
Vol.:(0123456789)

https://doi.org/10.1007/s10766-024-00763-2

1 3

Investigating Methods for ASPmT‑Based Design Space
Exploration in Evolutionary Product Design

Luise Müller1 · Philipp Wanko2 · Christian Haubelt1 · Torsten Schaub2

Received: 30 January 2023 / Accepted: 19 January 2024
© The Author(s) 2024

Abstract
Nowadays, product development is challenged by increasing system complexity and
stringent time-to-market. To handle the demanding market requirements, knowledge
from prior product generations is used to derive new, but partially similar product
versions. The concept of product generation engineering, hence, allows manufac-
turers to release high-quality products within short development times. Therefore,
in this paper, we propose a novel approach to evaluate the similarity of two prod-
uct implementations based on the concept of the Hamming distance. This allows
the usage of similarity information in various heuristics as well as in strategies and
thus, to improve the product design process. In a wide set of cases, we investigate
the quality and similarity of design points. In the experiments, the use of strategies
leads to significantly short searching times, but also tends to be too restrictive in cer-
tain cases. Simultaneously, the quality of the solutions found in the heuristic design
space exploration has been shown to be as good or better than for the search from
scratch and considerably closer solutions as part of the non-dominated solution front
have been found.

Keywords Design space exploration · Evolutionary product design · Strategies ·
Heuristics

 * Luise Müller
 luise.mueller@uni-rostock.de

 Philipp Wanko
 wanko@cs.uni-potsdam.de

 Christian Haubelt
 christian.haubelt@uni-rostock.de

 Torsten Schaub
 torsten@cs.uni-potsdam.de

1 Applied Microelectronics and Computer Engineering, University of Rostock, Rostock, Germany
2 Department of Computer Science, University of Potsdam, Potsdam, Germany

International Journal of Parallel Programming (2024) 52:59–92

/ Published online: 24 February 2024

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-024-00763-2&domain=pdf

1 3

1 Introduction

Nowadays, electronic systems are used in a wide range of applications. Analogous
to the number of application areas, the complexity of such systems, regarding the
number of included components or their heterogeneity, is increasing significantly.
When designing an electronic system, due to that, a vast amount of design options
is available. Given a specification, which defines the functionality of the system,
and the available resources for its execution, there is an enormous number of design
decisions to be made. This includes the allocation of hardware resources, namely the
processing units and the communication infrastructure, the binding of functionali-
ties to the allocated architecture and the scheduling.

On the one hand, a design decision must lead to a valid system implementation,
i.e., it must guarantee the desired functionality. On the other hand, each design deci-
sion affects the quality characteristics of the resulting system, like the energy con-
sumption or the area costs. Obviously, the quality of the implementation shall be
optimized.

Due to demanding market requirements on innovation, product quality and short
product development time, an exhaustive exploration of all possible designs is not
a feasible option. This is why, an efficient design space exploration (DSE) is indis-
pensable. Besides, an electronic system often does not have to be developed from
scratch because domain knowledge can be gained during the development process of
an earlier product version. In reality, new products are generally based on a reference
configuration [1] and numerous variants can form an entire product line. Major parts
of the specification are in common in different versions of the product or are carried
over from one generation to the next one. Like this, only small parts of the system
need to be designed from scratch. Also, the verification and testing tasks are limited
to the new parts and their integration. This form of product design is called product
generation engineering (PGE) and aims at fulfilling the requirements of different
target groups while, simultaneously, reducing the cost of the production [1]. Further,
this product development process can be seen as an evolutionary process. Step by
step, generation by generation, modifications, due to changing market demands or
technological improvements, are made. By adapting to these while adopting good
features, the product can be optimized from generation to generation.

Also, in the automotive sector, the concept of PGE and product lines is com-
monly used. Assume, for example, a car manufacturer. It offers various basic car
models, classified by categories like compact cars, SUVs or vans. For each one fur-
ther choices concerning e.g. the engine type or the supported drive mode are avail-
able. But the amount of possible designs is not limited to these categories, because a
basic product type can be extended by several assistance systems or smart safety fea-
tures. Starting with a cruise control feature, going further to an automatic emergency
brake system and even up to a self-driving car, the number of possible extensions is
increasing over the years. To show it in concrete numbers, for example, the amount
of extra functions offered in the BMW 7 series raised from 14 extras in 1986 to 92 in
2006 [2]. In another example, taking all decision options and extension possibilities
together, there are more than 1023 final design options for a Volkswagen Golf [2].

International Journal of Parallel Programming (2024) 52:59–9260

1 3

With a high number of possible configurations and a vast hardware environment
the design process is a complex and expensive task. It is highly demanded to use
knowledge from prior product generations through the concept of PGE. In addi-
tion, to mitigate the complexity in the exploration process, we consider the system
at a high degree of abstraction, namely the electronic system level (ESL). In reality,
selected design solutions are gradually refined with an increasing level of detail in
the subsequent process.

This work at hand is an extended version of our prior work [3]. Our prior work [3]
has taken up the idea of evolutionary product design and tried out an first approach
to exploit the similarity between two product versions. For different kind and per-
centages of changes, in general, a heuristic-based DSE helped to find good solutions
earlier and was particularly useful applied to large configurations. The results have
shown us that the use of knowledge from prior versions of a product can improve the
product design process. Because of the promising results of the previous presented
approach, this paper adapts the idea of reusing similarity information but we formal-
ize the first intuitive definition of the similarity in [3]. Further, instead of the use
of one specific heuristic in [3], we investigate a wide range of different Answer Set
Programming (ASP) methods. Our contribution is the following:

1. We provide a modular and clear definition of the similarity of two product imple-
mentations based on the concept of the Hamming distance. Using a declarative
encoding based on ASP, this results in a succinct, countable and easily adaptable
formulation.

2. The novel similarity evaluation allows the general applicability in a variety of
heuristics and further, enables the use of similarity information in strategies. By
constraining the search space or by steering the search towards promising solu-
tions, the product design process is improved.

3. In massive experiments, we investigate the potential of ASP methods in the con-
text of evolutionary design. Therefore, a high number of adjustment points is
examined and the results are evaluated concerning their quality and similarity.
The results indicate that strategies, due to short searching times, can be quite
helpful in certain cases, but often tend to be too restrictive. Further, the search is
enhanced by the use of domain-specific heuristics, since non-dominated solutions
of high similarity can be found.

2 Related Work

Grimm [4] sees the handling of the increasing complexity as one of the core
challenges in the development of hardware/software systems. For example in
the automotive industry, with each new product version an increasing amount of
functionalities is implemented as electronic or software modules to fulfill quality
criteria like reliability, availability and safety as well as user friendliness and ease
of use [4]. At the same time, the demand for new innovations in short as possible
time-to-market requires an efficient product development process. Besides the use

International Journal of Parallel Programming (2024) 52:59–92 61

1 3

of domain knowledge, a designer can learn from design decisions from the past.
In previous works, the necessity of knowledge reuse in connection with product
design has been discovered [4, 5] and the question of reusability addressed [6, 7].
But still, there is lack of formal guidelines and methods to assist the integration
of existing modules into newly build systems [4, 5].

Possible approaches to enable design reuse, such as documentation, standard-
ization, parameterization and modularization [5], are carried out to allow pro-
cesses like design exchange, design evolution or component-based design [5, 6].
Additional methods and models for software reuse have been surveyed in [8].

In order to enhance the product development process, the concept of platform-
based design utilizes prior design decisions and implementation details. Instead
of developing each new version of a technical device from scratch, it is seen as
one out of multiple related product variants, all basing on the same system plat-
form [9]. This process enables the organization of the product portfolio into an
entire product line with multiple variants of the system. Inside, all members share
a common base. By applying small modifications, several product derivatives
can be created, varying e.g. in the processing capabilities or in the battery sizes.
According to [9], platform-based design enables the creation of either module-
based or scale-based product families. The concept of product line engineering
can lead to short development cycles and a flexible adaption to the customers
needs.

Additionally, two recent literature reviews on product family design and platform-
based product development can be found in [10, 11].

Further, the previously presented idea can be applied during the development
process over several generations of a product. Albers et al. [1] specify the concept of
product generation engineering as a reuse mechanism which is combined with sig-
nificant new developments during the generation of a new technical product. Within,
the development process of new product generations is always oriented to a refer-
ence product, that specifies the core structure [1]. Design decisions for future gen-
erations are based on the knowledge gained from predecessor versions. That way,
strong aspects can be kept and weaknesses be cleared up.

Several companies in the automotive sector enhance their product development
process by employing the approach of product line management. Concrete use cases
are illustrated at the example of Porsche [1] and Volvo [12]. While the former exam-
ple addresses the concept of PGE on a high abstraction level, the later one is con-
sidering the product as a embedded system, consisting of hardware and software
aspects and is investigating the influence of changes on the technical platform as
well. In [13] the authors evaluate the evolution in software product lines by compar-
ing the example of two Swedish organizations. Therefore, they analyze the develop-
ment of the software assets release by release. In the end, they give guidelines for
the creation as well as for the evolution of software product lines. Further, the author
Lim [14] has shown at two examples from within Hewlett-Packard that effective
reuse can improve the product quality and increase the process productivity. Since,
the costs needed to develop a reusable component are higher than for the develop-
ment of a non-reusable version, the economic return, i.e. the trade-off between costs
and benefits, is an important metric to consider by companies [14].

International Journal of Parallel Programming (2024) 52:59–9262

1 3

In this work, we address the system synthesis problem of a hardware/software
system at the ESL. This problem has been successfully encoded using SAT-based
[15, 16] and ASP-based techniques [17, 18]. In contrast to SAT, ASP is based on a
closed-world assumption which allows an efficient implementation in particular for
densely connected networks and multi-hop communication [17, 18]. For that reason,
we have implemented our approach with ASP. ASP is a declarative programming
language tailored towards NP-hard search problems and it offers a compact and
modular representation, which allows an efficient solving of knowledge-intensive
combinatorial problems.

As ASP does not scale for numerical and non-linear constraints [19], further
approaches to handle timing constraints regarding the scheduling have to be con-
sidered. Thus, Andres et al. [20] and Biewer et al. [21] split the system synthesis
tasks. The binding of computational units on a hardware platform and the routing of
communications is solved by an ASP-solver, whereas the scheduling is decided by
a SMT-solver based on quantifier-free integer difference logic (QF-IDL) [20, 21].
In a next step, Neubauer et al. [18, 19] have integrated QF-IDL into the background
theory of an ASP-solver by using custom theory propagators [22] and thus, could
improve the entire system synthesis.

The underlying encoding of our work is a re-implementation of [18] based on the
state-of-the-art API of the ASP-solver clingo [23].

The DSE is a systematic search for feasible design points. During the solving pro-
cess, the solver clingo employs a conflict-driven clause learning (CDCL) strategy as
well as the heuristic Variable State Independent Decaying Sum (VSIDS) [24] in its
default configuration. Since the underlying heuristic steers the search by means of
the order of decisions to be taken, the performance of a DSE depends heavily on it.
Therefore, it can be of great utility to equip the solver with domain specific knowl-
edge. The solver clingo allows the implementation of user-defined heuristics [25].
Thus, in the paper at hand, we will use domain specific heuristics and constraints to
accelerate the evolutionary product design process by augmenting the search with
knowledge from prior product developments. In prior work [3], we made a first
attempt, which delivered us promising results. Subsequently, in this approach, we
improve the methodology for gaining knowledge to systematically explore various
ASP methods.

A further approach utilizes domain-specific heuristics in ASP to improve the
system synthesis, by exploiting the knowledge gained when analyzing e.g. the task
graph structure [20]. Domain-specific heuristics have also been successfully applied
to two hard industrial problems, namely the Partner Units Problem (PUP) [26] and
the Combined Configuration Problem (CCP) [26, 27].

Another approach, which aims at exploiting domain knowledge in the context of
system-level DSE of multi processor systems, is presented in [28]. The authors pro-
pose two new techniques to improve a GA-based search process, including a map-
ping distance metric. The metric evaluates the distance between a pair of sets of
mappings, in means of the number of reassignments required to turn the one set of
mappings into an equivalent image of the other one [28].

Also, the work of Richthammer et al. [29] focuses on the improvement of the
system-level DSE in the context of multi-objective evolutionary algorithms. Since,

International Journal of Parallel Programming (2024) 52:59–92 63

1 3

nature-inspired optimization approaches so far lack explainability [29], an auto-
mated data-mining technique is proposed to gain knowledge from the DSE results
after each iteration of the evolutionary algorithm. The gained information, includ-
ing the design decisions made and the quality of the respective solution, is used to
incorporate, e.g. constraints into the next iteration of the search process to steer the
search towards promising solutions [29].

When partially reusing systems or combining parts of different product versions,
another important aspect to consider is the integration of an existing system into an
other one. In this context, Neubauer et al. [16] address the composition of subsys-
tems according to the idea of systems-of-systems. The authors introduce hierarchi-
cal mapping edges which represent the mapping options of a sub-application onto
a set of resources. Subsequently, the system synthesis steps are redefined using the
new concept so that the composition of subsystems and, especially, the integration
of schedules is supported [16].

3 Fundamentals

In the following chapter, we formally describe our system model used throughout
this paper. The graph-based problem model is inspired by work of [30] and it is used
as input to the DSE. Subsequently, the underlying exploration problem is explained.
We conclude this chapter with an introduction to two approaches for improving the
exploration process, namely strategies and heuristics.

3.1 System Model

Our approach models a hardware/software system at a high degree of abstraction,
specifically at the ESL. In Fig. 1 an example of the system specification S = (A,H,M)
is shown. It is a triple consisting of an application graph A = (VA,EA) , a hardware
architecture graph H = (VH ,EH) and a set of mapping options M which interconnect
both graphs. The application as well as the hardware architecture are modeled by

Fig. 1 An exemplary specification graph [3]

International Journal of Parallel Programming (2024) 52:59–9264

1 3

directed graphs. The vertex set of the application VA is a bi-partition of two types
(T ∩ C = �), precisely computational tasks T and communication messages C . The
set of communication edges EA ⊆ (T × C) ∪ (C × T) defines the dependencies of
task elements and thereby represents the data flow in the model. A communication
always consists of a sending task, a communication message and a receiving task.
In our system model, each message c ∈ C is sent and received exactly once, i.e.,
∄c ∶ {(c, ti), (c, tj)} ⊂ EA and ∄c ∶ {(ti, c), (tj, c)} ⊂ EA . This establishes a point-to-
point communication between individual tasks used to exchange data packages. All
in all, the elements of the application model the desired behavior of the system.

The architecture is described as a 2-tuple H = (VH ,EH) , consisting of a set of ver-
tices VH = P ∪ R with P ∩ R = � , representing processing units P as well as routing
units R , and a set of edges EH ⊆ VH × VH linking the hardware elements. In Fig. 1
the two types of hardware devices are colored differently to draw attention to their
differing functionality. While processing units are the targets for the execution of
tasks from the application graph, the routing units are used to form a communica-
tion structure to enable the transfer of messages between two processing nodes. The
communication between two processors is performed via intermediate routers as a
multi-hop communication. Per message hop, a routing energy Er and a routing delay
�r is needed. The actual communication channels are established via the edges of
the hardware architecture. Potentially, each device can be linked to any other device.
Therefore, the implementation of various architecture topologies is enabled. In prin-
ciple, even bus-based or mixed hardware architectures can be modeled. In this paper,
our system model is based on networks on chip (NoC) with regular mesh topologies.
Note that the bidirectional edges in Fig. 1 represent two individual links.

Further, each hardware device is parameterized by the functions Pstat ∶ VH → ℕ
and area ∶ VH → ℕ representing static characteristics like power consumption and
area costs.

Finally, a set of mapping options M ⊆ T × P defines the connection between the
application and the architecture graph. For each task, it exists at least one mapping
option m ∈ M = (ti, pj) , representing that the task ti can be potentially executed on
the processing unit pj . The communication messages are not explicitly assigned
to routing units, because they can be routed over the entire communication infra-
structure. Their routing paths are only implicitly constrained by their sending
and receiving tasks. For each mapping option m = (t, p) the function w ∶ M → ℕ
defines the worst case execution time of the task t on the processing element p .
Likewise, Edyn ∶ M → ℕ models the dynamic energy requirement of each mapping
option. Finally, the specification is characterized by a periodicity P that specifies the
time, after which the next iterative execution of the complete application is started.
For simplicity, all properties in our approach are restricted to integer values. The
proposed ASPmT-based [22] approach, however, in principle allows real-valued
properties.

The behavior and properties of the system described in the specification are
translated into a structural description, namely the implementation. For this, a valid
allocation, binding, routing, and schedule have to be determined. The allocation
𝛼 ⊆ VH ∪ EH is a selection of devices and links from the architecture graph H which
are used to realize the desired system behavior. Accordingly, � is separated into the

International Journal of Parallel Programming (2024) 52:59–92 65

1 3

device and link allocation �D and �L . The static binding 𝛽 ⊆ M selects exactly one
mapping option for each task, specifying on which component the task is actually
executed. Similarly, the routing 𝛾 ⊂ C × 2EH chooses for each message a cyclic-free
path in the communication structure, depending on the binding of the sending and
receiving task. This cycle-free path is represented by a subset of allocated links (an
element of the power set 2EH).

In this work, three approaches to decide on the routing path of a message are
considered. The first idea is to define the route between a sending and a receiving
task in a dimensional order (encoding_xyz). Using this restriction, only one routing
path is allowed, but it is guaranteed to be the shortest path. In the second approach
(encoding_bound), also the length of the route is restricted to the smallest number
of hops possible, but in difference, the route is not fixed, so that alternative routes
can be selected. Finally, the encoding_arb allows an acyclic routing path of arbi-
trary length and in arbitrary directions. This increases the complexity in terms of the
number of decision variables. But it offers the possibility to distribute the communi-
cation traffic over the communication network.

The schedule � assigns to each task and each communication message starting
times for the execution on the allocated resources, i.e., � ∶ T ∪ C ↦ ℕ . Note, that
the start times are integer values as our entire model is based on integer parameters.

3.2 Exploration Model

Given a system synthesis problem, i.e., a specification S , the DSE searches for fea-
sible implementations for that system. To reach a feasible solution, each design
decision made needs to fulfill all requirements given by the specification and the
previously defined system model. But in reality, not every feasible implementa-
tion is an useful solution. Due to that, each implementation x has to be evaluated
regarding a set of desired objective functions. The focus in this paper lays on the
overall latency lat(x) of the system, its overall energy consumption E(x) and area
costs area(x) . Regarding these, the DSE is, without loss of generality, formulated as
a multi-objective minimization problem [30]:

The latency of an implementation (including its schedule), is defined as the dif-
ference between the maximum end time (�(t) + w(m)), with the actual binding
(m = (t, p)) ∈ � , and the minimum start time (�(t)) of all tasks:

The energy consumption is the sum of the systems static and dynamic energy
requirements:

minimize f (x) = (lat(x),E(x), area(x)),
subject to:

x is a feasible system implementation.

lat(x) = max
(t,p)∈�

(�(t) + w((t, p))) −min
t∈T

(�(t)).

International Journal of Parallel Programming (2024) 52:59–9266

1 3

Finally, the area costs of the system are calculated as the addition of the area costs of
each allocated hardware device:

For further details on the evaluation steps for the objective functions, please refer to
[18].

Due to the conflicting objectives, the previous formulated multi-objective mini-
mization problem commonly does not have one single optimal solution, but a set
of Pareto-optimal solutions XP . These are identified by the use of the dominance
relation ≻ . It is defined for the n-dimensional quality vectors of two distinct solu-
tions. A solution x dominates another solution y (x ≻ y) , if x is at least as good in
every objective as y and if it outperforms y in at least one objective. Without loss of
generality, for a minimization problem with n objectives, the dominance relation is
formally defined as follows:

Further, a solution x is said to be Pareto-optimal, if there is no solution y which
dominates x . Hence, by definition, Pareto-optimal solutions in the Pareto set XP for a
given problem are mutually non-dominated to each other: ∄x, y ∈ XP ∶ x ≻ y ∨ y ≻ x

.

3.3 Adapted Exploration

Even though the number of Pareto-optimal solutions resulting from a DSE is lim-
ited, the size of the design space remains too large to be exhaustively explored in a
feasible time. Hence, there is a need for efficient search strategies. As shown in [3],
the utilization of domain knowledge offers great potential to improve the explora-
tion. In the following, we present two approaches which allow to take influence on
the solving process, namely strategies and heuristics. In Chapter 5, we will show
how these approaches could be exploited in the context of PGE.

3.3.1 Strategies

To reduce the number of potential solutions, constraining functions, i.e. strategies,
can be defined. They exclude certain design points from the feasible solution space
and thus, reduce the search space. By exploring fewer options, the complete search
time is lowered, which is a strong advantage of strategies. However, strategies can
be too restrictive. That is problematic in the case that actually desired solutions, e.g.

E(x) = P ⋅

∑

d∈�D

Pstat(d) +
∑

m∈�

Edyn(m) +
∑

r∈�

Er ⋅ hops(r).

area(x) =
∑

d∈�D

area(d)

x ≻ y ↔ ∀i ∈ {1,… , n} ∶ fi(x) ≤ fi(y)

∧ ∃j ∈ {1,… , n} ∶ fj(x) < fj(y)

International Journal of Parallel Programming (2024) 52:59–92 67

1 3

optimal solutions, are excluded. So the influence of strategies needs to be thought
out properly before being applied to a specific use case.

3.3.2 Heuristics

Heuristics take a weaker influence on the solving process than strategies. Compared,
these do not exclude any solution from the feasible solution space. Instead, a heu-
ristic steers the search into promising regions of the search space. Similarly, areas,
where poor solutions are expected, are avoided. The idea is that domain knowledge
can be exploited to find good or even optimal solutions in a short time. But because
heuristics, as opposed to strategies, do not exclude solutions, they also do not nec-
essarily reduce the time it takes to perform a complete DSE. This means, that the
optimal solution is still guaranteed to be found, but only if the design space has been
explored exhaustively.

4 Similarity of Design Points

This paper aims at exploiting the potential of evolutionary product design by
applying knowledge from earlier product generations. For our approach, we consider
a fully designed hardware/software system already released on the market as
a reference for the development process of a successor version. In the following,
this is referred to as the parent configuration. As shown in Fig. 2 it consists of a
specification and one corresponding implementation. The previously introduced
specification from Fig. 1 is further used as an exemplary instance for the parent

Fig. 2 Exemplary instances given to the development process of a new product version

International Journal of Parallel Programming (2024) 52:59–9268

1 3

configuration. Together with its corresponding implementation it is shown in the
blue box on the left side in Fig. 2. Parts, which are grayed out, are not used in the
implementation of the parent configuration. The selected mapping options represent
the bindings of the tasks given in the application graph. Since all tasks are bound
to processor p1 , the routing is already indirectly decided and only processor p1 had
to be allocated. Note that the implementation of the parent configuration is not
guaranteed to be an optimal solution, but a very good one concerning its application.

A new version, namely the child configuration, is derived from the parent con-
figuration by modifying the given specification and then exploring for design possi-
bilities according to the newly specified behavior and structure. In Fig. 2 one newly
generated child specification is shown in the blue box on the right side. This speci-
fication serves as an example and shows one out of many possible modifications.
It can be seen, that task t1 and correspondingly communication message c1 as well
as mapping option m1,1 have been removed, whereas the mapping options of the
remaining tasks and the architecture are unchanged. In reality, this could be the case,
for example, when a functionality becomes obsolete in a new product generation or
when the set of functionalities is reduced in order to release a low-budget version of
an existing product. In a next step, the decisions regarding the system synthesis need
to be explored in order to determine an implementation for the child configuration.

To refer back to the concept of PGE, the idea is that both product generations
contain the same core functionality and core architecture and only small changes
to the specification are done. Nevertheless, depending on the kind and extent of the
modification, such change can require a large as well as nearly no adjustment in the
implementation of the final derived product.

For example, when only exchanging hardware components in a new system ver-
sion due to improved technologies, potentially, every design decision, concerning
the allocated hardware components and the task binding, can be kept exactly the
same and only slight changes to the scheduling are necessary. A greater impact on
the system can be expected, when, e.g., an additional feature is added to the product
which necessitates special and so far unused hardware. To enable the new function-
ality, the allocation of an extra processing unit as well as additional interconnections
to ensure the communication ability of the new processor might be required.

In our approach, first of all, the similarity of both specifications is evaluated. For
that, the concept from [3] is used. Regarding every element of a specification, each
equality and difference is identified. With respect to the parent configuration it is
recorded, if a derived specification contains the same (equal) or newly added ele-
ments or if it is missing any, which means that those have been deleted. Exemplified
on the basis of the element type task, the comparison of both specifications in Fig. 2
results in two equal, one missing and zero added tasks in the derived child specifica-
tion. For all further element types in the specification, the evaluation is done accord-
ingly to gain the similarity information among the two specifications.

Secondly, we consider the similarity of the implementations of both systems.
In our prior work [3] we presented a first intuitive similarity analysis. To offer a
complete and formalized definition of the similarity we base our comparison
in this approach on the concept of the Hamming distance. In [31], the authors
define a Hamming distance between assignments, where an assignment is a vector

International Journal of Parallel Programming (2024) 52:59–92 69

1 3

containing all variables to be decided on. Regarding two bit vectors of the same size,
the Hamming distance then counts each entry, in which the two opposing bits are
different.

To be able to apply this idea in the context of evolutionary product design,
we analyze the implementations of both systems. In detail, each design decision,
including the allocation, binding, routing and scheduling, is inspected. Therefore,
the idea is to create a bit vector describing for all possible design decisions if a
decision has been taken (1) or not (0). Taking the task binding as a representative
case, the problem, if a task is equally bound on a specific processing unit can be
translated to the question, if a mapping option, which connects the application
and the architecture graph, is used equally. Thus, the bit vector Mparent ∪Mchild ,
illustrated in Fig. 3, consists of all the mapping options of the parent and of the
child configuration, which includes the common as well as only in one specification
existing elements. Due to this and that the mapping options remain unchanged
during the DSE, the bit vector has a constant size.

The black arrows in Fig. 3 point out which mapping options have been selected
to be bound in each configuration. Thereby, five types of similarity or difference are
defined. On the one hand, a binding decision in the parent configuration which bases
on a mapping option, which exists in both configurations, can either be equally or
unequally decided in the child configuration. These cases are illustrated by either
m1 or m2 and m3 . On the other hand, there are mapping options which only appear
in one of the specifications. For example, mapping option m4 was deleted in the
specification of the child system, even though it is used in a binding decision in
the reference implementation. Therefore, it clearly causes a difference between the
systems. Similarly, a binding based on a newly added mapping option (m5) increases
the Hamming distance. The last case is represented by m6 . This mapping option
is only specified in the child configuration. But, since it is not used in the child

Fig. 3 Bit vector as a basis for the Hamming distance calculation

International Journal of Parallel Programming (2024) 52:59–9270

1 3

implementation, the entry in both vectors is zero and therefore equal. Similarly,
this applies to equally not used mapping options which are available in both
specifications.

Moreover, regarding the Hamming distance definition in Fig. 3, the type of a
changed binding causes two changes to the bit vector. But in reality, this could
also be seen as one change, because only one task is executed on a different pro-
cessing unit. Because of the analogue behavior of both definitions, in the follow-
ing, we only use the metric of the normal Hamming distance, even though our
encoding is based on an adapted version of the Hamming distance.

The theoretical analysis of the design decisions and the definition of a bit vec-
tor for the Hamming distance evaluation ensure that our similarity information
is complete, visible and measurable. In comparison, our prior work [3] does not
consider the case of equally not taken design decisions.

In total, the comparison of the two implementations results in two types of
equality and three types of inequality. In difference to [3], we introduce this cate-
gorization in our encoding. Subsequently, each design decision is assigned either
as equal(TYPE,DECISION) or as unequal(TYPE,DECISION). This
abstraction of the similarity information allows the general applicability in a vari-
ety of ASP methods and an uncomplicated usage even if the underlying definition
of one of the specific types is adjusted.

To receive the Hamming distance, all differences are counted, i.e.,
∀m = (t, p) ∈ (Mparent ∪Mchild) a difference is counted if it is valid that either
(m ∈ �parent ∧ m ∉ �child) or (m ∈ �child ∧ m ∉ �parent).

In Fig. 4 three exemplary implementations are presented. The parent imple-
mentation was previously in Fig. 2 introduced as well as the child specifica-
tion, for which the given child implementations are two out of several possible
solutions. With respect to the parent implementation, the Hamming distance for
the binding decisions is calculated for each of the given implementations. The
resulting entries in the bit vector, consisting of five entries, are shown in Table 1.
Regarding the modification done to derive the child specification, implementa-
tion 1 is the closest possible assignment compared to the previous version. Since
mapping option m1,1 does not exist in the child specification, there is no option
available to reach a Hamming distance of zero. Additionally, in the second child
implementation t2 is executed on a different processing unit. Due to this, one

Fig. 4 Two exemplary child implementations to be compared to the parent implementation

International Journal of Parallel Programming (2024) 52:59–92 71

1 3

mapping option is newly used, while another newly stays unused. Therefore, the
changed binding increases the Hamming distance by two and that shows, that
implementation 2 is less similar to the parent system than implementation 1.

Further, the Hamming similarity can be calculated as follows. Its value ranges
from zero to one, with equals one corresponding to 100% equality.

Accordingly, the Hamming distance and similarity for the synthesis step of the rout-
ing is calculated. The underlying bit vector (Cparent × EH,parent) ∪ (Cchild × EH,child)
results from all combinations of the communication messages C and the linking
edges in the hardware architecture EH in both configurations. Regarding the routing
decisions in Fig. 4, it can be seen that, even though communication message c1 has
been removed from the specification, in child implementation 1 no change to the
routing path is caused, because in both, the parent and the first child implementa-
tion, the communication infrastructure is equally not used. In difference, in the sec-
ond child implementation the establishment of a routing path is needed, because the
communicating tasks t2 and t3 are executed on different processors.

For simplicity, the hardware allocation is not considered in the analysis of the
implementations, but indirectly set by the binding and routing decisions. During the
scheduling, start times are assigned to all tasks and communications. So, theoreti-
cally, a corresponding bit vector needs to consist of all tasks combined with every
possible time slot for execution. In order to simplify it, we adapted the bit vector and
based it on the execution order of the tasks.

5 Use of Similarity Information

The decisions taken in the design process of a product are of high value for the
development process of new product generations and versions. The intention of
the evolutionary product design is to change only minor aspects while the general
functionality and architecture remains and it is expected, that small changes in the

Hamming similarity = 1 −
Hamming distance

∣ Mparent ∪Mchild ∣

Table 1 Hamming distance
calculation for the binding
decisions for the exemplary
instances given in Fig. 4

Parent imple-
mentation

Child implemen-
tation 1

Child
implemen-
tation 2

m1,1 1 0 0
m2,1 1 1 0
m2,2 0 0 1
m3,1 1 1 1
m3,2 0 0 0
Hamming

distance
0 1 3

International Journal of Parallel Programming (2024) 52:59–9272

1 3

specification cause only small adaptions in the implementation as well. This means
that good design solutions of the child configuration are similar to the previous
product implementation, i.e. the implementation of the parent configuration.

In our approach, the DSE can easily be augmented with similarity
information. In contrast to [3] t he modular structure of our novel encoding
allows the applicability not only in one specific problem definition, but also in
connection with various ASP methods. In this paper, we improve the DSE in the
context of evolutionary product design by the use of strategies and heuristics.

In Fig. 5 the proposed approach is presented. First of all, in block C the state-
of-the-art exploration process is shown [18]. Each solution candidate is evalu-
ated according its validity concerning all requirements given in the specifica-
tion and according its quality in context of the objective functions defined in the
exploration model. In addition to that, the DSE is improved by the use of simi-
larity information, as considered in block A. There are two sources of knowl-
edge available. First, the specifications of both configurations are given and can
be analyzed beforehand. Secondly, each solution candidate has implementation
details which can be compared with the design decisions of the parent configu-
ration. During the DSE, whenever a new solution candidate is evaluated, the
similarity of the two implementations is analyzed. Finally, in block B in Fig. 5
the gained similarity information is used in different methods. These and their
influence on the DSE are explained in the following sub Chapters 5.1 and 5.2.
The complete encoding can be found in [32]. For a detailed description of our
ASP encoding, including the system model, the system synthesis problem defi-
nition, the comparison of the specifications and implementations as well as the
definition of objective functions, strategies and heuristics, an interested reader
is referred to [33]. The state-of-the-art approach, shown in block C, serves as a
comparison case for the evaluation of the approaches given in block B.

Further, another differentiation of similarity information has to be noted:
Equality and Inequality. In the following, equal aspects are rewarded, while

Fig. 5 Overview of the proposed approach (A+B) in connection to the state-of-the-art approach (C)

International Journal of Parallel Programming (2024) 52:59–92 73

1 3

unequal decisions are avoided. By strictly separating both concepts in the
encoding, the size of the grounding is reduced.

5.1 Constraining the Search Space—Use in Strategies

Strategies are used to constrain the search space. In this approach, it is desired
to exclude unequal design decisions from the design space. A first strategy, for
example, can state that it cannot happen that any decision made to solve the sys-
tem synthesis problem for the child configuration ever leads to inequality between
the two product versions. Because of the general formulation of the similarity
information a strategy can be applied to all synthesis steps and all types of ine-
quality at once: unequal(_,_). This strategy is quite efficient and removes a
lot of unwanted implementations from the solution space. But there are configu-
rations where the use of it is too restrictive. Consider the case that one processor
which is used in the parent configuration is deleted in the structure description of
a successor version. In that case it is forbidden to bound a task which was bound
to the specific processing unit to any other. There is no way to find a satisfying
solution to the system synthesis problem. It is the expected but not the desired
behavior.

So we need to adapt our first strategy with extra information which we can
obtain from the comparison of the two specifications. To refer to the previous
example, the strategy can be modified in such a way, that it now only bans the
case that a task which exists in both configurations is not bound equally even
though the original execution target is given in both specifications.

In order to find valid solutions regarding the routing, it needs to be examined
not only if the previously allocated routers are existing in the child specification,
but also if the sending and the receiving task are bound equally. This includes
that the respective processors are still existing in the predecessor system. Only in
that case, an identical routing path can be forced. Otherwise, the starting location
or destination will inevitably be different. Therefore, our first strategy must be
adapted with this information.

When creating an adapted strategy considering the scheduling decisions, in
this approach, we only force an equal execution order of pairs of tasks in the case
that the respective tasks are contained in both configurations.

In the presented adapted strategies, it is not allowed to make unequal decisions
if possible. Similarly, the equality information can be handled. It is stated, that
it cannot happen that any decision is made not equally, i.e. every decision lead-
ing to a child implementation has to be made exactely the same like it has been
done in order to receive the parent implementation. Likewise, the adaptions for
the steps of the binding, routing and scheduling are encoded.

International Journal of Parallel Programming (2024) 52:59–9274

1 3

5.2 Directing the Search—Use in Heuristics

In this sub chapter, we present another method to use similarity information in a
less restrictive way. The usage of domain-specific heuristics allows to steer the
search towards promising regions of the search space where favorable solutions
are expected without excluding any design options.

For example, the first strategy presented in the previous Chapter 5.1, was too
restrictive. But the stated formulation can be left unchanged (without any adap-
tions) in the utilization with heuristics. In that case, design decisions leading to
similarities between the systems are treated preferentially or their truth value is
set to true. Respectively, decisions leading to differences between the two imple-
mentations are initially avoided or their truth value can be directly set to false.
But if a certain preferred decision leads to unsatisfiability, it still can be discarded
and decided differently in the course of the DSE.

The solver clingo, which we utilized in this approach, allows an user to modify its
internal heuristic by enabling domain-specific heuristics [25]. Due to our improved for-
mulation, the similarity information can easily be used in domain-specific heuristics,
so that the DSE is easy to augment with prior knowledge. Again, no differentiation of
the system synthesis steps and of the specific inequality type is required, whereas in our
prior work [3] every inequality case per each synthesis step is taken up inside at least
one own heuristic. When considering the not equally decisions made, we still need to
consider each synthesis step in our new approach, but the implementation is independ-
ent from the specific equality types.

The encoding of a heuristic directive is described in detail in [25]. In the following,
we will only give a brief introduction to two elements, namely the heuristic modifier
and the modifier’s value, which can be seen as a key value pair [value, modifier].

By their usage, on the one hand, the decisions to be taken during the DSE can be
biased. For example, the key value pair [2, factor] causes that the score of a certain
decision is doubled, so that this decision becomes more and more important in the
course of the DSE. A stricter modification, on the other hand, could be to control
the truth value of a certain decision variable. In order to find a solution close to the
implementation of the parent configuration, a specific decision can be intended or
not. Consequently, when the solver is about to make a specific decision, the cor-
responding truth value is set to true ([1, sign]) or to false ([-1, sign]), depending
on the information gained from the similarity evaluation. Further, a decision can be
made preferentially over all others by using the key value pair ([1, level]).

The previous presented modifiers can be combined as [1, true] = [1,sign] +
[1,level] and [1, false] = [-1,sign] + [1,level] which indicates that the decision is
not only preferred, but also set to true or false, respectively to the outcome of the
similarity evaluation.

In this paper, similarity information will be used in domain-specific heuristics and
the influence of different heuristic modifiers on the search process is investigated.

International Journal of Parallel Programming (2024) 52:59–92 75

1 3

6 Experiments

This project is implemented as ASP and Python code. For the evaluation of the
experiments we further used Python, C++ and Bash scripts. The tool clingo is
used in version 5.5 [34], the extension clingo-dl in version 1.3 [35] and it is at least
Python version 3.9 required. For setting time stamps during the project execution the
tool runlim in version 2.0.0rc3 is used.1 The subsequently introduced experiments
run on two hardware platforms. Parts of the experiments are tested on a platform
basing on a Intel Core Xeon E3-1260Lv5 CPU and 32 GiB RAM (considered as
machine 1), while others are executed on a platform containing a Intel Core Xeon
E5-2650v4 CPU and 64GiB RAM (considered as machine 2). The surrounding
environment in each case is Linux Debian 10.

6.1 Experimental Setup

As a setup, our benchmark set consists of 35 parent instances which are generated
by an ASP-based benchmark generator [36]. Each of those has the same underlying
hardware platform, namely a 3 × 3 × 1 grid structure, consisting of nine routers bidi-
rectionally connected to each other and additionally each to one processor and back.
This hardware platform represents a heterogeneous multi-processor system. Addi-
tionally, middle-sized and large-sized instances have one or respectively two more
layers in z-direction, resulting in a 3 × 3 × 2 or a 3 × 3 × 3 grid structure. The appli-
cations of the instances consist of one up to four application graphs, which are gen-
erated as “series parallel graphs” (SPG). In total, the complexity of the instances dif-
fers in the range of 6 to 160 tasks. The use of synthetically generated test instances
allows sufficient scalability, requiring only a few setup parameters. And we see a lot
of applications in the field of streaming applications and digital signal processing.

We consider the parent configuration to be a released product on the market.
To assume an implementation with good, but not necessarily optimal characteris-
tics as a basis for the experiments, three DSEs (each one using a different routing
encoding) for each specification are executed for 12 h on machine 1. Randomly, one
design point is picked from the best solutions of all three runs and considered as the
implementation of the parent configuration.

From each parent specification, one modified child specification is generated. The
modification is composed of a randomly decided combination of different changes
including the deletion, addition or exchange of components and is applied to 20% of
the task elements and thereby also to the corresponding communication messages as
well as to 20% of the processing units. In case of deletion of a processor, the com-
munication structure remains unchanged. An added processing device is intercon-
nected with the communication structure via a new router.

In our prior work, we analyzed the influence of different percentages and kind
of modifications in the DSE utilizing one specific domain-specific heuristic [3].
In contrast, the aim of this work is to investigate the influence of different ASP

1 The tool runlim is available at https:// github. com/ armin biere/ runlim.

International Journal of Parallel Programming (2024) 52:59–9276

https://github.com/arminbiere/runlim

1 3

methods on the search process. In Table 2, in the upper part, a strategy and five
heuristics each for the use of equality and inequality information are given. Note
that in our approach, the heuristic modifier factor is always used in combination
with the modifier sign to increase the importance of the desired design decisions.
Further adjustment points are the different synthesis steps, including the binding
(B), the routing (R) and the scheduling (S), and the routing encodings, which are
introduced in Chapter 3.1. These points are summarized in the lower part of Table 2.
For comparison, we also run one DSE from scratch for each routing encoding.

In the present categories, the experiments from [3] are to be classified as dimen-
sional ordered routing (xyz), using exactly one heuristic which weights each of the
synthesis steps (B & R & S) differently utilizing the heuristic modifier true.

In total, we examine (3 ∗ 12 + 1) ∗ 3 = 111 cases and conduce
111 ∗ 35 = 3885 DSE runs on machine 2, each for up to 900 s. Instead of exhaus-
tively exploring all design solutions in order to find the one optimal design, we aim
at improving the search process to the able to find good solutions early. We simulate
this by a relatively short time-out. It also allows us to test a wide range of methods
applied to instances of differing complexity.

The quality of the resulting implementations are evaluated concerning their �
-dominance [37]. Therefore, for each instance a reference front is generated, which
consists of the best solutions found up to the timeout during the 111 DSEs applying
all cases. This reference front is considered as the optimal solution front for a certain
instance. Further, all resulting child implementations are compared to the respective
parent solution and evaluated concerning their Hamming similarity as previously
defined in Chapter 4. In detail, every intermediate solution is assigned a time stamp
during the DSE and evaluated with respect to both metrics. In this context, in each
time step, we especially consider the design points which are not dominated and
therefore, are forming the best solution front found so far. Moreover, we look at the

Table 2 Overview of the applied methods and the adjustment points

Case Inequality information Equality information

Strategies s3 s4
Heuristics h1-factor-2 h2-factor-2

h1-factor-4 h2-factor-4
h1-factor-8 h2-factor-8
h1-sign h2-sign
h1-true h2-false

Adjustment point Value

Routing encoding xyz
bound
arb

Synthesis step B
B & R
B & R & S

International Journal of Parallel Programming (2024) 52:59–92 77

1 3

states of the DSE runs after the timeout and the times to find a first solution or all
feasible solutions.

6.2 Experimental Results

To get an overview of the results from the test cases, we summarize the status infor-
mation as well as the quality metrics regarding the applied methods and the com-
plexity of the instances.

Firstly in Table 3, the DSE runs are classified according to their outcome, i.e.
whether the system synthesis problem was satisfiable (I and II) or unsatisfiable
(V), the latter being the worst case. In case of satisfiability, we further examine the
times it took to find a first solution and if it was possible to exhaustively explore the
solution space in the given time (if yes I, else II). The event of a timeout can occur
at any stage, even in the grounding phase (IV) or during the solving process without
having found any solutions yet (III). The cases III and IV cause that the result of
the system synthesis problem is unknown. In Table 3 the percentage of DSE runs
resulting in each category regarding each routing encoding are presented. The
categories I to V are each depicted with an own color and are more desirable, the
smaller the number of the category. An interested reader is referred to the extended
Table 7 in the appendix which contains the actual percentage numbers.

All cases, which combined knowledge from previous scheduling decisions with
strategies turned out to be unsatifiable. Although we have used adapted strategies,
the decisions on the scheduling are still too small-stepped. The start time of the
execution of each element depends on every other scheduling decision, so that they
can not be forced without being too restrictive. Moreover, a differently decided task
order will have the least influence on modifications in the development process of a
successor product of all synthesis steps, i.e. it is the least important synthesis step
in our experiments. Due to the given reasons, we exclude cases regarding the use of
previous scheduling decisions from the further course of the evaluation as well as
from Table 3 and focus on the strategies and heuristics applying the knowledge of
previous binding decisions (B) or binding and routing decisions (B & R).

In Table 3 the increasing complexity of different routing encodings can be seen.
Due to the lower number of design solutions in the dimensional order routing, more
DSEs have been finished before the timeout (I) or are at least satisfiable (II) than for
the routing which considers a bounded number of hops.

The reduced complexity is also seen in the lower values in category IV, because
a timeout during the grounding phase indicates a high overhead of that test case,
either caused by the complexity of the routing method or introduced by the applied
similarity evaluation and usage. These trends are the same for the comparison of the
results for encoding_arb and for encoding_bound.

A similar relation exists for the increasing complexity of the instances and the
categorization of the test cases. The bigger an instance is, the less methods are able
to explore the search space completely or even find any solution at all.

A detailed evaluation of the results for the use of strategies and heuristics is given
in the following sub chapters.

International Journal of Parallel Programming (2024) 52:59–9278

1 3

Table 3 Distribution of the DSE states after timeout

The data was taken from mdfiles/statusSummarized.md and mdfiles/statusV2Summarized.md from the
experimental results within [32]
Satisfiable, no timeout (I):
Satisfiable, timeout (II):
Timeout during solving (III):
Timeout during grounding (IV):
Unsatisfiable (V):

International Journal of Parallel Programming (2024) 52:59–92 79

1 3

6.2.1 Strategies

The cases in Table 3 applying strategies mainly result in category I, II or V, i.e. the
use of strategies during the DSE works out pretty good or very bad. First of all, a big
difference in the performance of strategies can be noticed, when applying them only
to the binding decisions or to both, the binding and routing decisions. In the context
of the routing, there are many more decisions to be made than for the binding. It can
be seen that the more decisions we try to force, the more restricted the system is.
This applies even more clearly to the previous excluded approach of applying the
strategies to all synthesis decisions at once, including the scheduling. Later on, we
will analyze further reasons for unsatisfiability.

The partly good values in category I in Table 3 indicate that some of the strate-
gies are able to execute the complete DSE for more instances than the other cases.
In general, the benchmark set contains six instances, which are small enough that
they can be completely explored by several adapted DSEs. Those contain 6 up to
21 tasks. Besides the smallest instance, which is exhaustively explored in all cases
considered in the evaluation (in total 75), 21 to 46 cases are able to do the same for
the other five small instances. In comparison, the best strategy is able to completely
solve the synthesis problem for 10 out of 35 instances before the timeout. These
actually do not contain two of the small instances, but instead some middle sized
instances with up to 73 tasks.

This is possible, because the use of strategies excludes many design options from
the feasible solution space. Therefore, the amount of possible solutions is decreased
massively. Further, the percentages in category III and IV in Table 3 underpin this.
Small numbers in this category mean that the search process has been simplified in
means of the number of valid decision variables assignments. Dealing with a lower
problem overhead, the proof of satisfiability or unsatisfiability can be provided more
quickly, i.e., before the timeout.

The reduction of the amount of feasible solutions is further noticeable when com-
paring the search times.2 When looking at all 35 instances for the cases, which have
found a first solution the earliest, the two strategies forbidding unequal (s3) and not
equal (s4) binding decisions are 15× and 13× under the best three cases. That means,
that these strategies win nearly up to half of the amount of all instances in this cat-
egory. Besides, it can be noted that only cases using the encoding_xyz are within the
best three cases for all instances.

The picture becomes even clearer, when analyzing the complete search time. The
two strategies named before, which forbid unequal (s3) and not equal (s4) binding
decisions, not only solve the synthesis problem completely for most of the instances,
but they also solve all of these instances as the fastest. Further, five out of twelve
strategies are at least once within the best three cases for the complete solving time,
evaluated for each instance.

2 The data was taken from mdfiles/topSummarized.md (Table “First solution time” and Table “Complete
search time”) from the experimental results within [32].

International Journal of Parallel Programming (2024) 52:59–9280

1 3

The very good searching times cannot hide the big amount of failed DSEs given
in Table 3. Even though, we used already adapted strategies, these still seem to be
too restrictive.

In Table 4 the number of satisfiable (I and II) and unsatisfiable (V) cases for both
types of strategies, distinguished by which kind of similarity information is used, is
compared. Furthermore, the table is subdivided according to the routing encodings.

The actual percentages numbers can be found in the extended Table 8 in the
appendix.

It clearly can be seen, that the DSEs adapted with strategy s4 in all cases behave
worse than adapted with strategy s3. For example, when applying s3 one forth to
one half of the DSE runs are unsatisfiable while for the use of s4 up to three forth of
the explorations are unsuccessful.

When considering two different systems, it can be assumed, that they differ in a
few design decisions. But, at the same time, they have a lot more aspects in com-
mon, especially, because every decision which does equally not exist in both sys-
tems is registered as a similarity. Since the strategy s4 considers the equality infor-
mation, it takes influence on many more design decisions than the strategy s3 and
thus, can cause more restrictions. As we have previously seen in Table 3, the more
constrained the DSE is by restrictive strategies, the more unsatisfiability cases are
caused.

Further, when comparing the results for the different routing encodings, there is
a small increase of the percentage in category V, the more restrictive the routing
encoding gets. This can additionally be explained when considering that the par-
ent implementation was randomly chosen. That way, e.g., the parent implementation
can contain routing paths which are reachable by the use of the encoding_arb, but
not for the encoding_bound and even less for the encoding_xyz. Then, these rout-
ing paths cannot be forced to exist in the child implementation without any rule
violation. Another reason for unsatisfiability can be that, when creating the child
instances, we did only modify the task graph and the hardware architecture, but not
the period. Therefore, there is no guarantee, that additions to the task graph or modi-
fications on the hardware platform do not increase the execution time of the appli-
cation. This way, the execution time of the new application may exceed specified
allowed period.

Table 4 Comparison of both types of strategies

International Journal of Parallel Programming (2024) 52:59–92 81

1 3

6.2.2 Heuristics

In this chapter, we analyze the search states after timeout as well as the worthiness
of the discovered solutions during the heuristic DSEs.

The goal is to steer the search towards areas of the design space potentially con-
taining solutions with optimal properties. These properties have been defined in our
exploration model in Chapter 3.2 and are considered in a multi-objective optimi-
zation. Each DSE results in a front of Pareto-optimal design points. Considering,
all DSE runs (applying each case) a reference front, containing all non-dominated
design points, per instance is identified. The quality of each single solution front is
evaluated utilizing the �-dominance [37] which is a metric evaluating the conver-
gence between a solution front and a non-dominated reference front, where the bet-
ter the convergence, the better the quality.

As a second metric, we will evaluate the Hamming similarity of the found solu-
tions with regard to the parent configuration (as presented in Chapter 5). Knowing
an implementation of good quality, we expect a similar implementation of a derived
product version to be of good quality too.

Evaluation of DSE states
For the evaluation of the heuristics, we also analyze the results shown in Table 3.

The first, most obvious aspect is, that there are no heuristic DSEs which are unsat-
isfiable. These results conform our expectations that heuristics take influence on the
search strategy of the solver without excluding any feasible solution of the given
system synthesis problem.

Neglecting rounding deviations, the values in category IV for the heuristic DSE
and the DSE from scratch are the same. This means, that the introduction of atoms
containing similarity information, did not add a noticeable size offset to the ground-
ing of the problem instance. As a drawback, category IV indicates that the chosen
instances are too large to be handled up to the short time-out. Depending on the
routing encoding this applies to five instances with four applications containing 107
up to 160 tasks. Interestingly, all instances with a lower number of applications, con-
taining up to 125 tasks, could be handled.

When considering the remaining categories, it can be seen that the heuristic
DSE behave in average as good (in I) or better (in II) than the DSE from scratch.
But when applying different heuristics, the results differ considerably. For exam-
ple, between heuristics emphasizing equal binding decisions and those pushing
equal binding and routing decisions, there is a difference nearly up to seven percent.
Though there is no clear favorite, it is noticeable that influencing the routing deci-
sions shows a better effect on the DSE outcomes in combination with the arbitrary
routing encoding because a routing path can arbitrarily, but according to the prior-
itization of the applied heuristic, be chosen. In the following, we will take a closer
look at the heuristics being beneficial or detrimental to the synthesis problem of a
hardware/software system.3

3 The data was taken from mdfiles/statusSummarizedV2.md from the experimental results within [32].

International Journal of Parallel Programming (2024) 52:59–9282

1 3

First of all, for the comparison in Table 5 we pick two sample heuristics for each,
the best and the worst outcome of the DSE. Since, in both cases each a specific
heuristic modifier was used, we also give the averaged status information for all four
cases which applied the respective modifier. The values are contrasted for the three
routing encodings and compared with the DSE from scratch and the behavior of all
heuristics in average.

It can be seen a remarkable difference, especially, in the context of the arbitrary
routing, i.e. when the search is the least restricted and the heuristic is allowed to
show its full strength. Simultaneously, with the increased complexity the heuristics
have their greatest impact on the search because the short timeout does not offer suf-
ficient exploration time. Consequently, the outcome depends on the solutions found
first. Comparing the amount of cases solved by the DSE from scratch to the specific
heuristic DSEs a deviation from −20% up to +31.43% can be seen. It shows clearly,
that when applying different heuristics the solver is steered towards varying regions
in the design space and favors different solutions.

Evaluation of the resulting single design points
First of all, the best three DSE runs in the categories First solution, Complete

search time, �-dominance and Hamming similarity per instance are identified and
the occurrences of the single cases are counted over the whole set of 35 instances.4
Considering the categories that take into account the times, there is no clear dif-
ference between the heuristic DSE and the DSE from scratch nor in between the
different heuristics. Besides the applied strategies (see Chapter 6.2.1), there are no
clear winners. In contrast, the results, when searching for the maximum Hamming
similarity of all design points,5 are clearly dominated by the heuristic DSEs and con-
strained DSEs. 12 out 12 strategies appear at least once in the list. That is reasona-
ble, because they only allow very similar solutions. 49 out of 60 heuristic DSE reach

Table 5 Comparison of the best and worst performing heuristic DSEs4

arb bound xyz

I (%) II (%) I (%) II (%) I (%) II (%)

Best case true / false 2.86 49.29 9.29 76.43 17.14 79.29
br-h1-true 2.86 60.00 8.57 77.14 17.14 80.00
br-h2-false 2.86 71.43 5.71 80.00 17.14 77.14

Worst case h1/h2 sign 2.86 35.00 10.71 62.86 17.14 76.43
b-h1-sign 2.86 31.43 11.43 65.71 17.14 71.43
br-h2-sign 2.86 20.00 8.57 57.14 17.14 80.00

All heuristics 2.86 43.71 10.14 68.57 17.14 78.71
From scratch 2.86 40.00 11.43 65.71 17.14 77.14

4 The data was taken from mdfiles/top.md and mdfiles/topSummarized.md from the experimental results
within [32]
5 Regarding the Table “Hamming total” in the same file.

International Journal of Parallel Programming (2024) 52:59–92 83

1 3

at least once a top ranking, whereas a few clear winners are the cases br-h1-true and
br-h2-false for all routing encodings as well as br-h1-factor-2, br-h1-factor-4 and br-
h1-factor-8 in combination with the hop-bound routing encoding. In comparison, on
single DSE run from scratch reached a good ranking in this category.

Note, that in the total similarity value considering all design decisions, the bind-
ing decisions are overlaid by routing decisions, because of the remarkable size dif-
ference of the respective bit vector. For example, on a platform structured as a 3 ×
3× 1 grid one task can potentially be bound on nine processors, whereas for one com-
munication the combination with 21 connecting hardware links has to be checked.
Respectively, the disproportion between both values is increasing, the more tasks
and communications are considered. Also, a larger platform strengthens the influ-
ence. Especially, because of the big amount of equally not used bit vector entries,
the Hamming similarity for the routing decisions tends to have higher values than
the one for the binding decisions.

When regarding the Hamming similarity separately for the binding and the rout-
ing decisions, small differences can be noticed. Considering the Hamming similarity
only for the binding decisions,6 some further heuristics, which only take influence
on the binding options, additionally reach the top three rankings. Again, the same
modifier true/false (in the cases b-h1-true and b-h2-false) performs exceptionally
well. Also, a few more, but significant many DSE runs from scratch appear in the
list.

In real-world problems we usually face large and complex instances, whose
design options can not be exhaustively explored in a reasonable time. Thus, the idea
of the heuristic DSE is to steer the search into promising regions of the search space
to find good quality solutions early. Therefore, another important aspect to investi-
gate is the similarity and quality of the first solution found.7

Here, we will evaluate the top three cases for the Hamming similarity to the
first solution. When counting the top three occurrences over the set of instances,
we receive values distributed over 26 heuristics, 8 strategies and no DSE runs from
scratch. According to the results is prior knowledge beneficial to find solutions early
that are closer to the implementation of the parent configuration. The evaluation of
the �-dominance of the first solution again delivers a quite distributed picture. 45 (of
60) heuristics, 5 (of 12) strategies, 2 (of 3) DSE from scratch listed, with each not
more than 7 occurrences out of 35 instances don’t provide a clear winner.

Simultaneously to the top three evaluation, the three worst performing DSE runs for
each instance in different categories are investigated.8 A similar picture is emerging as
for the top three evaluation. In both categories, the Hamming similarity of the first solu-
tion and the Hamming similarity over all solutions the negative winners are the DSE

6 Regarding the Table “Hamming binding” from mdfiles/top.md and mdfiles/topSummarized.md from
the experimental results within [32]
7 Regarding the tables “Hamming total, only first solution” and “Epsilon dominance, only first solution”
from mdfiles/topSummarized.md within [32]
8 Regarding the tables ”Hamming total”, ”Hamming total, only first solution”, ”Epsilon dominance” and
”Epsilon dominance, only first solution” taken from mdfiles/flop.md and mdfiles/flopSummarized.md
(Table) within [32]

International Journal of Parallel Programming (2024) 52:59–9284

1 3

runs executed without prior knowledge. This applies to all routing encodings, with each
having at least 10× (out of 35 instances) the lowest Hamming similarity in the first solu-
tion, especially, the dimensional order routing has low similarity values (counted 14× out
of 35 instances). Further, the heuristic modifier sign is appearing several times in this
context. Especially, the case b-h2-sign in combination with the dimensional order rout-
ing is counted at least 10× in both categories as well.

Considering the �-dominance, again, no clear negative winner is identifiable.
Only, the arbitrary routing is slightly more often present in the ranking due to the
increased complexity of the search space.

Evaluation of resulting Pareto optimal solution front
So far, we have only looked at single design points. We have seen, that the heuris-

tic DSE find solutions similar to the parent implementation in total and also early. In
the following, we consider the �-dominance and the similarity of the non-dominated
solution front per DSE to investigate whether there is a relation between good and
similar solutions. For the evaluation of the Hamming similarity we take all design
points which are part of the best front and determine the maximum and average
Hamming similarity regarding those.

All DSE runs (each DSE corresponds to one case) are ranked in the categories
Maximum Hamming similarity for all design points, Maximum Hamming similarity
for the best solution front, Average Hamming similarity for the best solution front
and �-dominance according to their outcome. If one DSE didn’t find any results it
is punished with the worst rank for this instance. Further, in these categories, for
each case, the average rank over the set of instances and the corresponding standard
deviation is evaluated.9 The new results are ordered again, according to their average
ranks. An excerpt of the results is presented in Table 6.

In Table 6, in the upper part, the values for the maximum Hamming similarity
regarding all design points are given, while in the lower part the average Hamming
similarity for the non-dominated solution fronts is considered. For selected cases,
the average rank and the respective standard deviation along with the respective
position P in the whole ranking is presented. Further, the table is subdivided into
several groups, beginning with the best five cases and ending with the DSE with the
worst result. Since, the first group is completely dominated by the hop-bound encod-
ing, in the second group we name the best cases for each further routing encoding.
The hop-bound routing encoding seems to offer a good compromise between com-
plexity and restrictiveness.

For comparison, the second last group presents the results of the DSEs from
scratch. It is noticeable that the cases which don’t utilize any prior knowledge have
quite high average rank values. Especially in the table on the bottom side, each
of the cases of DSE from scratch is among the 15-worst performing cases. Since,
the DSE from scratch selects solutions in means of the similarity of two systems

9 The following data was taken from mdfiles/ranks.md and mdfiles/ranksAveragedOrdered.md (Table
“Hamming total”, Table “Maximum Hamming total”, Table “Average Hamming total” and Table
”Epsilon dominance”) from the experimental results within [32]

International Journal of Parallel Programming (2024) 52:59–92 85

1 3

randomly, the standard deviation is higher in these cases. Also, the results for the
poorly performing heuristic DSE deviate more.

It has to be noted, that the standard deviation given in Table 6, in general, has high val-
ues, i.e., the cases perform different when applied to varying instances. Further, we track
and plot the Hamming similarity and the �-dominance over time for each solution in each
DSE. But due to varying behavior, it is not possible to select exemplary cases represent-
ing all heuristic modifiers and strategies. An analysis of the combination of each ASP
method with the several adjusting points and each instance, is beyond the scope of this
paper. However, an interested reader can find those results within [32].

When considering the DSE from scratch in the context of the respective stand-
ard deviation, the average ranks, especially in the category of the average Hamming
similarity for the solution front, are still far from a good positioning.

The previous consideration of the non-dominated solution front per DSE run is
particularly important, because it contains the information that high-quality solu-
tions are of good similarity as well, i.e., the utilization of partially equal imple-
mentation details can lead to high-quality solutions. For example, in 14 out of 35
instances the design point with the highest similarity to the parent implementation,
is part of the best solution front.

As deeper analysis, we want to evaluate the average ranking for each case over all
instances in the category of the �-dominance. On the first view, the heuristic DSE
and DSE from scratch perform equally. Only the xyz-encoding is significantly better
than the other routing encodings for all the cases. But when connecting the informa-
tion on the average �-dominance with the content from Table 6, we receive a more
clear picture. For this purpose, in Table 6 we take a look at the third group of cases,
which have top ten up to average positioning. The selected cases present the best five
DSE runs according to their average ranking in the category of the �-dominance. In
brackets behind the case name, the respective position is given. It can be seen, that
in most of the cases these are among the best fifty percent of the cases, and have bet-
ter positions than the DSE from scratch. Further, we notice that in all categories one
heuristic modifier is dominating the best positions, namely true/false.

The detailed examination of the experimental results has shown, that the utiliza-
tion of heuristics does not only steer the search towards solutions close to the design
of the parent system, but also does find high-quality solutions which are more simi-
lar to a previous product implementation than the solutions found in the DSE from
scratch. Given a set of non-dominated solutions, a product designer can choose a
design point according to the company’s preferences and quality demands. Since,
both, the DSE with and without use of prior knowledge, can discover solutions of
good quality in a reasonable amount of time, the utilization of both approaches is
equally valid. But in comparison, the solution’s similarity to a prior product version
is an advantage, because it allows the reuse of common implementation details and
therefore, to save time in the product development process and to create a less error-
prone system.

International Journal of Parallel Programming (2024) 52:59–9286

1 3

Table 6 An excerpt from the averaged rankings in the categories “Maximum Hamming similarity for
design points” (upper part) and “Average Hamming similarity for solution fronts” (lower part)

P Ranking + Deviation Case

1 4.80 6.63 bound-br-h1-true
2 7.94 10.04 bound-br-h1-factor-8
3 8.26 9.84 bound-br-h1-factor-4
4 8.49 7.29 bound-b-h2-false
5 9.23 7.70 bound-b-h1-true

8 12.77 9.61 xyz-b-h1-true
14 15.14 11.58 arb-br-h2-false

8 12.77 9.61 xyz-b-h1-true (2)
9 13.09 9.36 xyz-b-h2-false (4)
12 13.63 9.56 xyz-br-h1-true (5)
29 18.86 11.61 xyz-br-h2-false (1)
41 23.80 12.96 xyz-br-h2-factor8 (3)

45 25.37 16.90 bound
56 34.26 14.80 xyz
64 36.63 16.55 arb

75 42.11 16.03 arb-b-h2-sign

P Ranking + Deviation Case

1 8.60 9.03 bound-br-h1-true
2 13.06 13.01 bound-br-h1-factor-8
3 13.29 12.26 bound-br-h1-factor-4
4 14.83 10.17 bound-br-h2-false
5 15.06 12.64 bound-br-h1-factor-2

8 17.63 14.00 arb-br-h2-false
15 21.98 18.25 xyz-b-s3

16 22.20 15.10 xyz-br-h1-true (5)
18 22.57 13.37 xyz-b-h2-false (4)
20 23.06 15.01 xyz-b-h1-true (2)
36 30.11 16.83 xyz-br-h2-false (1)
43 34.17 16.00 xyz-br-h2-factor8 (3)

62 42.06 17.98 xyz
65 42.89 16.64 bound
72 48.94 17.98 arb

75 48.97 19.26 xyz-br-s4

International Journal of Parallel Programming (2024) 52:59–92 87

1 3

7 Conclusion

In this paper, a systematic approach to enhance the product design process in
the context of product generation engineering is presented. Taking up the idea
of the Hamming distance, we propose a novel similarity metric on basis of the
specification and implementation details of a parent configuration and a derived
child configuration. The gained knowledge is generally usable in different ASP
methods, like strategies in order to constrain the search space as well as heuristics to
steer the search into regions of the design space potentially containing high-quality
design solutions of the next product generation.

In order to ensure a meaningful evaluation, the proposed similarity metric was
utilized in an extensive number of ASP methods and their impact investigated by
varying the underlying routing encoding and considering different synthesis steps.

In the experiments, it could be seen that the usage of strategies can massively
reduce the number of feasible design points. Thus, the search space can be exhaus-
tively explored in a significantly short time. However, in many cases the search
space is too restricted, i.e. any feasible solution is excluded. Therefore, we investi-
gated another less restrictive methodology how to augment the DSE with knowledge
gained from prior product versions, namely domain-specific heuristics.

The results of the heuristic DSE runs were as good or better than the DSEs from
scratch. But in difference, heuristics can steer the search towards solutions which
are closer to the parent system than randomly chosen solutions. Only providing
short searching times, this is especially important when exploring complex problem
instances, since the first solutions found already deliver the desired outcome. As a
drawback, results have shown that the performance of different heuristic can mas-
sively vary. Thus, we can conclude that the use of knowledge on prior product deci-
sions can enhance the system-level DSE, but the selection of the appropriate ASP
methods depends on the use case and has to be made wisely.

Future work needs to investigate the combination of the presented methods. Depend-
ing on the type of modification in the specification of a product, the use of heuristics or
strategies should be preferred. For example, the usage of strategies can be valuable in case
of the exchange of a specific component with a better performing element, because there
as few as possible changes are demanded. Whereas, heuristics may be utilized when prod-
uct elements have been deleted or newly added. Further, the proposed similarity metric
might be improved by taking into account the range of the influence of a change. It can be
investigated which modification causes local or global changes.

Appendix A: Extended Data

See Tables 7 and 8.

International Journal of Parallel Programming (2024) 52:59–9288

1 3

Table 7 Distribution of the DSE states after timeout

Cases Encoding_arb

I (%) II (%) III (%) IV (%) V (%)

All 3.20 39.43 37.37 13.14 6.86
Strategies All 5.00 18.57 26.43 7.14 42.86

B 2.86 32.86 44.29 7.14 12.86
B & R 7.14 4.29 8.57 7.14 72.86

Heuristics All 2.86 43.71 39.29 14.29 0.00
B 2.86 40.29 42.57 14.29 0.00
B & R 2.86 47.14 36.00 14.29 0.00

From scratch 2.86 40.00 42.86 14,20 0.00

Cases Encoding_bound

I (%) II (%) III (%) IV (%) V (%)

All 10.4 61.14 8.46 10.63 9.37
Strategies All 11.43 22.86 0.71 6.43 58.57

B 14.29 40.00 0.00 7.14 38.57
B & R 8.57 5.71 1.43 5.71 78.57

Heuristics All 10.14 68.57 9.86 11.43 0.00
B 11.43 70.00 7.14 11.43 0.00
B & R 8.86 67.14 12.57 11.43 0.00

From scratch 11.43 65.71 11.43 11.43 0.00

Cases Encoding_xyz

I (%) II (%) III (%) IV (%) V (%)

All 16.8 69.49 1.14 2.63 9.94
Strategies All 15.00 21.43 0.00 1.43 62.12

B 27.14 32.86 0.00 1.43 38.57
B & R 2.86 10.00 0.00 1.43 85.71

Heuristics All 17.14 78.71 1.29 2.86 0.00
B 17.14 78.29 1.71 2.86 0.00
B & R 17.14 79.14 0.86 2.86 0.00

From scratch 17.14 77.14 2.86 2.86 0.00

Table 8 Comparison of both
types of strategies

Cases s3 s4

I (%) II (%) V (%) I (%) II (%) V (%)

Encoding_arb 7.14 21.43 25.71 2.86 15.71 60.00
Encoding_bound 14.29 28.57 42.86 8.57 17.14 74.29
Encoding_xyz 14.29 32.86 50.00 15.71 10.00 74.29

International Journal of Parallel Programming (2024) 52:59–92 89

1 3

Acknowledgements This work was funded by the German Science Foundation (DFG) under grants
HA 4463/4-2 and SCHA 550/11-1.

Author Contributions L.M. and P.W. have developed ideas for this approach. All authors have discussed
the ideas. L.M. has written the complete manuscript and prepared all pictures as well as all tables. All
authors have reviewed it.

Funding Open Access funding enabled and organized by Projekt DEAL.

Declarations

 Conflict of interest The authors have no relevant financial or non-financial interests to disclose. All of the
material, except for Fig. 1 is owned by the authors and no permissions are required. For Fig. 1 there is a
reuse agreement with Springer Nature (license number 5480211390158).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

 1. Albers, A., Bursac, N., Wintergerst, E.: Product generation development-importance and challenges
from a design research perspective, 16–21 (2015)

 2. Dannenberg, J., Burgard, J., Oliver, W..C.: 2015 Car Innovation: A Comprehensive Study on
Innovation in the Automotive Industry. Oliver Wyman Automotive, s.l. (2007). https:// books.
google. de/ books? id= jtcGk AEACA AJ Accessed 20 Nov 2022

 3. Müller, L., Neubauer, K., Haubelt, C.: Exploiting similarity in evolutionary product design
for improved design space exploration. In: Orailoglu, A., Jung, M., Reichenbach, M. (eds.),
Embedded Computer Systems: Architectures, Modeling, and Simulation vol. 13227, pp. 33–49.
Springer, Cham (2022). https:// doi. org/ 10. 1007/ 978-3- 031- 04580-6_3. Series Title: Lecture
Notes in Computer Science

 4. Grimm, K.: Software technology in an automotive company—major challenges. In: Proceedings
of the 25th International Conference on Software Engineering, 2003, pp. 498–503. IEEE,
Portland, OR, USA (2003). https:// doi. org/ 10. 1109/ ICSE. 2003. 12012 28

 5. Duffy, S.M., Duffy, A.H.B., MacCallum, K.J.: A design reuse model. In: Proceedings of the
International Conference on Engineering Design (ICED 95), pp. 490–495 (1995)

 6. Girczyc, E., Carlson, S.: Increasing design quality and engineering productivity through design
reuse. In: Proceedings of the 30th International on Design Automation Conference—DAC ’93,
pp. 48–53. ACM Press, Dallas, Texas, United States (1993). https:// doi. org/ 10. 1145/ 157485.
164565

 7. Nazareth, D.L., Rothenberger, M.A.: Assessing the cost-effectiveness of software reuse: a model
for planned reuse. J. Syst. Softw. 73(2), 245–255 (2004). https:// doi. org/ 10. 1016/ S0164- 1212(03)
00248-6

 8. Frakes, W., Terry, C.: Software reuse: metrics and models. ACM Comput. Surv. 28(2), 415–435
(1996). https:// doi. org/ 10. 1145/ 234528. 234531

 9. Simpson, T.W.: Product platform design and customization: status and promise. Artif. Intell.
Eng. Des. Anal. Manuf. 18(1), 3–20 (2004). https:// doi. org/ 10. 1017/ S0890 06040 40400 28

International Journal of Parallel Programming (2024) 52:59–9290

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://books.google.de/books?id=jtcGkAEACAAJ
https://books.google.de/books?id=jtcGkAEACAAJ
https://doi.org/10.1007/978-3-031-04580-6_3
https://doi.org/10.1109/ICSE.2003.1201228
https://doi.org/10.1145/157485.164565
https://doi.org/10.1145/157485.164565
https://doi.org/10.1016/S0164-1212(03)00248-6
https://doi.org/10.1016/S0164-1212(03)00248-6
https://doi.org/10.1145/234528.234531
https://doi.org/10.1017/S0890060404040028

1 3

 10. Ochoa, L., González-Rojas, O., Juliana, A.P., Castro, H., Saake, G.: A systematic literature
review on the semi-automatic configuration of extended product lines. J. Syst. Softw. 144, 511–
532 (2018). https:// doi. org/ 10. 1016/j. jss. 2018. 07. 054

 11. Pirmoradi, Z., Wang, G.G., Simpson, T.W.: A review of recent literature in product family design
and platform-based product development. In: Simpson, T.W., Jiao, J., Siddique, Z., Hölttä-Otto,
K. (eds.) Advances in product family and product platform design, pp. 1–46. Springer, New
York, NY (2014). https:// doi. org/ 10. 1007/ 978-1- 4614- 7937-6_1

 12. Axelsson, J.: Evolutionary architecting of embedded automotive product lines: an industrial case
study. In: 2009 Joint Working IEEE/IFIP Conference on Software Architecture and European
Conference on Software Architecture, pp. 101–110. IEEE, Cambridge, United Kingdom (2009).
https:// doi. org/ 10. 1109/ WICSA. 2009. 52907 96

 13. Svahnberg, M., Bosch, J.: Evolution in software product lines: two cases. J. Softw. Maint. Res.
Pract. 11(6), 391–422 (1999). https:// doi. org/ 10. 1002/ (SICI) 1096- 908X(199911/ 12) 11: 6< 391::
AID- SMR19 9>3. 0. CO;2-8

 14. Lim, W.C.: Effects of reuse on quality, productivity, and economics. IEEE Softw. 11(5), 23–30
(1994). https:// doi. org/ 10. 1109/ 52. 311048

 15. Haubelt, C., Feldmann, R.: SAT-based techniques in system synthesis. In: 2003 Design,
Automation and Test in Europe Conference and Exhibition, pp. 1168–1169. IEEE Comput. Soc,
Munich, Germany (2003). https:// doi. org/ 10. 1109/ DATE. 2003. 12537 84

 16. Neubauer, K., Haubelt, C., Glab, M.: Supporting composition in symbolic system synthesis. In:
2016 International Conference on Embedded Computer Systems: Architectures, Modeling and
Simulation (SAMOS), pp. 132–139. IEEE, Agios Konstantinos, Samos Island, Greece (2016).
https:// doi. org/ 10. 1109/ SAMOS. 2016. 78183 40

 17. Andres, B., Gebser, M., Schaub, T., Haubelt, C., Reimann, F., Glaß, M.: Symbolic system
synthesis using answer set programming. In: Cabalar, P., Son, T.C. (eds.) Logic Programming
and Nonmonotonic Reasoning, pp. 79–91. Springer, Berlin (2013)

 18. Neubauer, K., Wanko, P., Schaub, T., Haubelt, C.: Exact multi-objective design space exploration
using ASPmT. In: 2018 Design, Automation and Test in Europe Conference and Exhibition
(DATE), pp. 257–260. IEEE, Dresden (2018). https:// doi. org/ 10. 23919/ DATE. 2018. 83420 14

 19. Neubauer, K., Wanko, P., Schaub, T., Haubelt, C.: Enhancing symbolic system synthesis
through ASPmT with partial assignment evaluation. In: Design, Automation and Test in Europe
Conference and Exhibition (DATE), 2017, pp. 306–309. IEEE, Lausanne, Switzerland (2017).
https:// doi. org/ 10. 23919/ DATE. 2017. 79270 05

 20. Andres, B., Biewer, A., Romero, J., Haubelt, C., Schaub, T.: Improving coordinated SMT-based
system synthesis by utilizing domain-specific heuristics. In: LPNMR. Lecture notes in computer
science, vol. 9345, pp. 55–68. Springer, s.l. (2015). https:// doi. org/ 10. 1007/ 978-3- 319- 23264-5_6

 21. Biewer, A., Andres, B., Gladigau, J., Schaub, T., Haubelt, C.: A Symbolic system synthesis approach
for hard real-time systems based on coordinated SMT-solving. In: Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2015, pp. 357–362. IEEE Conference Publications,
Grenoble, France (2015). https:// doi. org/ 10. 7873/ DATE. 2015. 0606

 22. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.: Theory Solving
Made Easy with Clingo 5, 15 (2016). https:// doi. org/ 10. 4230/ OASICS. ICLP. 2016.2. Artwork Size:
15 pages Medium: application/pdf Publisher: Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
GmbH, Wadern/Saarbruecken, Germany

 23. Kaminski, R., Romero, J., Schaub, T., Wanko, P.: How to build your own ASP-based system?!
Theory Pract. Log. Program. (2021). https:// doi. org/ 10. 1017/ S1471 06842 10005 08

 24. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient
SAT solver. In: Proceedings of the 38th conference on design automation—DAC ’01, pp. 530–535.
ACM Press, Las Vegas, Nevada, United States (2001). https:// doi. org/ 10. 1145/ 378239. 379017

 25. Gebser, M., Kaufmann, B., Romero, J., Otero, R., Schaub, T., Wanko, P.: Domain-specific heuristics
in answer set programming. Proc. AAAI Conf. Artif. Intell. 27(1), 350–356 (2013). https:// doi. org/
10. 1609/ aaai. v27i1. 8585

 26. Dodaro, C., Gasteiger, P., Leone, N., Musitsch, B., Ricca, F., Shchekotykhin, K.: Combining
Answer Set Programming and domain heuristics for solving hard industrial problems (Application
Paper). Theory Pract. Log. Program. 16(5–6), 653–669 (2016). https:// doi. org/ 10. 1017/ S1471 06841
60002 84

 27. Gebser, M., Ryabokon, A., Schenner, G.: Combining Heuristics for Configuration Problems Using
Answer Set Programming. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.), Logic Programming

International Journal of Parallel Programming (2024) 52:59–92 91

https://doi.org/10.1016/j.jss.2018.07.054
https://doi.org/10.1007/978-1-4614-7937-6_1
https://doi.org/10.1109/WICSA.2009.5290796
https://doi.org/10.1002/(SICI)1096-908X(199911/12)11:6<391::AID-SMR199>3.0.CO;2-8
https://doi.org/10.1002/(SICI)1096-908X(199911/12)11:6<391::AID-SMR199>3.0.CO;2-8
https://doi.org/10.1109/52.311048
https://doi.org/10.1109/DATE.2003.1253784
https://doi.org/10.1109/SAMOS.2016.7818340
https://doi.org/10.23919/DATE.2018.8342014
https://doi.org/10.23919/DATE.2017.7927005
https://doi.org/10.1007/978-3-319-23264-5_6
https://doi.org/10.7873/DATE.2015.0606
https://doi.org/10.4230/OASICS.ICLP.2016.2
https://doi.org/10.1017/S1471068421000508
https://doi.org/10.1145/378239.379017
https://doi.org/10.1609/aaai.v27i1.8585
https://doi.org/10.1609/aaai.v27i1.8585
https://doi.org/10.1017/S1471068416000284
https://doi.org/10.1017/S1471068416000284

1 3

and Nonmonotonic Reasoning vol. 9345, pp. 384–397. Springer, Cham (2015). https:// doi. org/ 10.
1007/ 978-3- 319- 23264-5_ 32. Series Title: Lecture Notes in Computer Science

 28. Thompson, M., Pimentel, A.D.: Exploiting domain knowledge in system-level MPSoC design space
exploration. J. Syst. Archit. 59(7), 351–360 (2013). https:// doi. org/ 10. 1016/j. sysarc. 2013. 05. 023

 29. Richthammer, V., Scheinert, T., Glaß, M.: Data Mining in System-Level Design Space Exploration
of Embedded Systems. In: Orailoglu, A., Jung, M., Reichenbach, M. (eds.), Embedded Computer
Systems: Architectures, Modeling, and Simulation vol. 12471, pp. 52–66. Springer, Cham (2020).
https:// doi. org/ 10. 1007/ 978-3- 030- 60939-9_4. Series Title: Lecture Notes in Computer Science

 30. Blickle, T., Teich, J., Thiele, L.: System-level synthesis using evolutionary algorithms. Des. Autom.
Embed. Syst. 3(1), 23–58 (1998). https:// doi. org/ 10. 1023/A: 10088 99229 802

 31. Crescenzi, P., Rossi, G.: On the Hamming distance of constraint satisfaction problems. Theor.
Comput. Sci. 288(1), 85–100 (2002). https:// doi. org/ 10. 1016/ S0304- 3975(01) 00146-3

 32. Müller, L., Wanko, P., Neubauer, K.: Version 1.0.0—Publication on IJPP Special Issue Samos.
https:// github. com/ krr- up/ asp- dse/ relea ses/ tag/ v1.0.0 Accessed 29 Jan 2023

 33. Haubelt, C., Müller, L., Neubauer, K., Schaub, T., Wanko, P.: Evolutionary system design with
answer set programming. Algorithms (2023). https:// doi. org/ 10. 3390/ a1604 0179

 34. Potassco: Clingo homepage. https:// potas sco. org/ clingo/. Accessed 20 Nov 2022
 35. Potassco: Clingo-dl Homepage. https:// potas sco. org/ labs/ cling odl/ Accessed 2022-12-01
 36. Neubauer, K., Haubelt, C., Wanko, P., Schaub, T.: Systematic test case instance generation for

the assessment of system-level design space exploration approaches. In: Workshop Methoden
und Beschreibungssprachen zur Modellierung und Verifikation Von Schaltungen Und Systemen,
Tübingen, p. 10 (2018). https:// doi. org/ 10. 15496/ publi kation- 25685

 37. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment
of multiobjective optimizers: an analysis and review. IEEE Trans. Evolut. Comput. 7(2), 117–132
(2003). https:// doi. org/ 10. 1109/ TEVC. 2003. 810758

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

International Journal of Parallel Programming (2024) 52:59–9292

https://doi.org/10.1007/978-3-319-23264-5_32
https://doi.org/10.1007/978-3-319-23264-5_32
https://doi.org/10.1016/j.sysarc.2013.05.023
https://doi.org/10.1007/978-3-030-60939-9_4
https://doi.org/10.1023/A:1008899229802
https://doi.org/10.1016/S0304-3975(01)00146-3
https://github.com/krr-up/asp-dse/releases/tag/v1.0.0
https://doi.org/10.3390/a16040179
https://potassco.org/clingo/
https://potassco.org/labs/clingodl/
https://doi.org/10.15496/publikation-25685
https://doi.org/10.1109/TEVC.2003.810758

	Investigating Methods for ASPmT-Based Design Space Exploration in Evolutionary Product Design
	Abstract
	1 Introduction
	2 Related Work
	3 Fundamentals
	3.1 System Model
	3.2 Exploration Model
	3.3 Adapted Exploration
	3.3.1 Strategies
	3.3.2 Heuristics

	4 Similarity of Design Points
	5 Use of Similarity Information
	5.1 Constraining the Search Space—Use in Strategies
	5.2 Directing the Search—Use in Heuristics

	6 Experiments
	6.1 Experimental Setup
	6.2 Experimental Results
	6.2.1 Strategies
	6.2.2 Heuristics

	7 Conclusion
	Appendix A: Extended Data
	Acknowledgements
	References

