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Abstract
Algorithms for answering the k nearest-neighbor (k-NN) query are widely used for 
queries in spatial databases and for distance classification of a group of query points 
against a reference dataset to derive the dominating feature class. GPU devices 
have significantly more processing cores than CPUs and faster device memory than 
the main memory accessed by CPUs, thus, providing higher computing power for 
processing demanding queries like the k-NN. However, since device and/or main 
memory may not be able to host an entire, rather big, reference and query datasets, 
storing these datasets in a fast secondary device, like a solid state disk (SSD), and 
partially retrieve the required, at each stage, partitions is, in many practical cases, 
a feasible solution. We propose and implement the first GPU-based algorithms for 
processing the k-NN query for big reference and query spatial data stored on SSDs. 
Based on 3d synthetic and real big spatial data, we experimentally compare these 
algorithms and highlight the most efficient algorithmic variation. This variation 
utilizes a CUDA feature known as Concurrent Kernel Execution, to further improve 
its performance.

Keywords k Nearest-neighbor query · GPU · SSD · Spatial-queries algorithms · 
Plane-sweep · Parallel computing

1 Introduction

Processing of big spatial data is demanding, and it is often assisted by parallel 
processing. GPU-based parallel processing has become very popular during last 
years [1]. In general, GPU devices have much larger numbers of processing cores 
than CPUs and device memory, which is faster than main memory accessed by 
CPUs, providing high-performance computing capabilities even to commodity 
computers.
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GPU devices can be utilized for efficient parallel computation of demanding 
spatial queries, like the k nearest-neighbor (k-NN) query, which is widely used for 
spatial distance classification in many problems areas. We consider a set of query 
points and a set of reference points. For each query point, we need to compute 
the k-NNs of this point within the reference dataset. This permits us to derive the 
dominating class among these k-NNs (in case the class of each reference point is 
known).

Since GPU device memory is a rather scarce resource, it is very important to 
take advantage of this memory as much as possible to scale-up to larger datasets 
and avoid the need for distributed processing, which suffers from excessive network 
cost, sometimes outweighing the benefits of distributed parallel execution. However, 
since device and/or main memory may not be able to host an entire, rather big, 
reference dataset, storing this dataset in a fast secondary device, like a solid state 
disk (SSD) is, in many practical cases, a feasible solution.

In this paper,

• We propose and implement (extending the DSPP algorithm [2]) the first GPU-
based algorithms for processing the k-NN query not only on big reference, but 
also on big query spatial data stored on SSDs.

• We exploit concurrent CUDA kernel execution to enable multiple concurrent 
CUDA stream k-NN calculations, resulting to better utilization of GPU resources 
and data transfers/computation overlap.

• We utilize either an array-based, or a max-Heap based buffer for storing the 
distances of the current k nearest neighbors, which are combined with our new 
methods, deriving two algorithmic variations.

• Based on 3d synthetic and real big spatial data, we present an extensive 
experimental comparison of these algorithmic variations, varying query dataset 
size, reference dataset size and k. These experiments highlight that the new 
methods, combined with either an array or a max-Heap buffer are performance 
winners, especially for very large reference and query spatial datasets and big k 
values.

The rest of this paper is organized as follows. In Sect.  2, we review related 
material and present the motivation for our work. Next, in Sect.  3, we introduce 
the new algorithm that we developed for the k-NN GPU-based processing on disk-
resident1 data and in Sect. 4, we present the experimental study that we performed 
for analyzing the performance of all our algorithms and for determining the 
performance winner among 10 (6 existing and 4 new) algorithmic variations tested 
on synthetic and real big reference and query data. Finally, in Sect. 5, we present the 
conclusions arising from our work and discuss our future plans.

1 We used an SSD and in the rest of the text “SSD” instead of “disk” is used.
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2  Related Work and Motivation

A recent trend in the research for parallelization of nearest neighbor search is to use 
GPUs. Parallel k-NN algorithms on GPUs can be usually implemented by employing 
Brute-Force methods or by using Spatial Subdivision techniques. In this section, 
we review the most relevant contributions of these two approaches to design and 
implement k-NN algorithms on GPUs. Furthermore, concurrent kernel execution is 
an effective method to improve hardware utilization, and it can be used on GPUs to 
improve resource utilization and system performance, especially when kernels are 
running together. We review some interesting works where this mechanism has been 
applied to improve the performance on GPUs.

2.1  Brute‑Force Techniques

Despite the great potential of GPU-accelerated k-NN algorithms, much of the 
literature focuses on optimizing Brute-Force approaches which emphasize the good 
performance in high-dimensional data spaces. k-NN on GPUs using a Brute-Force 
method applies a two-stage scheme: (1) the computation of distances and (2) the 
selection of the nearest neighbors by using sorting algorithms [3]. For the first stage, 
a distance matrix is built grouping the distance array to each query point. In the 
second stage, several selections are performed in parallel on the different rows of the 
matrix. In the literature, many Brute-Force approaches have been proposed and the 
most representative ones are briefly reviewed in the following.

One of the first implementations of a Brute-Force k-NN algorithm on GPUs is 
proposed in [4]. In this work the authors highlight two important characteristics: (1) 
each thread computes the distance between a given query point and a reference point, 
and (2) each thread sorts all the distances computed for a given query point. An 
important aspect of this work is the use of the insertion sort algorithm which only 
outputs the k smallest elements. Similarly, in [5], the distance matrix is split into 
blocks of rows and each matrix row is sorted using the radix sort method, obtaining 
performance more than 10× faster than the sequential counterpart. Moreover, the 
authors used a segmentation method for pair-wise distance computations.

Following a slightly different approach as [4, 5] to compute the distance matrix, 
[6] proposes the CUKNN algorithm, a CUDA-based parallel implementation of k-
NN. It computes, for the selection phase, a local k-NN for each block of threads, 
then merging and sorting them in order to obtain a global k-NN. Experimentally, 
CUKNN shows good scalability on data objects as well as up to 15x speedup in 
overall execution over large datasets.

In [7], an improved GPU-based approach by using the CUBLAS (CUDA 
Basic Linear Algebra Subroutines) API is proposed for a faster Brute-Force k-NN 
parallelization to efficiently calculate a distance matrix. A modified version of the 
insertion sort algorithm proposed in [4] is applied when each column of the distance 
matrix is sorted. The processing of the algorithm is separated into 8 parts, each of 
which is processed through a kernel. Furthermore, if the distance matrix is too large 
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to be handled by GPU memory, the query points are split, processed separately, and 
the distances to the k-NNs are merged together on the CPU/host memory side.

Another two-step scheme to implement a Brute-Force k-NN algorithm on GPU 
is proposed in [8]. A GPU heap-based algorithm (called Batch Heap-Reduction) 
is presented, which achieves a better performance than the sorting-based GPU-
Quicksort algorithms. The Batch Heap-Reduction algorithm uses a heap for each 
thread of a CUDA Block and performs a three-step algorithm to obtain the final k-
NN. In the first step, the distance vector is evenly distributed across the CUDA block 
threads. Each thread determines its own partial k-NNs by the heap sort algorithm. 
The other two steps implement the reduction of the partial heaps. It is important to 
highlight that heap insertions usually imply warp divergences and lack of locality, 
thus increasing the number of GPU-memory read/write operations.

Another fast and scalable two-step Brute-Force k-NN implementation using 
GPUs, called GPU-FS-kNN algorithm, is presented in [9]. This exhaustive algorithm 
divides the computation of the distance matrix into smaller sub-matrices (squared 
chunks) in all dimensions, in order to parallelize distance calculations and k-NN 
search over these chunks. Each chunk is computed using a different kernel call, 
reusing the allocated GPU-memory. In the selection phase, each chunk is processed 
with a modified version of the insertion sort algorithm. An interesting feature of 
this method is the introduction of padded input matrix rows and columns so that the 
algorithm can work with any number of rows and columns.

A hybrid parallelization approach for Brute-Force computation of multiple k-
NN queries on GPUs is proposed in [10]. For the matrix computation this method 
uses the general scheme of [5, 7], modifying the selection phase with multi-select 
algorithm based on quicksort. An additional optimization is also implemented, using 
voting functions available on the latest GPUs along with user-controlled cache. The 
warp voting function is used to partition the input without reading the input array 
twice and without executing the parallel-prefix sum.

Another efficient Brute-Force k-NN implementation is proposed in [11] by 
using a modified inner loop of the SGEMM kernel in the MAGMA library, a well-
optimized open-source matrix multiplication kernel. Besides, the algorithm searches 
only the k smallest squared Euclidean distances for each query by using the merge-
path function from the Modern GPU library and a truncated merge sort built on top 
of sorting and merging functions.

A new incremental neighborhood computation scheme that eliminates the 
dependencies between the dataset size and memory is presented in [12]. As a result, 
a new scalable and memory efficient design for a GPU-based k-NN rule, called 
GPU-SME-kNN, is proposed. It takes advantage of asynchronous memory transfers, 
making the data structures fit into the available memory while delivering high run-
time performance independently of the dataset size. An experimental study of GPU-
SME-kNN is also presented, showing a high performance, even in cases that other 
methods cannot address. Moreover, the GPU-SME-kNN algorithm has also been 
applied to k-NN-based lazy learning algorithms, reducing run-times in a significant 
way.

Novel GPU approaches to solving k-NN queries using Brute-Force algorithms 
based on the selection sort, quick sort and state-of-the-art heaps-based algorithms 



279

1 3

International Journal of Parallel Programming (2023) 51:275–308 

are proposed in [13]. Due to the fact that the best approach depends on the k value 
in the k-NN query, the authors also introduce a multi-core algorithm to be used as 
reference for the experiments and a hybrid algorithm which combines the proposed 
sorting algorithms with a state-of-the-art heaps-based method, in which the best 
performance is obtained with large k values. The authors also extend the proposed 
algorithms to be able to deal with large datasets that do not fit in GPU memory and 
whose performance does not deteriorate as dataset size increases.

Another parallel Brute-Force algorithm to solving k-NN queries on a multi-
GPU platform is presented in [14]. The proposed method comprises two stages, the 
first being based on pivots using the value of k to reduce the search space, and the 
second one uses a set of heaps to return the final results. Through a wide-ranging 
set of experiments, this exhaustive algorithm outperformed previous state-of-the-art 
approaches.

Recently, a novel GPU-based Brute-Force algorithm to solve k-NN queries is 
proposed in [15], which is composed of two steps. The first step is based on pivots 
to reduce the range of search by using the k value, and the second one uses a set 
of heaps as auxiliary structures to return the final results. The authors also extend 
the exhaustive algorithm to be able to use a multi-GPU platform and a multi-node/
multi-GPU platform. The proposed algorithm is experimentally compared with the 
state-of-the-art methods, reaching a speed-up of 389× over 4 GPUs on a single node 
and up to 1840× by using 20 GPUs over a multi-node/multi-GPU platform.

Some of these Brute-Force algorithms for solving k-NN queries (like the ones 
of [7] and their improved implementations of k-NN2) consume a lot of device 
memory, since a Cartesian product matrix, containing the distances of reference 
points to the query points, is stored. In [16], two new algorithms based on GPUs to 
process k-NN queries on spatial data are proposed, using the Thrust library [1], that 
maximize device memory utilization. The first algorithm is based on Brute-Force 
scheme and the second one uses heuristics to minimize the reference points near a 
query point. In addition, the first GPU-based algorithms for parallel processing the 
k-NN query on large reference datasets stored on SSDs are proposed in [2]. These 
GPU-based algorithms utilize a Brute-Force schema and the plane-sweep technique. 
Such algorithms exploit the numerous GPU cores, use the device memory as much 
as possible and take advantage of the speed and storage capacity of SSDs, thus 
processing efficiently big reference datasets.

2.2  Spatial Subdivision Techniques

Spatial subdivision is a powerful technique to improve the overall manageability of 
large datasets in a variety of spatial applications. This spatial partitioning can also 
improve the spatial query performance mainly in two ways. First, partitioning the 
dataset into smaller units allows the processing of a spatial query in parallel, and 
thus improves its performance. Second, with a proper spatial partitioning schema, 

2 http:// vince ntfpg arcia. github. io/ kNN- CUDA/.

http://vincentfpgarcia.github.io/kNN-CUDA/
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I/O can be significantly reduced by only scanning a few partitions that contain 
relevant data to answer the spatial query. There are many data structures that handle 
spatial subdivision efficiently [17] and, they can be used as GPU index-based data 
structures to perform efficiently k-NNQ. The most representative approaches of this 
category are briefly reviewed in the following.

kd-trees [18] have been successfully used for nearest neighbor searching for 
long time. For this reason, several variations of kd-trees have been implemented on 
GPUs. In [19], an algorithm for constructing kd-trees on GPUs is developed. The 
building process adopts a top-down, breadth-first search order, starting from the 
root bounding box. The k-NN implementation is based on a range search on the 
tree (with a given radius), and it continues to increase the size of the radius until k 
elements are retrieved. In [20], a buffer kd-tree for GPUs is presented. The buffer 
kd-tree algorithm avoids several drawbacks of the GPU’s architecture. In particular, 
the buffer refers to a query buffer located in every node of kd-tree, which is used to 
delay the execution of queries by waiting for sufficient work to be accumulated into 
a buffer before accessing leaf nodes. Each node in the buffer kd-tree corresponds 
to a set of reference patterns. Therefore, a lazy nearest neighbor search schema is 
applied. The algorithm also focuses on improving the fraction of coalesced memory 
accesses by having threads within a warp access either consecutive or nearby 
memory addresses.

In the context of spatial indexes, a grid structure is a regular tessellation of a 
manifold that divides the space into a series of contiguous cells, which can then 
be assigned unique identifiers and used for spatial indexing purposes. According 
to this subdivision of the space, a GPU grid-based data structure is appropriate for 
massively parallel nearest neighbor searches over dynamic point datasets. A key 
contribution is [21], where a grid-based indexing solution for 3-dimensional k-
NN searches on the GPU is proposed. The k-NN algorithm works as follows: for 
a given query point, the algorithm expands the number of grid cells searched to 
ensure that at least k neighbors are found. That is, the algorithm uses a query-centric 
approach that expands the search radius when the number of found neighbors is 
less than k. The proposed k-NN algorithm minimizes the memory transfer between 
device and system memories, improving overall performance. Another GPU grid-
based approach is the Adaptive Inverse Distance Weighting (AIDW) interpolation 
algorithm on GPU [22], where a fast k-NN search approach based on an even grid is 
used.

Efficient spatial indexing structures such as R-trees [23] are promising in speeding 
up such computing on GPUs; therefore, several contributions have been proposed 
for this purpose. One of the most significant one is [24], where parallel designs of 
bulk loading R-trees and several parallel query processing techniques (range query) 
on GPUs using R-trees are implemented. Moreover, in [25], a parallel bottom-up 
construction of SS-tree [26] on GPUs is proposed, along with the development of 
a data parallel tree traversal algorithm, called Parallel Scan and Backtrack (PSB), 
for k-NN query processing on the GPU. This algorithm traverses a SS-tree index 
while avoiding warp divergence problems. In order to take advantage of accessing 
contiguous memory blocks, the proposed PSB algorithm performs linear scanning 
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of sibling leaf nodes, which increases the chance to optimize memory coalescing 
and locality.

Effective spatial data partitioning [27] is critical for task parallelization, load 
balancing, and directly affects system performance. A proper spatial partitioning 
schema is essential for optimal query performance and system efficiency for 
parallel spatial query processing. Keeping this in mind, in [28], a new algorithm 
for the k-NN query processing on GPUs is presented. It implements a new GPU-
based partitioning algorithm based on a sort-tile partitioning method for the k-NN 
query (called Symmetric Progression Partitioning, SPP), using the CUDA runtime 
API, avoiding the calculation of distances for the whole dataset. Moreover, this k-
NN query algorithm maximizes the utilization of device memory (using KNN-DLB 
buffer) and therefore permits larger reference datasets to take part in the processing 
of the query. Thus, by processing only the necessary parts of the reference dataset 
and by executing the whole process in the GPU device only, it minimizes execution 
speed. A thorough experimental evaluation proves that the proposed algorithm, not 
only works faster than existing methods, but also scales-up to much larger reference 
datasets.

2.3  Similarity Techniques

There are also other techniques like in [29] where the k-NN algorithm is extensively 
used. This paper describes a novel GPU similarity search algorithm, that can be 
applied in database systems handling complex data such as images or videos, which 
are typically represented by high-dimensional features and require specific indexing 
structures. The proposed methods can scale to billion-sized databases. Note that, 
unlike our work, the methods of this paper are not optimized for 2d and 3d spatial 
data and do not focus on computing NNs, but on the use of NNs for similarity 
search.

2.4  Concurrent Kernel Execution

Recent GPUs support concurrent kernel execution, that enables different kernels 
to run simultaneously on the same GPU, sharing the GPU hardware resources. 
Concurrent kernel execution can improve GPU hardware utilization and system 
performance. This feature of the current GPU programming models can be used in 
different scenarios to allow better utilization of GPU resources.

The impact of concurrent kernel execution on performance improvement by 
funneling all kernels of a multi-threaded host process into a single GPU context 
was firstly examined in [30]. In the same scenario, a kernel reordering technique is 
proposed in [31] to improve GPU performance by taking advantage of concurrent 
kernel execution focusing on the order in which GPU kernels are invoked on the 
host side.

In [32], the authors experimentally validate the benefits of using concurrent kernel 
execution to improve GPU energy-efficiency for computational kernels. For this 
purpose, they design power-performance models to carefully select the appropriate 
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kernel combinations to be executed concurrently, the relative contributions of the 
kernels to the thread mix, along with the frequency choices for the cores and the 
memory to achieve high performance per watt metric.

Dai et  al.  [33] illustrates that compute-intensive kernels may be starved 
because other memory-intensive kernels block the memory pipeline on 
Simultaneous Multitasking (SMK) GPUs. To solve this problem, a dynamic 
memory instruction limiting method to mitigate the memory pipeline contention 
and accelerate concurrent kernel execution is proposed. The experimental 
results show that the proposed approach improves weighted speedup by 27.2% 
on average over SMK, with minor hardware cost.

In [34], the authors highlight that memory interference can significantly affect 
the throughput and fairness of concurrent kernel execution. They make a case 
that even the optimal Cooperative Thread Array (CTA) combination does not 
eliminate the negative memory interference impact. To address this problem 
effectively, a coordinated approach for CTA combination and bandwidth 
partitioning for GPU concurrent kernel execution is proposed. This approach 
effectively reduces the memory latency for the latency-sensitive kernels. In 
the meanwhile, the bandwidth utilization is also improved for the bandwidth-
intensive kernels.

The performance of compute-intensive kernels is significantly reduced when 
memory-intensive kernels block memory pipeline and occupy most L1 data 
cache (L1D) resources, and it is highlighted in [35]. They propose a fair and 
cache blocking aware warp scheduling (FCBWS) approach for concurrent kernel 
execution on GPU to ameliorate the contention on data cache and improve 
system performance. FCBWS adopts kernel aware warp scheduling to provide 
equal chance of issuing instructions to each kernel. Moreover, for a ready 
memory instruction to be issued, if it is predicated that this instruction will 
block the data cache, FCBWS will select and issue another ready instruction 
of the same kernel; otherwise, this memory instruction will be issued to the 
memory pipeline. The experiment results indicate that FCBWS has important 
advantages over spatial multitasking and previous SMK works.

Another context to use concurrent kernel execution is to implement 
scheduling policies on GPUs. For example, a software scheduler for GPU 
applications, called FlexSched, has been recently presented in [36], that takes 
advantage of concurrent kernel execution to implement scheduling policies 
aimed at maximizing application execution performance, or meeting Quality 
of Service (QoS) application requirements such as maximum turnaround time. 
An important feature of FlexSched is the use of a productive on-line profiling, 
employing a heuristic that compares different co-execution configurations to 
find a suitable CTA allocation scheme that fulfills the scheduling requirements: 
throughput or QoS. In a real scheduling scenario, where new applications are 
launched as soon as GPU resources become available, FlexSched reduces the 
average overall execution time by a factor of 1.25× with respect to the time 
obtained when proprietary hardware (HyperQ) is employed.
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For interested readers, [37] is a recent survey on GPU multitasking methods, 
where concurrent kernel execution is studied as a feature of GPUs to support 
multitasking.

2.5  Motivation

Based on our literature research we concluded that there are no methods targeting 
big reference and query datasets (larger than the available device memory), neither 
are there methods that explore concurrent kernel execution, for the calculation of 
k-NN. Furthermore, our previous k-NN method implementations, address only big 
reference data; they can process only query datasets big enough to fit in device 
memory.

Based on these facts, there is no work so far that uses the advantages of 
concurrent kernel execution, to efficiently design and implement k-NN algorithms 
on GPUs. We will try to investigate and test how the invocation of this feature would 
increase k-NN calculation performance.

Moreover, we will try to extend our methods implementations, to aim also big 
query datasets. We will also leverage the trade-offs that arise from new algorithmic 
overheads and evaluate the effectiveness of our new methods.

3  kNN Disk Algorithms

A common practice to handle big data is data partitioning. In order to describe 
our new algorithms, we first present the mechanism of data partition transfers to 
device memory. This step is identical in all our methods. Each reference dataset is 
partitioned in N partitions containing an equal number of reference points. If the 
total reference points is not divided exactly by N, the Nth partition contains the 
remainder of the division. Initially the host (the computing machine hosting the 
GPU device) reads a partition from SSD3 and loads it into the host memory. The 
host copies the in-memory partition data into the GPU device memory.4

Another common approach in all our four methods is the GPU thread dispatching. 
Every query point is assigned to a GPU thread. The GPU device starts the k-NN 
calculation simultaneously for all threads in the kernel execution geometry. The 
thread dispatching consists of 4 main steps: 

1. The kernel is invoked with a grid of N threads.
2. The requested N threads are assigned to N query points.

3 Reading from SSD is accomplished by read operations of large sequences of consecutive pages, 
exploiting the internal parallelism of SSDs, although our experiments showed that reading from SSD 
does not contribute significantly to the performance cost of our algorithms.
4 The hardware we used does not support GPUDirect storage.
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3. Every thread carries out the calculation of reference point distances to its query 
point and updates the k-NN buffer holding the current (and eventually the final) 
nearest neighbors of this point.

4. The final k-NN list produced by each kernel invocation is populated with the 
results of all the query points.

In the next sections we will describe our existing and new methods. These methods 
are based on three main algorithms, “Disk Brute-force”, “Disk Plane-sweep” 
and “Symmetric Progression Partitioning”. In all of them we have implemented 
two k-NN buffer variations resulting in a total of 6 existing and 4 new methods 
(algorithmic variations).

3.1  Disk Brute‑Force Algorithm

The Disk Brute-force algorithm (denoted by DBF) [2] is a Brute-force algorithm 
enhanced with capability to read SSD-resident data. Brute-force algorithms 
are highly efficient when executed in parallel. The algorithm accepts as inputs 
a reference dataset R consisting of m reference points R = {r1, r2, r3,… rm} in 3d 
space and a dataset Q of n query points Q = {q1, q2, q3,… qn} also in 3d space. The 
host reads the query dataset and transfers it in the device memory. The reference 
dataset is transfered to the device memory and is partitioned into equally sized bins. 
For each partition, we apply the k-NN Brute-force computations for each of the 
threads.

For every reference point within the loaded partition, we calculate the Euclidean 
distance to the query point of the current thread. Every calculated distance is 
compared to the current thread maximum distance and if it is smaller, we add it 
to the k-NN list buffer. We will use and compare two alternative k-NN buffer 
implementations, presented in Sects. 3.6 and 3.7.

3.2  Disk Plane‑Sweep Algorithm

An important improvement for join queries is the use of the Plane-sweep technique, 
which is commonly used for computing intersections [38]. The Plane-sweep 
technique is applied in [39] to find the closest pair in a set of points which resides in 
main memory. The basic idea, in the context of spatial databases, is to move a line, 
the so-called sweep-line, perpendicular to one of the axes, e.g., X-axis, from left to 
right, and process objects (points, in the context of this paper) as they are reached by 
this sweep-line. We can apply this technique for restricting all possible combinations 
of pairs of objects from the two datasets. The Disk Plane-sweep algorithm (denoted 
as DSP) incorporates this technique which is further enhanced with capability to 
read SSD-resident data.

Like DBF, DPS accepts as inputs a reference dataset R consisting of m 
reference points R = {r1, r2, r3,… rm} in 3d space and a dataset Q of n query 
points Q = {q1, q2, q3,… qn} also in 3d space. The host reads the query dataset and 
transfers it in the device memory. The reference dataset is partitioned in equally 
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sized bins. Each bin is transferred to the device memory and sorted by the x-values 
of its reference points. (Algorithm 1). For each partition we apply the k-NN Plane-
sweep technique (Fig. 1).

Starting from the leftmost reference point of the loaded partition, the sweep-
line moves to the right. The sweep-line hops every time to the next reference 
point until it approaches the x-value of the query point (Fig. 1). Using the x-value 
of the query point, a virtual rectangle is created. This rectangle has a length of 
2 ∗ l , where l is the currently largest k-NN distance in the k-NN buffer of the 
query point of the current thread.

For every reference point within this rectangle, we calculate the Euclidean 
distance (Algorithm 2) to this query point. The first k distances are added to its 
k-NN buffer. Every subsequent calculated distance is compared with the largest 
one in the k-NN buffer and if it is smaller, it replaces the largest one in the k-NN 
buffer.

In Fig. 1, we observe that all the reference points located on the right of the 
right rectangle limit are not even processed. The reference points located on left 
of the left rectangle limit are only processed for comparing their x-axis value. The 
costly Euclidean distance calculation is limited within the rectangle.

Fig. 1  Plane-sweep k-NN algorithm. Cross is the Query point, selected reference points in solid circles 
and not selected reference points in plain circles
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3.3  Disk Symmetric Progression Partitioning

A more efficient method than the previous ones is the “Disk Symmetric 
Progression Partitioning” [40], denoted as DSPP. DSPP is enhanced with 
the capability to read SSD-resident big data. The DSPP algorithm is using 
partitioning in both the host and the GPU device. The first level partitioning is 
taking place in the host, when reading data from the SSD-resident datasets, as 
we discussed in Sect. 3. The second level partitioning takes place in the device 



287

1 3

International Journal of Parallel Programming (2023) 51:275–308 

memory and is essential for the DSPP execution. We will document in detail the 
usage of the two distinct levels of partitioning later in this section.

Like DBF and DPS, DSPP accepts as inputs a reference dataset R consisting 
of m reference points R = {r1, r2, r3,… rm} in 3d space and a dataset Q of n query 
points Q = {q1, q2, q3,… qn} also in 3d space. The host reads the whole query 
dataset and transfers it in the device memory. The reference dataset is partitioned 
in equally sized bins (first level partition). Each partition is transferred to device 
memory and sorted by the x-values of its reference points (Algorithm 3). The host 
fetches back the sorted partition from the device in order to further partition it, 
into smaller sub-partitions (second level partition), and prepare the sub-partition 
index data for the SPP execution. This second partitioning will be taking place in 
the device memory and further accelerates the k-NN process, as we have proven 
in previous work [40, 41]. The host process, as a last step, executes the GPU 
kernel.

From the device perspective, every query point is assigned to a GPU thread. The GPU 
starts the k-NN calculation simultaneously for all threads, in kernel execution geometry.

The in-device-memory partitioning technique we are using, partitions the dataset 
in equally sized sub-partitions across the X-axis. DSPP searches for k-NN, traversing 
the partition index (Algorithm 4), that the host provided, and checks if its bounding 
box contains the query point (sub-partition number 5, in our example, Fig. 2). If k-
NN are not found the thread searches for k-NN in the next closest sub-partition (sub-
partition 6). Similarly, the process continues until all reference points are processed. 
In Fig. 2 we search for 20 nearest neighbors. We processed 7 out of 10 partitions and 
found the k-NN. Sub-partitions 1, 9 and 10 were excluded because the 20 nearest 
neighbors were already found.
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The host algorithm continuous to read partitions from the reference dataset, 
process them and execute the GPU kernel, until the reference dataset is fully read. 
Every kernel execution, merges into the k-NN buffer list the calculated distances 
that are shorter than the maximum current ones and produces the final k-NNs upon 
read reference data completion.

We will use and compare two alternative k-NN buffer implementations, presented 
in Sects. 3.6 and 3.7, thus resulting to two DSPP method variations.

Fig. 2  DSPP sub-partition 
example, query point repre-
sented by + symbol, reference 
points represented by × symbols 
(k-NN points), analyzed points 
represented by empty circles, 
non-analyzed points represented 
by filled circles, k = 20 [28]
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3.4  Improved Disk Symmetric Progression Partitioning

One disadvantage of the DSPP method is that it can only process query datasets 
that fit in device memory. Surely modern GPUs are equipped with abundant 
memory, however modern big data query datasets can easily surpass GPU memory 
capacity. To fill this gap we designed and implemented an improved DSPP method, 
denoted by DSPP+. In our first new method, we incorporated an extra step of query 
dataset partitioning, just before the device k-NN calculation (Fig.  3). This means 
that the query dataset will be fully read, partition by partition, every time we need 
to process the next reference partition (Algorithm 5). If we partition the reference 
dataset in N partitions, then the query dataset will be read N times. Taking this under 
consideration, we expect an execution performance decrease, unless we manage to 
overlap those transfers with useful computation (which we address in Sect. 3.5). We 
must outline that this approach has some extra advantages, apart from processing 
big query datasets. One advantage is that when we initiate kernel processes the 
scheduled CUDA blocks query smaller volumes or points resulting in better L2 
cache locality. Furthermore, the device data processed are close to each other and 
the method benefits from coalesced memory transaction, when consecutive threads 
access consecutive memory addresses.

Like our previous methods, DSPP+ accepts as inputs a reference dataset R 
consisting of m reference points R = {r1, r2, r3,… rm} in 3d space and a dataset Q 
of n query points Q = {q1, q2, q3,… qn} also in 3d space. We partition the reference 
dataset PR consisting of pm reference partitions PR = {pr1, pr2, pr3,… prpm} . 
In analogy, we partition the query dataset QR consisting of qn query partitions 
QR = {qr1, qr2, qr3,… qrqn} . For each PR[i] partition, we traverse sequentially all 
QR[j] partitions and merge the resulting k-NNs to our k-NN buffer (Fig. 3).

Like our previous methods, we will use and compare two alternative k-NN buffer 
implementations, presented in Sects.  3.6 and  3.7, thus resulting to two DSPP+ 
method variations.

Fig. 3  DSPP+ Partitioning and execution path
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3.5  Improved Disk Symmetric Progression Partitioning with Pinned Memory

The second new method we are presenting, exploits a significant CUDA feature. CUDA 
streams, which aim to hide the latency of memory copy and kernel launch from dif-
ferent independent operations [42], are widely used in computational tasks to increase 
performance [43].

When CUDA Streams are used, together with pinned memory supporting 
asynchronous data transfers, we can overlap data transfers with kernel execution, thus 
effectively hiding data transfer latency. This improves GPU utilization and reduces 
execution time.

This new method is the Improved Disk Symmetric Progression Partitioning with 
pinned memory (denoted by DSPP+P).

The DSPP+ algorithm partitions the query dataset and calculates the k-NN for each 
one. In this second new algorithm, we process every query partition in a new stream. 
The CUDA kernel executes concurrently and the k-NNs are written to the output buffer 
(Fig. 4).

Like DSPP+, DSPP+P accepts as inputs a reference dataset R consisting of m 
reference points R = {r1, r2, r3,… rm} in 3d space and a dataset Q of n query points 
Q = {q1, q2, q3,… qn} also in 3d space. We partition the reference dataset PR consisting 
of pm reference partitions PR = {pr1, pr2, pr3,… prpm} . Analogously we partition the 
query dataset QR consisting of qn query partitions QR = {qr1, qr2, qr3,… qrqn} . For 
each PR[i] partition, we traverse in a parallel and fully asynchronous way, all QR[j] 
partitions and merge the resulting k-NNs to our k-NN buffer (Fig. 4).

Like our previous methods, we will use and compare two alternative k-NN buffer 
implementations, presented in Sects.  3.6 and  3.7, thus resulting to two DSPP+P 
method variations.

Fig. 4  DSPP+P Partitioning and execution path
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3.6  k‑NN Distance List Buffer

In our methods we implemented two different k-NN list buffers. The first one is the 
k-NN Distance List Buffer (denoted by KNN-DLB). KNN-DLB is an array where 
all calculated distances are stored (Table  1, distance  values in bold are the ones 
inserted in the buffer). KNN-DLB array size is k per thread, resulting in minimal 
device memory utilization. When the buffer is not full, we append the calculated 
distances. When the buffer is full, we compare every newly calculated distance with 
the largest one stored in KNN-DLB. If it is smaller, we simply replace the largest 
distance with the new one. Therefore, we use sorting. The resulting buffer contains 
the correct k-NNs, but not in an ascending order. The usage of KNN-DLB buffer 
performs better than sorting a large distance array [28].

3.7  k‑NN Max‑Heap Distance List Buffer

The second list buffer that we implemented is based on a max-Heap (a priority 
queue represented by a complete binary tree which is implemented using an array, 
Fig. 5). max-Heap array size is k + 1 per thread, because the first array element is 
occupied by a sentinel. The sentinel value is the largest value for double numbers 
(for C++ language, used in this work, it is the constant DBL_MAX). KNN-DLB 
is adequate for smaller k values, but when k value increases performance deterio-
rates, primarily due to KNN-DLB O(n) insertion complexity. On the other hand, 
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max-Heap insertion complexity is O(log(n)) and for large enough k max-Heap 
implementations are expected to outperform KNN-DLB ones.

4  Experimental Study

We run a large set of experiments to quantify the performance of our proposed 
algorithms. All experiments query a variety of dataset volumes of synthetic and real 
data. We are using double precision accuracy for the points representation in 3D 
space (Algorithm 9) to be able to discriminate among small distance differences.

All experiments were performed on a Dell G5 15 laptop, running Ubuntu 20.04, 
equipped with a six core (12-thread) Intel I7 CPU, 16 GB of main memory, a 1TB 
SSD disk used and a NVIDIA Geforce 2070 (Mobile Max-Q) GPU with 8 GB of 
device memory (as a representative setup for everyday computing). CUDA version 
11.2 was used.

We run experiments to compare the performance of k-NN queries regarding 
execution time, as well as memory utilization. We tested a total of ten algorithms. 

 1. DBF, Disk Brute-force using KNN-DLB buffer
 2. DBF Heap, Disk Brute-force using max-Heap buffer
 3. DPS, Disk Plane-sweep using KNN-DLB buffer
 4. DPS Heap, Disk Plane-sweep using max-Heap buffer

Fig. 5  k-NN max-heap buffer
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 5. DSPP, Disk Symmetric Progression Partitioning using KNN-DLB buffer
 6. DSPP Heap, Disk Symmetric Progression Partitioning using max-Heap buffer
 7. DSPP+, Improved Disk Symmetric Progression Partitioning using KNN-DLB 

buffer
 8. DSPP+ Heap, Improved Disk Symmetric Progression Partitioning using max-

Heap buffer
 9. DSPP+P, Improved Disk Symmetric Progression Partitioning with pinned 

memory using KNN-DLB buffer
 10. DSPP+P Heap, Improved Disk Symmetric Progression Partitioning with pinned 

memory using max-Heap buffer

To the best of our knowledge, these are the first methods to address the k-NN query 
on SSD-resident data, that can process big reference and query datasets.

The experimental study is divided in two main subsection. The first one is based 
on synthetic data and the second one on real data.

4.1  Synthetic Data Experiments

In this section we will evaluate the performance of our methods, based only on 
synthetic data. All the datasets were created using the SpiderWeb [44] generator. 
This generator allows users to choose from a wide range of spatial data distributions 
and configure the size of the dataset and its distribution parameters. This generator 
has been successfully used in research work to evaluate index construction, query 
processing, spatial partitioning, and cost model verification [45].

Table 2 lists all the generated datasets. For the reference dataset, we created five 
datasets using the “Bit” distribution (Fig. 6 right), with file sizes ranging from 32 to 
160 MB. The reference points dataset size ranges from 1 points to 5 M points. For 
the query points dataset we created five “Uniform" datasets (Fig.  6, left) ranging 
from 100 to 500 K points.

Table 2  SpiderWeb dataset 
generator parameters

Distribution Size Seed File size Dataset usage

Bit 1 M 1 32 MB Reference
Bit 2 M 2 64 MB Reference
Bit 3 M 3 96 MB Reference
Bit 4 M 4 128 MB Reference
Bit 5 M 4 160 MB Reference
Uniform 100 K 6 3.2 MB Query
Uniform 200 K 7 6.4 MB Query
Uniform 300 K 8 9.6 MB Query
Uniform 400 K 9 12.8 MB Query
Uniform 500 K 10 16 MB Query
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Three different sets of experiments on synthetic data were conducted. In the first 
one, we scaled the reference dataset size, in the second one we scaled the query 
dataset size and in the third one we scaled the number of the nearest neighbors, k. 
We also evaluated the performance of the two alternative list buffers to clarify the 
pros and cons of using KNN-DLB and max-Heap buffer.

4.1.1  Reference Dataset Scaling

In our first series of tests, we used the “Bit” distribution synthetic datasets for the 
reference points. The size of the reference point dataset ranged from 1  M points 
to 5 M points. Furthermore, we used a fixed query dataset of 100 K points, with 
“Uniform” distribution and a k value of 20, in order to focus only on the reference 
dataset scaling.

In Fig. 7, we can see the experiment results chart. In these results, we notice that 
the execution time of the Brute-force methods is larger than the rest of the methods. 
Apart from the Brute-force methods, all other methods have quite similar executions 
times, for each reference dataset size. For example, for the 1 M dataset the execution 
times range from 6.81 s for DBF Heap (slowest) to 2.20 s for the DSPP (fastest). The 
execution times increase proportionally to the reference dataset size. As expected, 
we get the slowest execution times for the 5  M dataset, ranging from 34.41  s for 
DBF Heap to 9.08 for the DSPP Heap method.

In order to compare the performance of our methods in Table 3, we present the 
execution speedup gain, using the slowest method (DFB) as the baseline. Every 
number in this table represents the method gain relative to the base method DBF 
(how many times faster than DBF). As expected, the DBF Heap method gain is close 
to 1, meaning that the DBF and DBF Heap are performing equally in all reference 
datasets. The execution speedup gain of the other methods ranges from 2.08 (times 
faster) in DPS for the 1 M reference dataset, to 3.69 (times faster) in DSPP for the 
5  M reference dataset. We should notice that the method DSPP+P, is the second 

Fig. 6  Experiment distributions, Left = Uniform, Right = Bit
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fastest method, performing slightly worse than DSPP, and achieved a speedup of 
3.56 for the 4 M reference dataset.

The reference dataset scaling experiments reveal that the Brute-force methods 
did not perform well. This behaviour is expected because of the naive Brute-force 
algorithm of these methods. The DSPP method is faster than the DPS one, con-
firming our results from our previous publications [2, 28]. The interesting part of 
this experiment is that our new methods DSPP+ and DSPP+P performed about 
equally to DSPP, despite their query partitioning algorithm adding an overall over-
head by repeatedly reading the query dataset. Especially DSPP+P performance 
is equivalent to DSPP. As we experimentally validate, this overhead was lever-
aged by the concurrent kernel execution invocation of DSPP+P. Furthermore, we 
can observe that the two k-NN distance list buffers, KNN-DLB and max-Heap, 

Fig. 7  Reference scaling experiment (Y-axis in sec.)

Table 3  Reference scale gain, 
base method DBF

Bold values indicate the methods with the highest gain

Method 1 M 2 M 3 M 4 M 5 M

DBF Heap 0.97 0.95 1.04 1.00 0.97
DPS 2.08 2.40 2.51 2.62 2.76
DPS Heap 2.10 2.40 2.50 2.61 2.72
DSPP 3.00 3.28 3.46 3.59 3.69
DSPP Heap 2.74 2.93 3.25 3.38 3.44
DSPP+ 2.29 2.47 2.62 2.71 2.74
DSPP+ Heap 2.24 2.38 2.59 2.68 2.74
DSPP+P 2.96 3.15 3.43 3.56 3.44
DSPP+P Heap 2.78 2.94 3.28 3.42 3.49
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perform equally in all reference datasets. The value of k = 20 is explicitly selected 
to be small enough so that the buffer usage does not affect the experimental 
results. The difference between the two buffers will be quantified in the k scaling 
experiment later on.

4.1.2  Query Dataset Scaling

In our second set of experiments, we also used the “Uniform” distribution synthetic 
datasets for the query points. The size of the query point dataset ranged from 100 K 
points to 500  K points. Furthermore, we used a fixed reference dataset of 1  M 
points, with “Bit" distribution and a k value of 20, in order to focus only on the 
query dataset scaling.

In Fig. 8, we can see the experiment results chart. In these results, we see similar 
results as in our previous experiment. The execution time of the Brute-force methods 
is higher than the rest of our methods. All the other methods have comparable 
executions times, for each reference dataset size. For example, for the 200 K query 
dataset the execution times range from 13.72  s for DBF Heap (slowest) to 4.28  s 
for DSPP (fastest). The execution times increase proportionally to the query dataset 
size. We get the highest execution times for the 500 K dataset, ranging from 35.87 s 
for DBF Heap to 11.54 for the DSPP method.

To compare the performance of our methods, in Table 4 we present the speedup, 
using the slowest method (DFB) as the baseline. Similarly to the previous experi-
ment, the two Brute-force methods are again performing identically for all query 
datasets. The speedup of the other methods ranges from 2.07 (times faster) in DPS 
for the 200 K dataset, to 3.06 (times faster) in DSPP for the 400 K query dataset. 
As was also the case for our reference scale experiment, we notice that the method 

Fig. 8  Query scaling experiment (Y-axis in sec.)
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DSPP+P, is the second fastest method, performing slightly worse than DSPP, and 
achieved a speedup gain of 2.96 for the 100 K query dataset.

The query dataset scaling experiment revealed once again that the Brute-force 
methods did not perform well for the same reasons as in our first experiment. The 
DSPP method is faster than the DPS one, confirming our results from our previous 
publications. Our new methods DSPP+ and DSPP+P performed about equally to 
DSPP, even if their query partitioning algorithm is adding an overall overhead by 
repeatedly reading the query dataset. Especially DSPP+P performance is equivalent 
to DSPP. We confirm again in this experiment that this overhead was leveraged by 
the concurrent kernel execution invocation of DSPP+P.

4.1.3  k Scaling

The k scaling is our third experiment. In these tests we used k values of 20, 40, 60, 
80 and 100. For the reference points we used the 1 M “Bit” distribution synthetic 
dataset and for the query dataset 100K points, with “Uniform” distribution.

In Fig. 9, we can see the experiment results chart. The results in this experiment 
are quite different than the previous experiments. The execution time of the 
Brute-force methods is higher than the rest of our methods and we can see that 
the execution time of all KNN-DLB methods (DBF, DPS, DSPP, DSPP+ and 
DSPP+P), tend to increase in exponential way for larger k values. On the other hand, 
the execution time of all heap methods are increasing in a linear way. For k = 100 
the execution times range from 10.79  s for DBF (slowest) to 3.76  s for DSPP+P 
(fastest).

In Table 5, we compare the execution performance of our methods, we present 
the execution speed gain, based on our slowest method DFB. In contrary to our pre-
vious experiments the two Brute-force methods are not performing identically; the 
DBF Heap method is faster for larger k values. Generally all heap methods perform 
clearly faster for larger k values. The execution gain of our methods for k = 100 , 
ranges from 1.25 (times faster) in DBF Heap, to 2.87 (times faster) in DSPP+P 

Table 4  Query scale gain, base 
method DBF

Bold values indicate the methods with the highest gain

Method 100 K 200 K 300 K 400 K 500 K

DBF Heap 0.97 0.97 0.99 0.94 0.97
DPS 2.08 2.07 2.09 2.11 2.06
DPS Heap 2.10 2.12 2.14 2.17 2.10
DSPP 3.00 2.96 2.99 3.06 3.03
DSPP Heap 2.74 2.78 2.83 2.88 2.90
DSPP+ 2.29 2.27 2.26 2.30 2.13
DSPP+ Heap 2.24 2.21 2.20 2.24 2.23
DSPP+P 2.96 2.82 2.87 2.89 2.88
DSPP+P Heap 2.78 2.70 2.71 2.76 2.78
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Heap. In this experiment the DSPP+P method is a clear winner. It is better than DSP 
in all k values except the smallest one, k = 20.

In the k scaling experiment the heap methods stand out. For larger k values the 
max-Heap buffer is a much faster algorithm, because of its O(log(n)) complexity. 
Another interesting result is that DSPP+P Heap is overtaking even the DSPP Heap 
method. When we increase the k value, the k-NN calculation is even more compu-
tationally bound. The use of CUDA streams and the associated data transfers/kernel 
execution overlap, further accelerates this GPU costly operation, resulting in lower 
execution times, even if the DSPP+P methods repeatedly read the query dataset and 
transfer it to device memory. We confirm again in this experiment that the read over-
head was successfully leveraged by the concurrent kernel execution invocation of 
DSPP+P.

Fig. 9  k scaling experiment (Y-axis in sec.)

Table 5  K scale gain, base 
method DBF

Bold values indicate the methods with the highest gain

Method K = 20 K = 40 K = 60 K = 80 K = 100

DBF Heap 1.05 1.04 1.08 1.14 1.25
DPS 2.08 1.71 1.55 1.43 1.34
DPS Heap 2.10 1.90 1.91 1.98 2.12
DSPP 3.00 2.45 2.20 1.98 1.84
DSPP Heap 2.74 2.50 2.49 2.55 2.77
DSPP+ 2.29 1.98 1.78 1.62 1.50
DSPP+ Heap 2.24 2.06 2.14 2.24 2.45
DSPP+P 2.96 2.38 2.13 1.90 1.72
DSPP+P Heap 2.78 2.55 2.59 2.67 2.87
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4.2  Real Data Experiments

In this section we will present three real data experiments, using the real datasets 
documented in Sect. 4. We used three big real datasets [46], which represent water 
resources of North America (Water Dataset) consisting of 5.8M line-segments and 

Table 6  Real datasets Description Size File size Dataset usage

Water 5 M 186.8 MB Reference or query
Parks 11.5 M 368.1 MB Reference or query
Buildings 114.5 M 2.8 GB Reference or query

Fig. 10  Real data experiment (Y-axis in sec.)

Table 7  Real data gain, base 
method DBF

Bold values indicate the methods with the highest gain

Method Gain

DBF Heap 0.94
DPS 3.84
DPS Heap 3.77
DSPP 17.00
DSPP Heap 16.63
DSPP+ 31.42
DSPP+ Heap 31.85
DSPP+P 57.23
DSPP+P Heap 54.79
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world parks or green areas (Parks Dataset) consisting of 11.5 M polygons and world 
buildings (Buildings Dataset) consisting of 114.7 M polygons (Table 6). To create 
sets of points, we used the centers of the line-segment MBRs from Water and the 
centroids of polygons from Park and Buildings. For all datasets the 3-dimensional 
data space is normalized to have unit length (values [0, 1] in each axis).

These experiments will evaluate our new methods performance when targeting 
real life data. The first of them queries only the smallest datasets, in order to 
compare our new methods performance with our previous ones. The second 
and third experiments query the larger real datasets, which our previous methods 
couldn’t target.

4.2.1  Real Experiment 1: Parks 11.5 M, Water 5.8 M

In Fig. 10, we can see the first real data experiment results chart. The results in this 
experiment are similar to the reference and query scaling experiments. The execu-
tion time of the Brute-force methods is much larger than the rest of our methods. 
The execution times range from 5117 s for DBF (slowest method) to just 93 s for 
DSPP+P Heap (fastest method). When data volumes increase, the streaming ker-
nel execution implementation in the DSPP+P methods, clearly outperforms all other 
methods, even the DSPP ones. In Table 7 we observe that DSPP+P was 57.23 times 
faster than DBF. Even in comparison to the best existing method (DSPP), the pro-
posed method (DSPP+P) is 3.36 times faster.

4.2.2  Real Experiment 2: Buildings 114.7 M, Water 5.8 M

The next real data experiment is presented in Fig. 11. In this experiment we eval-
uated only our new methods; our previous ones could not target a query dataset 

Fig. 11  Real data experiment (Y-axis in sec.)
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so large, because its footprint exceeds device memory capacity. The execution 
times range from 1500 s for DSPP+ (slowest method) to 807 s for DSPP+P Heap 
(fastest method). Once again, when data volumes increase, the streaming kernel 
execution implementation in the DSPP+P methods, clearly outperforms all other 
methods.

4.2.3  Real Experiment 3: Buildings 114.7 M, Parks 11.5 M

The last real data experiment is presented in Fig. 12. In this experiment we evaluated 
again only our new methods. The new methods successfully processed these large 
datasets, which were the largest in our experiments. The execution times range from 
4010 s for DSPP+ (slowest method) to 1930 s for DSPP+P Heap (fastest method). 
Our results are once more validated, when data volumes increase, the streaming ker-
nel execution implementation in the DSPP+P methods, is the performance winner.

5  Conclusions and Future Plans

In this paper, we introduced the first GPU-based algorithms for parallel processing 
the k-NN query on reference and query big spatial data stored on SSDs, utilizing 
the Symmetric Progression Partitioning technique. Our new algorithms exploit 
the manycore GPU architecture, the concurrent kernel execution feature of Nvidia 
GPUs, utilize the device memory efficiently, take advantage of the speed and 
storage capacity of SSDs and, thus, process efficiently big reference and query 
datasets. Through an extensive experimental evaluation on synthetic and real 
datasets, we highlighted that the DSPP+P algorithm and especially its Heap 

Fig. 12  Real data experiment (Y-axis in sec.)
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variation, when using large k values and/or larger dataset volumes, is a clear 
performance winner.

Our future work plans include:

• development of k-NN GPU-based algorithms for big SSD resident data which 
exploit the use of indexes [47] to further speed-up processing,

• implementation of join queries (like k-closest pairs [48]), based on techniques 
utilized in this paper.
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