)

	 4.	 Areias, M., Rocha, R.: On the correctness and efficiency of a novel lock-free hash trie map design. J.
Parallel Distrib. Comput. 150, 184–195 (2021). https://​doi.​org/​10.​1016/j.​jpdc.​2021.​01.​001

	 5.	 Areias, M., Rocha, R.: On the correctness of a lock-free compression-based elastic mechanism for a
hash trie design. Computing (2022). https://​doi.​org/​10.​1007/​s00607-​022-​01085-2

	 6.	 Bagwell, P.: Ideal hash trees. Es Grands Champs 1195 (2001)
	 7.	 Benton, W.C., Fischer, C.N.: Interactive, scalable, declarative program analysis: from prototype to

implementation. In: Leuschel, M., Podelski, A. (eds.) Proceedings of the 9th international ACM
SIGPLAN conference on principles and practice of declarative programming, July 14-16, 2007,
Wroclaw, Poland, pp. 13–24. ACM (2007)

	 8.	 Devitt, S., Roo, J.D., Chen, H.: Desirable features of rule based systems for medical knowledge. In:
W3C workshop on rule languages for interoperability, 27–28 April 2005, Washington, DC, USA.
W3C (2005)

	 9.	 Fredkin, E.: Trie Memory. Commun. ACM 3, 490–499 (1962)
	10.	 Gutmann, B., Kersting, K.: Tildecrf: Conditional random fields for logical sequences. In: Fürnkranz,

J., Scheffer, T., Spiliopoulou, M. (eds.) Machine Learning: ECML 2006, pp. 174–185. Springer,
Berlin Heidelberg (2006)

	11.	 Moreno, P., Areias, M., Rocha, R.: A compression-based design for higher throughput in a lock-
free hash map. In: Malawski, M., Rzadca, K. (eds.) Proceedings of the 26th International European
Conference on Parallel and Distributed Computing (Euro-Par 2020), LNCS, pp. 458–473. Springer
International Publishing, Warsaw, Poland (2020)

	12.	 Moreno, P., Areias, M., Rocha, R.: On the implementation of memory reclamation methods in a
lock-free hash trie design. J. Parallel Distrib. Comput. 155, 1–13 (2021). https://​doi.​org/​10.​1016/j.​
jpdc.​2021.​04.​007

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jpdc.2021.01.001
https://doi.org/10.1007/s00607-022-01085-2
https://doi.org/10.1016/j.jpdc.2021.04.007
https://doi.org/10.1016/j.jpdc.2021.04.007

	 International Journal of Parallel Programming

1 3

	13.	 Moura, P.: ISO/IEC DTR 13211–5:2007 prolog multi-threading predicates (2008). http://​logta​lk.​
org/​plstd/​threa​ds.​pdf

	14.	 Mungall, C.: Experiences using logic programming in bioinformatics. In: Hill, P.M., Warren, D.S.
(eds.) Logic Programming, 25th International Conference, ICLP 2009, Pasadena, CA, USA, July
14-17, 2009. Proceedings, Lecture Notes in Computer Science, vol. 5649, pp. 1–21. Springer, Berlin
(2009)

	15.	 Nugues, P.M.: An Introduction to Language Processing with Perl and Prolog: An Outline of Theo-
ries, Implementation, and Application with Special Consideration of English, French, and German
(Cognitive Technologies). Springer-Verlag, New York Inc (2006)

	16.	 Page, D., Srinivasan, A.: Ilp: a short look back and a longer look forward. J. Mach. Learn. Res. 4,
415–430 (2003)

	17.	 Prokopec, A., Bronson, N.G., Bagwell, P., Odersky, M.: Concurrent tries with efficient non-blocking
snapshots. In: ACM Symposium on Principles and Practice of Parallel Programming, pp. 151–160.
ACM (2012)

	18.	 Santos Costa, V.: On supporting parallelism in a logic programming system. In: Workshop on
Declarative Aspects of Multicore Programming, pp. 77–91 (2008)

	19.	 Santos Costa, V., Rocha, R., Damas, L.: The YAP prolog system. J. Theory Pract. Logic Program.
12(1 & 2), 5–34 (2012)

	20.	 Santos Costa, V., Sagonas, K., Lopes, R.: Demand-driven indexing of prolog clauses. In: Dahl, V.,
Niemelä, I. (eds.) Proceedings of the 23rd International Conference on Logic Programming, Lecture
Notes in Computer Science, vol. 4670, pp. 305–409. Springer, Berlin (2007)

	21.	 Shalev, O., Shavit, N.: Split-ordered lists: lock-free extensible hash tables. J. ACM 53(3), 379–405
(2006)

	22.	 Srinivasan, A.: The aleph manual (2004). http://​www.​cs.​ox.​ac.​uk/​activ​ities/​machl​earn/​Aleph
	23.	 Triplett, J., McKenney, P.E., Walpole, J.: Resizable, scalable, concurrent hash tables via relativistic

programming. In: USENIX Annual Technical Conference, p. 11. USENIX Association (2011)
	24.	 Warren, D.H.D.: An abstract prolog instruction set. Technical Note 309, SRI International (1983)
	25.	 Wielemaker, J.: Native preemptive threads in SWI-prolog. In: International Conference on Logic

Programming, no. 2916 in LNCS, pp. 331–345. Springer (2003)
	26.	 Wielemaker, J., Harris, K.: Lock-free atom garbage collection for multithreaded prolog. Theory

Pract. Logic Program. 16(5–6), 950–965 (2016)

http://logtalk.org/plstd/threads.pdf
http://logtalk.org/plstd/threads.pdf
http://www.cs.ox.ac.uk/activities/machlearn/Aleph

	Yet Another Lock-Free Atom Table Design for Scalable Symbol Management in Prolog
	Abstract
	1 Introduction
	2 Background
	2.1 The YAP Prolog System
	2.2 Lock-Free Hash Tries

	3 Our Proposal
	3.1 Arbitrary Keys
	3.2 The Iteration Procedure

	4 Experimental Results
	4.1 Benchmark
	4.2 Results

	5 Conclusions and Future Work
	References

