
Vol.:(0123456789)

International Journal of Parallel Programming (2023) 51:275–308
https://doi.org/10.1007/s10766-023-00755-8

1 3

GPU‑Based Algorithms for Processing the k
Nearest‑Neighbor Query on Spatial Data Using Partitioning
and Concurrent Kernel Execution

Polychronis Velentzas1 · Michael Vassilakopoulos1 · Antonio Corral2 ·
Christos Antonopoulos1

Received: 8 May 2023 / Accepted: 29 June 2023 / Published online: 21 July 2023
© The Author(s) 2023

Abstract
Algorithms for answering the k nearest-neighbor (k-NN) query are widely used for
queries in spatial databases and for distance classification of a group of query points
against a reference dataset to derive the dominating feature class. GPU devices
have significantly more processing cores than CPUs and faster device memory than
the main memory accessed by CPUs, thus, providing higher computing power for
processing demanding queries like the k-NN. However, since device and/or main
memory may not be able to host an entire, rather big, reference and query datasets,
storing these datasets in a fast secondary device, like a solid state disk (SSD), and
partially retrieve the required, at each stage, partitions is, in many practical cases,
a feasible solution. We propose and implement the first GPU-based algorithms for
processing the k-NN query for big reference and query spatial data stored on SSDs.
Based on 3d synthetic and real big spatial data, we experimentally compare these
algorithms and highlight the most efficient algorithmic variation. This variation
utilizes a CUDA feature known as Concurrent Kernel Execution, to further improve
its performance.

Keywords k Nearest-neighbor query · GPU · SSD · Spatial-queries algorithms ·
Plane-sweep · Parallel computing

1 Introduction

Processing of big spatial data is demanding, and it is often assisted by parallel
processing. GPU-based parallel processing has become very popular during last
years [1]. In general, GPU devices have much larger numbers of processing cores
than CPUs and device memory, which is faster than main memory accessed by
CPUs, providing high-performance computing capabilities even to commodity
computers.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-023-00755-8&domain=pdf

276 International Journal of Parallel Programming (2023) 51:275–308

1 3

GPU devices can be utilized for efficient parallel computation of demanding
spatial queries, like the k nearest-neighbor (k-NN) query, which is widely used for
spatial distance classification in many problems areas. We consider a set of query
points and a set of reference points. For each query point, we need to compute
the k-NNs of this point within the reference dataset. This permits us to derive the
dominating class among these k-NNs (in case the class of each reference point is
known).

Since GPU device memory is a rather scarce resource, it is very important to
take advantage of this memory as much as possible to scale-up to larger datasets
and avoid the need for distributed processing, which suffers from excessive network
cost, sometimes outweighing the benefits of distributed parallel execution. However,
since device and/or main memory may not be able to host an entire, rather big,
reference dataset, storing this dataset in a fast secondary device, like a solid state
disk (SSD) is, in many practical cases, a feasible solution.

In this paper,

• We propose and implement (extending the DSPP algorithm [2]) the first GPU-
based algorithms for processing the k-NN query not only on big reference, but
also on big query spatial data stored on SSDs.

• We exploit concurrent CUDA kernel execution to enable multiple concurrent
CUDA stream k-NN calculations, resulting to better utilization of GPU resources
and data transfers/computation overlap.

• We utilize either an array-based, or a max-Heap based buffer for storing the
distances of the current k nearest neighbors, which are combined with our new
methods, deriving two algorithmic variations.

• Based on 3d synthetic and real big spatial data, we present an extensive
experimental comparison of these algorithmic variations, varying query dataset
size, reference dataset size and k. These experiments highlight that the new
methods, combined with either an array or a max-Heap buffer are performance
winners, especially for very large reference and query spatial datasets and big k
values.

The rest of this paper is organized as follows. In Sect. 2, we review related
material and present the motivation for our work. Next, in Sect. 3, we introduce
the new algorithm that we developed for the k-NN GPU-based processing on disk-
resident1 data and in Sect. 4, we present the experimental study that we performed
for analyzing the performance of all our algorithms and for determining the
performance winner among 10 (6 existing and 4 new) algorithmic variations tested
on synthetic and real big reference and query data. Finally, in Sect. 5, we present the
conclusions arising from our work and discuss our future plans.

1 We used an SSD and in the rest of the text “SSD” instead of “disk” is used.

277

1 3

International Journal of Parallel Programming (2023) 51:275–308

2 Related Work and Motivation

A recent trend in the research for parallelization of nearest neighbor search is to use
GPUs. Parallel k-NN algorithms on GPUs can be usually implemented by employing
Brute-Force methods or by using Spatial Subdivision techniques. In this section,
we review the most relevant contributions of these two approaches to design and
implement k-NN algorithms on GPUs. Furthermore, concurrent kernel execution is
an effective method to improve hardware utilization, and it can be used on GPUs to
improve resource utilization and system performance, especially when kernels are
running together. We review some interesting works where this mechanism has been
applied to improve the performance on GPUs.

2.1 Brute‑Force Techniques

Despite the great potential of GPU-accelerated k-NN algorithms, much of the
literature focuses on optimizing Brute-Force approaches which emphasize the good
performance in high-dimensional data spaces. k-NN on GPUs using a Brute-Force
method applies a two-stage scheme: (1) the computation of distances and (2) the
selection of the nearest neighbors by using sorting algorithms [3]. For the first stage,
a distance matrix is built grouping the distance array to each query point. In the
second stage, several selections are performed in parallel on the different rows of the
matrix. In the literature, many Brute-Force approaches have been proposed and the
most representative ones are briefly reviewed in the following.

One of the first implementations of a Brute-Force k-NN algorithm on GPUs is
proposed in [4]. In this work the authors highlight two important characteristics: (1)
each thread computes the distance between a given query point and a reference point,
and (2) each thread sorts all the distances computed for a given query point. An
important aspect of this work is the use of the insertion sort algorithm which only
outputs the k smallest elements. Similarly, in [5], the distance matrix is split into
blocks of rows and each matrix row is sorted using the radix sort method, obtaining
performance more than 10× faster than the sequential counterpart. Moreover, the
authors used a segmentation method for pair-wise distance computations.

Following a slightly different approach as [4, 5] to compute the distance matrix,
[6] proposes the CUKNN algorithm, a CUDA-based parallel implementation of k-
NN. It computes, for the selection phase, a local k-NN for each block of threads,
then merging and sorting them in order to obtain a global k-NN. Experimentally,
CUKNN shows good scalability on data objects as well as up to 15x speedup in
overall execution over large datasets.

In [7], an improved GPU-based approach by using the CUBLAS (CUDA
Basic Linear Algebra Subroutines) API is proposed for a faster Brute-Force k-NN
parallelization to efficiently calculate a distance matrix. A modified version of the
insertion sort algorithm proposed in [4] is applied when each column of the distance
matrix is sorted. The processing of the algorithm is separated into 8 parts, each of
which is processed through a kernel. Furthermore, if the distance matrix is too large

278 International Journal of Parallel Programming (2023) 51:275–308

1 3

to be handled by GPU memory, the query points are split, processed separately, and
the distances to the k-NNs are merged together on the CPU/host memory side.

Another two-step scheme to implement a Brute-Force k-NN algorithm on GPU
is proposed in [8]. A GPU heap-based algorithm (called Batch Heap-Reduction)
is presented, which achieves a better performance than the sorting-based GPU-
Quicksort algorithms. The Batch Heap-Reduction algorithm uses a heap for each
thread of a CUDA Block and performs a three-step algorithm to obtain the final k-
NN. In the first step, the distance vector is evenly distributed across the CUDA block
threads. Each thread determines its own partial k-NNs by the heap sort algorithm.
The other two steps implement the reduction of the partial heaps. It is important to
highlight that heap insertions usually imply warp divergences and lack of locality,
thus increasing the number of GPU-memory read/write operations.

Another fast and scalable two-step Brute-Force k-NN implementation using
GPUs, called GPU-FS-kNN algorithm, is presented in [9]. This exhaustive algorithm
divides the computation of the distance matrix into smaller sub-matrices (squared
chunks) in all dimensions, in order to parallelize distance calculations and k-NN
search over these chunks. Each chunk is computed using a different kernel call,
reusing the allocated GPU-memory. In the selection phase, each chunk is processed
with a modified version of the insertion sort algorithm. An interesting feature of
this method is the introduction of padded input matrix rows and columns so that the
algorithm can work with any number of rows and columns.

A hybrid parallelization approach for Brute-Force computation of multiple k-
NN queries on GPUs is proposed in [10]. For the matrix computation this method
uses the general scheme of [5, 7], modifying the selection phase with multi-select
algorithm based on quicksort. An additional optimization is also implemented, using
voting functions available on the latest GPUs along with user-controlled cache. The
warp voting function is used to partition the input without reading the input array
twice and without executing the parallel-prefix sum.

Another efficient Brute-Force k-NN implementation is proposed in [11] by
using a modified inner loop of the SGEMM kernel in the MAGMA library, a well-
optimized open-source matrix multiplication kernel. Besides, the algorithm searches
only the k smallest squared Euclidean distances for each query by using the merge-
path function from the Modern GPU library and a truncated merge sort built on top
of sorting and merging functions.

A new incremental neighborhood computation scheme that eliminates the
dependencies between the dataset size and memory is presented in [12]. As a result,
a new scalable and memory efficient design for a GPU-based k-NN rule, called
GPU-SME-kNN, is proposed. It takes advantage of asynchronous memory transfers,
making the data structures fit into the available memory while delivering high run-
time performance independently of the dataset size. An experimental study of GPU-
SME-kNN is also presented, showing a high performance, even in cases that other
methods cannot address. Moreover, the GPU-SME-kNN algorithm has also been
applied to k-NN-based lazy learning algorithms, reducing run-times in a significant
way.

Novel GPU approaches to solving k-NN queries using Brute-Force algorithms
based on the selection sort, quick sort and state-of-the-art heaps-based algorithms

279

1 3

International Journal of Parallel Programming (2023) 51:275–308

are proposed in [13]. Due to the fact that the best approach depends on the k value
in the k-NN query, the authors also introduce a multi-core algorithm to be used as
reference for the experiments and a hybrid algorithm which combines the proposed
sorting algorithms with a state-of-the-art heaps-based method, in which the best
performance is obtained with large k values. The authors also extend the proposed
algorithms to be able to deal with large datasets that do not fit in GPU memory and
whose performance does not deteriorate as dataset size increases.

Another parallel Brute-Force algorithm to solving k-NN queries on a multi-
GPU platform is presented in [14]. The proposed method comprises two stages, the
first being based on pivots using the value of k to reduce the search space, and the
second one uses a set of heaps to return the final results. Through a wide-ranging
set of experiments, this exhaustive algorithm outperformed previous state-of-the-art
approaches.

Recently, a novel GPU-based Brute-Force algorithm to solve k-NN queries is
proposed in [15], which is composed of two steps. The first step is based on pivots
to reduce the range of search by using the k value, and the second one uses a set
of heaps as auxiliary structures to return the final results. The authors also extend
the exhaustive algorithm to be able to use a multi-GPU platform and a multi-node/
multi-GPU platform. The proposed algorithm is experimentally compared with the
state-of-the-art methods, reaching a speed-up of 389× over 4 GPUs on a single node
and up to 1840× by using 20 GPUs over a multi-node/multi-GPU platform.

Some of these Brute-Force algorithms for solving k-NN queries (like the ones
of [7] and their improved implementations of k-NN2) consume a lot of device
memory, since a Cartesian product matrix, containing the distances of reference
points to the query points, is stored. In [16], two new algorithms based on GPUs to
process k-NN queries on spatial data are proposed, using the Thrust library [1], that
maximize device memory utilization. The first algorithm is based on Brute-Force
scheme and the second one uses heuristics to minimize the reference points near a
query point. In addition, the first GPU-based algorithms for parallel processing the
k-NN query on large reference datasets stored on SSDs are proposed in [2]. These
GPU-based algorithms utilize a Brute-Force schema and the plane-sweep technique.
Such algorithms exploit the numerous GPU cores, use the device memory as much
as possible and take advantage of the speed and storage capacity of SSDs, thus
processing efficiently big reference datasets.

2.2 Spatial Subdivision Techniques

Spatial subdivision is a powerful technique to improve the overall manageability of
large datasets in a variety of spatial applications. This spatial partitioning can also
improve the spatial query performance mainly in two ways. First, partitioning the
dataset into smaller units allows the processing of a spatial query in parallel, and
thus improves its performance. Second, with a proper spatial partitioning schema,

2 http:// vince ntfpg arcia. github. io/ kNN- CUDA/.

http://vincentfpgarcia.github.io/kNN-CUDA/

280 International Journal of Parallel Programming (2023) 51:275–308

1 3

I/O can be significantly reduced by only scanning a few partitions that contain
relevant data to answer the spatial query. There are many data structures that handle
spatial subdivision efficiently [17] and, they can be used as GPU index-based data
structures to perform efficiently k-NNQ. The most representative approaches of this
category are briefly reviewed in the following.

kd-trees [18] have been successfully used for nearest neighbor searching for
long time. For this reason, several variations of kd-trees have been implemented on
GPUs. In [19], an algorithm for constructing kd-trees on GPUs is developed. The
building process adopts a top-down, breadth-first search order, starting from the
root bounding box. The k-NN implementation is based on a range search on the
tree (with a given radius), and it continues to increase the size of the radius until k
elements are retrieved. In [20], a buffer kd-tree for GPUs is presented. The buffer
kd-tree algorithm avoids several drawbacks of the GPU’s architecture. In particular,
the buffer refers to a query buffer located in every node of kd-tree, which is used to
delay the execution of queries by waiting for sufficient work to be accumulated into
a buffer before accessing leaf nodes. Each node in the buffer kd-tree corresponds
to a set of reference patterns. Therefore, a lazy nearest neighbor search schema is
applied. The algorithm also focuses on improving the fraction of coalesced memory
accesses by having threads within a warp access either consecutive or nearby
memory addresses.

In the context of spatial indexes, a grid structure is a regular tessellation of a
manifold that divides the space into a series of contiguous cells, which can then
be assigned unique identifiers and used for spatial indexing purposes. According
to this subdivision of the space, a GPU grid-based data structure is appropriate for
massively parallel nearest neighbor searches over dynamic point datasets. A key
contribution is [21], where a grid-based indexing solution for 3-dimensional k-
NN searches on the GPU is proposed. The k-NN algorithm works as follows: for
a given query point, the algorithm expands the number of grid cells searched to
ensure that at least k neighbors are found. That is, the algorithm uses a query-centric
approach that expands the search radius when the number of found neighbors is
less than k. The proposed k-NN algorithm minimizes the memory transfer between
device and system memories, improving overall performance. Another GPU grid-
based approach is the Adaptive Inverse Distance Weighting (AIDW) interpolation
algorithm on GPU [22], where a fast k-NN search approach based on an even grid is
used.

Efficient spatial indexing structures such as R-trees [23] are promising in speeding
up such computing on GPUs; therefore, several contributions have been proposed
for this purpose. One of the most significant one is [24], where parallel designs of
bulk loading R-trees and several parallel query processing techniques (range query)
on GPUs using R-trees are implemented. Moreover, in [25], a parallel bottom-up
construction of SS-tree [26] on GPUs is proposed, along with the development of
a data parallel tree traversal algorithm, called Parallel Scan and Backtrack (PSB),
for k-NN query processing on the GPU. This algorithm traverses a SS-tree index
while avoiding warp divergence problems. In order to take advantage of accessing
contiguous memory blocks, the proposed PSB algorithm performs linear scanning

281

1 3

International Journal of Parallel Programming (2023) 51:275–308

of sibling leaf nodes, which increases the chance to optimize memory coalescing
and locality.

Effective spatial data partitioning [27] is critical for task parallelization, load
balancing, and directly affects system performance. A proper spatial partitioning
schema is essential for optimal query performance and system efficiency for
parallel spatial query processing. Keeping this in mind, in [28], a new algorithm
for the k-NN query processing on GPUs is presented. It implements a new GPU-
based partitioning algorithm based on a sort-tile partitioning method for the k-NN
query (called Symmetric Progression Partitioning, SPP), using the CUDA runtime
API, avoiding the calculation of distances for the whole dataset. Moreover, this k-
NN query algorithm maximizes the utilization of device memory (using KNN-DLB
buffer) and therefore permits larger reference datasets to take part in the processing
of the query. Thus, by processing only the necessary parts of the reference dataset
and by executing the whole process in the GPU device only, it minimizes execution
speed. A thorough experimental evaluation proves that the proposed algorithm, not
only works faster than existing methods, but also scales-up to much larger reference
datasets.

2.3 Similarity Techniques

There are also other techniques like in [29] where the k-NN algorithm is extensively
used. This paper describes a novel GPU similarity search algorithm, that can be
applied in database systems handling complex data such as images or videos, which
are typically represented by high-dimensional features and require specific indexing
structures. The proposed methods can scale to billion-sized databases. Note that,
unlike our work, the methods of this paper are not optimized for 2d and 3d spatial
data and do not focus on computing NNs, but on the use of NNs for similarity
search.

2.4 Concurrent Kernel Execution

Recent GPUs support concurrent kernel execution, that enables different kernels
to run simultaneously on the same GPU, sharing the GPU hardware resources.
Concurrent kernel execution can improve GPU hardware utilization and system
performance. This feature of the current GPU programming models can be used in
different scenarios to allow better utilization of GPU resources.

The impact of concurrent kernel execution on performance improvement by
funneling all kernels of a multi-threaded host process into a single GPU context
was firstly examined in [30]. In the same scenario, a kernel reordering technique is
proposed in [31] to improve GPU performance by taking advantage of concurrent
kernel execution focusing on the order in which GPU kernels are invoked on the
host side.

In [32], the authors experimentally validate the benefits of using concurrent kernel
execution to improve GPU energy-efficiency for computational kernels. For this
purpose, they design power-performance models to carefully select the appropriate

282 International Journal of Parallel Programming (2023) 51:275–308

1 3

kernel combinations to be executed concurrently, the relative contributions of the
kernels to the thread mix, along with the frequency choices for the cores and the
memory to achieve high performance per watt metric.

Dai et al. [33] illustrates that compute-intensive kernels may be starved
because other memory-intensive kernels block the memory pipeline on
Simultaneous Multitasking (SMK) GPUs. To solve this problem, a dynamic
memory instruction limiting method to mitigate the memory pipeline contention
and accelerate concurrent kernel execution is proposed. The experimental
results show that the proposed approach improves weighted speedup by 27.2%
on average over SMK, with minor hardware cost.

In [34], the authors highlight that memory interference can significantly affect
the throughput and fairness of concurrent kernel execution. They make a case
that even the optimal Cooperative Thread Array (CTA) combination does not
eliminate the negative memory interference impact. To address this problem
effectively, a coordinated approach for CTA combination and bandwidth
partitioning for GPU concurrent kernel execution is proposed. This approach
effectively reduces the memory latency for the latency-sensitive kernels. In
the meanwhile, the bandwidth utilization is also improved for the bandwidth-
intensive kernels.

The performance of compute-intensive kernels is significantly reduced when
memory-intensive kernels block memory pipeline and occupy most L1 data
cache (L1D) resources, and it is highlighted in [35]. They propose a fair and
cache blocking aware warp scheduling (FCBWS) approach for concurrent kernel
execution on GPU to ameliorate the contention on data cache and improve
system performance. FCBWS adopts kernel aware warp scheduling to provide
equal chance of issuing instructions to each kernel. Moreover, for a ready
memory instruction to be issued, if it is predicated that this instruction will
block the data cache, FCBWS will select and issue another ready instruction
of the same kernel; otherwise, this memory instruction will be issued to the
memory pipeline. The experiment results indicate that FCBWS has important
advantages over spatial multitasking and previous SMK works.

Another context to use concurrent kernel execution is to implement
scheduling policies on GPUs. For example, a software scheduler for GPU
applications, called FlexSched, has been recently presented in [36], that takes
advantage of concurrent kernel execution to implement scheduling policies
aimed at maximizing application execution performance, or meeting Quality
of Service (QoS) application requirements such as maximum turnaround time.
An important feature of FlexSched is the use of a productive on-line profiling,
employing a heuristic that compares different co-execution configurations to
find a suitable CTA allocation scheme that fulfills the scheduling requirements:
throughput or QoS. In a real scheduling scenario, where new applications are
launched as soon as GPU resources become available, FlexSched reduces the
average overall execution time by a factor of 1.25× with respect to the time
obtained when proprietary hardware (HyperQ) is employed.

283

1 3

International Journal of Parallel Programming (2023) 51:275–308

For interested readers, [37] is a recent survey on GPU multitasking methods,
where concurrent kernel execution is studied as a feature of GPUs to support
multitasking.

2.5 Motivation

Based on our literature research we concluded that there are no methods targeting
big reference and query datasets (larger than the available device memory), neither
are there methods that explore concurrent kernel execution, for the calculation of
k-NN. Furthermore, our previous k-NN method implementations, address only big
reference data; they can process only query datasets big enough to fit in device
memory.

Based on these facts, there is no work so far that uses the advantages of
concurrent kernel execution, to efficiently design and implement k-NN algorithms
on GPUs. We will try to investigate and test how the invocation of this feature would
increase k-NN calculation performance.

Moreover, we will try to extend our methods implementations, to aim also big
query datasets. We will also leverage the trade-offs that arise from new algorithmic
overheads and evaluate the effectiveness of our new methods.

3 kNN Disk Algorithms

A common practice to handle big data is data partitioning. In order to describe
our new algorithms, we first present the mechanism of data partition transfers to
device memory. This step is identical in all our methods. Each reference dataset is
partitioned in N partitions containing an equal number of reference points. If the
total reference points is not divided exactly by N, the Nth partition contains the
remainder of the division. Initially the host (the computing machine hosting the
GPU device) reads a partition from SSD3 and loads it into the host memory. The
host copies the in-memory partition data into the GPU device memory.4

Another common approach in all our four methods is the GPU thread dispatching.
Every query point is assigned to a GPU thread. The GPU device starts the k-NN
calculation simultaneously for all threads in the kernel execution geometry. The
thread dispatching consists of 4 main steps:

1. The kernel is invoked with a grid of N threads.
2. The requested N threads are assigned to N query points.

3 Reading from SSD is accomplished by read operations of large sequences of consecutive pages,
exploiting the internal parallelism of SSDs, although our experiments showed that reading from SSD
does not contribute significantly to the performance cost of our algorithms.
4 The hardware we used does not support GPUDirect storage.

284 International Journal of Parallel Programming (2023) 51:275–308

1 3

3. Every thread carries out the calculation of reference point distances to its query
point and updates the k-NN buffer holding the current (and eventually the final)
nearest neighbors of this point.

4. The final k-NN list produced by each kernel invocation is populated with the
results of all the query points.

In the next sections we will describe our existing and new methods. These methods
are based on three main algorithms, “Disk Brute-force”, “Disk Plane-sweep”
and “Symmetric Progression Partitioning”. In all of them we have implemented
two k-NN buffer variations resulting in a total of 6 existing and 4 new methods
(algorithmic variations).

3.1 Disk Brute‑Force Algorithm

The Disk Brute-force algorithm (denoted by DBF) [2] is a Brute-force algorithm
enhanced with capability to read SSD-resident data. Brute-force algorithms
are highly efficient when executed in parallel. The algorithm accepts as inputs
a reference dataset R consisting of m reference points R = {r1, r2, r3,… rm} in 3d
space and a dataset Q of n query points Q = {q1, q2, q3,… qn} also in 3d space. The
host reads the query dataset and transfers it in the device memory. The reference
dataset is transfered to the device memory and is partitioned into equally sized bins.
For each partition, we apply the k-NN Brute-force computations for each of the
threads.

For every reference point within the loaded partition, we calculate the Euclidean
distance to the query point of the current thread. Every calculated distance is
compared to the current thread maximum distance and if it is smaller, we add it
to the k-NN list buffer. We will use and compare two alternative k-NN buffer
implementations, presented in Sects. 3.6 and 3.7.

3.2 Disk Plane‑Sweep Algorithm

An important improvement for join queries is the use of the Plane-sweep technique,
which is commonly used for computing intersections [38]. The Plane-sweep
technique is applied in [39] to find the closest pair in a set of points which resides in
main memory. The basic idea, in the context of spatial databases, is to move a line,
the so-called sweep-line, perpendicular to one of the axes, e.g., X-axis, from left to
right, and process objects (points, in the context of this paper) as they are reached by
this sweep-line. We can apply this technique for restricting all possible combinations
of pairs of objects from the two datasets. The Disk Plane-sweep algorithm (denoted
as DSP) incorporates this technique which is further enhanced with capability to
read SSD-resident data.

Like DBF, DPS accepts as inputs a reference dataset R consisting of m
reference points R = {r1, r2, r3,… rm} in 3d space and a dataset Q of n query
points Q = {q1, q2, q3,… qn} also in 3d space. The host reads the query dataset and
transfers it in the device memory. The reference dataset is partitioned in equally

285

1 3

International Journal of Parallel Programming (2023) 51:275–308

sized bins. Each bin is transferred to the device memory and sorted by the x-values
of its reference points. (Algorithm 1). For each partition we apply the k-NN Plane-
sweep technique (Fig. 1).

Starting from the leftmost reference point of the loaded partition, the sweep-
line moves to the right. The sweep-line hops every time to the next reference
point until it approaches the x-value of the query point (Fig. 1). Using the x-value
of the query point, a virtual rectangle is created. This rectangle has a length of
2 ∗ l , where l is the currently largest k-NN distance in the k-NN buffer of the
query point of the current thread.

For every reference point within this rectangle, we calculate the Euclidean
distance (Algorithm 2) to this query point. The first k distances are added to its
k-NN buffer. Every subsequent calculated distance is compared with the largest
one in the k-NN buffer and if it is smaller, it replaces the largest one in the k-NN
buffer.

In Fig. 1, we observe that all the reference points located on the right of the
right rectangle limit are not even processed. The reference points located on left
of the left rectangle limit are only processed for comparing their x-axis value. The
costly Euclidean distance calculation is limited within the rectangle.

Fig. 1 Plane-sweep k-NN algorithm. Cross is the Query point, selected reference points in solid circles
and not selected reference points in plain circles

286 International Journal of Parallel Programming (2023) 51:275–308

1 3

3.3 Disk Symmetric Progression Partitioning

A more efficient method than the previous ones is the “Disk Symmetric
Progression Partitioning” [40], denoted as DSPP. DSPP is enhanced with
the capability to read SSD-resident big data. The DSPP algorithm is using
partitioning in both the host and the GPU device. The first level partitioning is
taking place in the host, when reading data from the SSD-resident datasets, as
we discussed in Sect. 3. The second level partitioning takes place in the device

287

1 3

International Journal of Parallel Programming (2023) 51:275–308

memory and is essential for the DSPP execution. We will document in detail the
usage of the two distinct levels of partitioning later in this section.

Like DBF and DPS, DSPP accepts as inputs a reference dataset R consisting
of m reference points R = {r1, r2, r3,… rm} in 3d space and a dataset Q of n query
points Q = {q1, q2, q3,… qn} also in 3d space. The host reads the whole query
dataset and transfers it in the device memory. The reference dataset is partitioned
in equally sized bins (first level partition). Each partition is transferred to device
memory and sorted by the x-values of its reference points (Algorithm 3). The host
fetches back the sorted partition from the device in order to further partition it,
into smaller sub-partitions (second level partition), and prepare the sub-partition
index data for the SPP execution. This second partitioning will be taking place in
the device memory and further accelerates the k-NN process, as we have proven
in previous work [40, 41]. The host process, as a last step, executes the GPU
kernel.

From the device perspective, every query point is assigned to a GPU thread. The GPU
starts the k-NN calculation simultaneously for all threads, in kernel execution geometry.

The in-device-memory partitioning technique we are using, partitions the dataset
in equally sized sub-partitions across the X-axis. DSPP searches for k-NN, traversing
the partition index (Algorithm 4), that the host provided, and checks if its bounding
box contains the query point (sub-partition number 5, in our example, Fig. 2). If k-
NN are not found the thread searches for k-NN in the next closest sub-partition (sub-
partition 6). Similarly, the process continues until all reference points are processed.
In Fig. 2 we search for 20 nearest neighbors. We processed 7 out of 10 partitions and
found the k-NN. Sub-partitions 1, 9 and 10 were excluded because the 20 nearest
neighbors were already found.

288 International Journal of Parallel Programming (2023) 51:275–308

1 3

The host algorithm continuous to read partitions from the reference dataset,
process them and execute the GPU kernel, until the reference dataset is fully read.
Every kernel execution, merges into the k-NN buffer list the calculated distances
that are shorter than the maximum current ones and produces the final k-NNs upon
read reference data completion.

We will use and compare two alternative k-NN buffer implementations, presented
in Sects. 3.6 and 3.7, thus resulting to two DSPP method variations.

Fig. 2 DSPP sub-partition
example, query point repre-
sented by + symbol, reference
points represented by × symbols
(k-NN points), analyzed points
represented by empty circles,
non-analyzed points represented
by filled circles, k = 20 [28]

289

1 3

International Journal of Parallel Programming (2023) 51:275–308

3.4 Improved Disk Symmetric Progression Partitioning

One disadvantage of the DSPP method is that it can only process query datasets
that fit in device memory. Surely modern GPUs are equipped with abundant
memory, however modern big data query datasets can easily surpass GPU memory
capacity. To fill this gap we designed and implemented an improved DSPP method,
denoted by DSPP+. In our first new method, we incorporated an extra step of query
dataset partitioning, just before the device k-NN calculation (Fig. 3). This means
that the query dataset will be fully read, partition by partition, every time we need
to process the next reference partition (Algorithm 5). If we partition the reference
dataset in N partitions, then the query dataset will be read N times. Taking this under
consideration, we expect an execution performance decrease, unless we manage to
overlap those transfers with useful computation (which we address in Sect. 3.5). We
must outline that this approach has some extra advantages, apart from processing
big query datasets. One advantage is that when we initiate kernel processes the
scheduled CUDA blocks query smaller volumes or points resulting in better L2
cache locality. Furthermore, the device data processed are close to each other and
the method benefits from coalesced memory transaction, when consecutive threads
access consecutive memory addresses.

Like our previous methods, DSPP+ accepts as inputs a reference dataset R
consisting of m reference points R = {r1, r2, r3,… rm} in 3d space and a dataset Q
of n query points Q = {q1, q2, q3,… qn} also in 3d space. We partition the reference
dataset PR consisting of pm reference partitions PR = {pr1, pr2, pr3,… prpm} .
In analogy, we partition the query dataset QR consisting of qn query partitions
QR = {qr1, qr2, qr3,… qrqn} . For each PR[i] partition, we traverse sequentially all
QR[j] partitions and merge the resulting k-NNs to our k-NN buffer (Fig. 3).

Like our previous methods, we will use and compare two alternative k-NN buffer
implementations, presented in Sects. 3.6 and 3.7, thus resulting to two DSPP+
method variations.

Fig. 3 DSPP+ Partitioning and execution path

290 International Journal of Parallel Programming (2023) 51:275–308

1 3

291

1 3

International Journal of Parallel Programming (2023) 51:275–308

3.5 Improved Disk Symmetric Progression Partitioning with Pinned Memory

The second new method we are presenting, exploits a significant CUDA feature. CUDA
streams, which aim to hide the latency of memory copy and kernel launch from dif-
ferent independent operations [42], are widely used in computational tasks to increase
performance [43].

When CUDA Streams are used, together with pinned memory supporting
asynchronous data transfers, we can overlap data transfers with kernel execution, thus
effectively hiding data transfer latency. This improves GPU utilization and reduces
execution time.

This new method is the Improved Disk Symmetric Progression Partitioning with
pinned memory (denoted by DSPP+P).

The DSPP+ algorithm partitions the query dataset and calculates the k-NN for each
one. In this second new algorithm, we process every query partition in a new stream.
The CUDA kernel executes concurrently and the k-NNs are written to the output buffer
(Fig. 4).

Like DSPP+, DSPP+P accepts as inputs a reference dataset R consisting of m
reference points R = {r1, r2, r3,… rm} in 3d space and a dataset Q of n query points
Q = {q1, q2, q3,… qn} also in 3d space. We partition the reference dataset PR consisting
of pm reference partitions PR = {pr1, pr2, pr3,… prpm} . Analogously we partition the
query dataset QR consisting of qn query partitions QR = {qr1, qr2, qr3,… qrqn} . For
each PR[i] partition, we traverse in a parallel and fully asynchronous way, all QR[j]
partitions and merge the resulting k-NNs to our k-NN buffer (Fig. 4).

Like our previous methods, we will use and compare two alternative k-NN buffer
implementations, presented in Sects. 3.6 and 3.7, thus resulting to two DSPP+P
method variations.

Fig. 4 DSPP+P Partitioning and execution path

292 International Journal of Parallel Programming (2023) 51:275–308

1 3

293

1 3

International Journal of Parallel Programming (2023) 51:275–308

3.6 k‑NN Distance List Buffer

In our methods we implemented two different k-NN list buffers. The first one is the
k-NN Distance List Buffer (denoted by KNN-DLB). KNN-DLB is an array where
all calculated distances are stored (Table 1, distance values in bold are the ones
inserted in the buffer). KNN-DLB array size is k per thread, resulting in minimal
device memory utilization. When the buffer is not full, we append the calculated
distances. When the buffer is full, we compare every newly calculated distance with
the largest one stored in KNN-DLB. If it is smaller, we simply replace the largest
distance with the new one. Therefore, we use sorting. The resulting buffer contains
the correct k-NNs, but not in an ascending order. The usage of KNN-DLB buffer
performs better than sorting a large distance array [28].

3.7 k‑NN Max‑Heap Distance List Buffer

The second list buffer that we implemented is based on a max-Heap (a priority
queue represented by a complete binary tree which is implemented using an array,
Fig. 5). max-Heap array size is k + 1 per thread, because the first array element is
occupied by a sentinel. The sentinel value is the largest value for double numbers
(for C++ language, used in this work, it is the constant DBL_MAX). KNN-DLB
is adequate for smaller k values, but when k value increases performance deterio-
rates, primarily due to KNN-DLB O(n) insertion complexity. On the other hand,

294 International Journal of Parallel Programming (2023) 51:275–308

1 3

Ta
bl

e
1

 K
N

N
 d

ist
an

ce
 li

st
bu

ffe
r,
k
=
1
0

N
ew

 d
ist

an
ce

1
2

3
4

5
6

7
8

9
10

Fi
rs

t 1
0

di
st

an
ce

s a
re

 a
pp

en
de

d
to

 th
e

lis
t

5.
1

5.
1

2.
7

5.
1

2.
7

4.
0

5.
1

2.
7

4.
0

2.
8

5.
1

2.
7

4.
0

2.
8

11
.2

5.
1

2.
7

4.
0

2.
8

11
.2

1.
7

5.
1

2.
7

4.
0

2.
8

11
.2

1.
7

3.
5

5.
1

2.
7

4.
0

2.
8

11
.2

1.
7

3.
5

0.
6

5.
1

2.
7

4.
0

2.
8

11
.2

1.
7

3.
5

0.
6

0.
1

5.
1

2.
7

4.
0

2.
8

11
.2

1.
7

3.
5

0.
6

0.
1

D
ist

an
ce

s s
m

al
le

r t
ha

n
th

e
m

ax
im

um
 d

ist
an

ce
,

re
pl

ac
e

it
7.

1
5.

1
2.

7
4.

0
2.

8
11

.2
1.

7
3.

5
0.

6
0.

1
7.
1

8.
5

5.
1

2.
7

4.
0

2.
8

8.
5

1.
7

3.
5

0.
6

0.
1

7.
1

6.
9

5.
1

2.
7

4.
0

2.
8

6.
9

1.
7

3.
5

0.
6

0.
1

7.
1

1.
6

5.
1

2.
7

4.
0

2.
8

6.
9

1.
7

3.
5

0.
6

0.
1

1.
6

5.
8

5.
1

2.
7

4.
0

2.
8

5.
8

1.
7

3.
5

0.
6

0.
1

1.
6

295

1 3

International Journal of Parallel Programming (2023) 51:275–308

max-Heap insertion complexity is O(log(n)) and for large enough k max-Heap
implementations are expected to outperform KNN-DLB ones.

4 Experimental Study

We run a large set of experiments to quantify the performance of our proposed
algorithms. All experiments query a variety of dataset volumes of synthetic and real
data. We are using double precision accuracy for the points representation in 3D
space (Algorithm 9) to be able to discriminate among small distance differences.

All experiments were performed on a Dell G5 15 laptop, running Ubuntu 20.04,
equipped with a six core (12-thread) Intel I7 CPU, 16 GB of main memory, a 1TB
SSD disk used and a NVIDIA Geforce 2070 (Mobile Max-Q) GPU with 8 GB of
device memory (as a representative setup for everyday computing). CUDA version
11.2 was used.

We run experiments to compare the performance of k-NN queries regarding
execution time, as well as memory utilization. We tested a total of ten algorithms.

 1. DBF, Disk Brute-force using KNN-DLB buffer
 2. DBF Heap, Disk Brute-force using max-Heap buffer
 3. DPS, Disk Plane-sweep using KNN-DLB buffer
 4. DPS Heap, Disk Plane-sweep using max-Heap buffer

Fig. 5 k-NN max-heap buffer

296 International Journal of Parallel Programming (2023) 51:275–308

1 3

 5. DSPP, Disk Symmetric Progression Partitioning using KNN-DLB buffer
 6. DSPP Heap, Disk Symmetric Progression Partitioning using max-Heap buffer
 7. DSPP+, Improved Disk Symmetric Progression Partitioning using KNN-DLB

buffer
 8. DSPP+ Heap, Improved Disk Symmetric Progression Partitioning using max-

Heap buffer
 9. DSPP+P, Improved Disk Symmetric Progression Partitioning with pinned

memory using KNN-DLB buffer
 10. DSPP+P Heap, Improved Disk Symmetric Progression Partitioning with pinned

memory using max-Heap buffer

To the best of our knowledge, these are the first methods to address the k-NN query
on SSD-resident data, that can process big reference and query datasets.

The experimental study is divided in two main subsection. The first one is based
on synthetic data and the second one on real data.

4.1 Synthetic Data Experiments

In this section we will evaluate the performance of our methods, based only on
synthetic data. All the datasets were created using the SpiderWeb [44] generator.
This generator allows users to choose from a wide range of spatial data distributions
and configure the size of the dataset and its distribution parameters. This generator
has been successfully used in research work to evaluate index construction, query
processing, spatial partitioning, and cost model verification [45].

Table 2 lists all the generated datasets. For the reference dataset, we created five
datasets using the “Bit” distribution (Fig. 6 right), with file sizes ranging from 32 to
160 MB. The reference points dataset size ranges from 1 points to 5 M points. For
the query points dataset we created five “Uniform" datasets (Fig. 6, left) ranging
from 100 to 500 K points.

Table 2 SpiderWeb dataset
generator parameters

Distribution Size Seed File size Dataset usage

Bit 1 M 1 32 MB Reference
Bit 2 M 2 64 MB Reference
Bit 3 M 3 96 MB Reference
Bit 4 M 4 128 MB Reference
Bit 5 M 4 160 MB Reference
Uniform 100 K 6 3.2 MB Query
Uniform 200 K 7 6.4 MB Query
Uniform 300 K 8 9.6 MB Query
Uniform 400 K 9 12.8 MB Query
Uniform 500 K 10 16 MB Query

297

1 3

International Journal of Parallel Programming (2023) 51:275–308

Three different sets of experiments on synthetic data were conducted. In the first
one, we scaled the reference dataset size, in the second one we scaled the query
dataset size and in the third one we scaled the number of the nearest neighbors, k.
We also evaluated the performance of the two alternative list buffers to clarify the
pros and cons of using KNN-DLB and max-Heap buffer.

4.1.1 Reference Dataset Scaling

In our first series of tests, we used the “Bit” distribution synthetic datasets for the
reference points. The size of the reference point dataset ranged from 1 M points
to 5 M points. Furthermore, we used a fixed query dataset of 100 K points, with
“Uniform” distribution and a k value of 20, in order to focus only on the reference
dataset scaling.

In Fig. 7, we can see the experiment results chart. In these results, we notice that
the execution time of the Brute-force methods is larger than the rest of the methods.
Apart from the Brute-force methods, all other methods have quite similar executions
times, for each reference dataset size. For example, for the 1 M dataset the execution
times range from 6.81 s for DBF Heap (slowest) to 2.20 s for the DSPP (fastest). The
execution times increase proportionally to the reference dataset size. As expected,
we get the slowest execution times for the 5 M dataset, ranging from 34.41 s for
DBF Heap to 9.08 for the DSPP Heap method.

In order to compare the performance of our methods in Table 3, we present the
execution speedup gain, using the slowest method (DFB) as the baseline. Every
number in this table represents the method gain relative to the base method DBF
(how many times faster than DBF). As expected, the DBF Heap method gain is close
to 1, meaning that the DBF and DBF Heap are performing equally in all reference
datasets. The execution speedup gain of the other methods ranges from 2.08 (times
faster) in DPS for the 1 M reference dataset, to 3.69 (times faster) in DSPP for the
5 M reference dataset. We should notice that the method DSPP+P, is the second

Fig. 6 Experiment distributions, Left = Uniform, Right = Bit

298 International Journal of Parallel Programming (2023) 51:275–308

1 3

fastest method, performing slightly worse than DSPP, and achieved a speedup of
3.56 for the 4 M reference dataset.

The reference dataset scaling experiments reveal that the Brute-force methods
did not perform well. This behaviour is expected because of the naive Brute-force
algorithm of these methods. The DSPP method is faster than the DPS one, con-
firming our results from our previous publications [2, 28]. The interesting part of
this experiment is that our new methods DSPP+ and DSPP+P performed about
equally to DSPP, despite their query partitioning algorithm adding an overall over-
head by repeatedly reading the query dataset. Especially DSPP+P performance
is equivalent to DSPP. As we experimentally validate, this overhead was lever-
aged by the concurrent kernel execution invocation of DSPP+P. Furthermore, we
can observe that the two k-NN distance list buffers, KNN-DLB and max-Heap,

Fig. 7 Reference scaling experiment (Y-axis in sec.)

Table 3 Reference scale gain,
base method DBF

Bold values indicate the methods with the highest gain

Method 1 M 2 M 3 M 4 M 5 M

DBF Heap 0.97 0.95 1.04 1.00 0.97
DPS 2.08 2.40 2.51 2.62 2.76
DPS Heap 2.10 2.40 2.50 2.61 2.72
DSPP 3.00 3.28 3.46 3.59 3.69
DSPP Heap 2.74 2.93 3.25 3.38 3.44
DSPP+ 2.29 2.47 2.62 2.71 2.74
DSPP+ Heap 2.24 2.38 2.59 2.68 2.74
DSPP+P 2.96 3.15 3.43 3.56 3.44
DSPP+P Heap 2.78 2.94 3.28 3.42 3.49

299

1 3

International Journal of Parallel Programming (2023) 51:275–308

perform equally in all reference datasets. The value of k = 20 is explicitly selected
to be small enough so that the buffer usage does not affect the experimental
results. The difference between the two buffers will be quantified in the k scaling
experiment later on.

4.1.2 Query Dataset Scaling

In our second set of experiments, we also used the “Uniform” distribution synthetic
datasets for the query points. The size of the query point dataset ranged from 100 K
points to 500 K points. Furthermore, we used a fixed reference dataset of 1 M
points, with “Bit" distribution and a k value of 20, in order to focus only on the
query dataset scaling.

In Fig. 8, we can see the experiment results chart. In these results, we see similar
results as in our previous experiment. The execution time of the Brute-force methods
is higher than the rest of our methods. All the other methods have comparable
executions times, for each reference dataset size. For example, for the 200 K query
dataset the execution times range from 13.72 s for DBF Heap (slowest) to 4.28 s
for DSPP (fastest). The execution times increase proportionally to the query dataset
size. We get the highest execution times for the 500 K dataset, ranging from 35.87 s
for DBF Heap to 11.54 for the DSPP method.

To compare the performance of our methods, in Table 4 we present the speedup,
using the slowest method (DFB) as the baseline. Similarly to the previous experi-
ment, the two Brute-force methods are again performing identically for all query
datasets. The speedup of the other methods ranges from 2.07 (times faster) in DPS
for the 200 K dataset, to 3.06 (times faster) in DSPP for the 400 K query dataset.
As was also the case for our reference scale experiment, we notice that the method

Fig. 8 Query scaling experiment (Y-axis in sec.)

300 International Journal of Parallel Programming (2023) 51:275–308

1 3

DSPP+P, is the second fastest method, performing slightly worse than DSPP, and
achieved a speedup gain of 2.96 for the 100 K query dataset.

The query dataset scaling experiment revealed once again that the Brute-force
methods did not perform well for the same reasons as in our first experiment. The
DSPP method is faster than the DPS one, confirming our results from our previous
publications. Our new methods DSPP+ and DSPP+P performed about equally to
DSPP, even if their query partitioning algorithm is adding an overall overhead by
repeatedly reading the query dataset. Especially DSPP+P performance is equivalent
to DSPP. We confirm again in this experiment that this overhead was leveraged by
the concurrent kernel execution invocation of DSPP+P.

4.1.3 k Scaling

The k scaling is our third experiment. In these tests we used k values of 20, 40, 60,
80 and 100. For the reference points we used the 1 M “Bit” distribution synthetic
dataset and for the query dataset 100K points, with “Uniform” distribution.

In Fig. 9, we can see the experiment results chart. The results in this experiment
are quite different than the previous experiments. The execution time of the
Brute-force methods is higher than the rest of our methods and we can see that
the execution time of all KNN-DLB methods (DBF, DPS, DSPP, DSPP+ and
DSPP+P), tend to increase in exponential way for larger k values. On the other hand,
the execution time of all heap methods are increasing in a linear way. For k = 100
the execution times range from 10.79 s for DBF (slowest) to 3.76 s for DSPP+P
(fastest).

In Table 5, we compare the execution performance of our methods, we present
the execution speed gain, based on our slowest method DFB. In contrary to our pre-
vious experiments the two Brute-force methods are not performing identically; the
DBF Heap method is faster for larger k values. Generally all heap methods perform
clearly faster for larger k values. The execution gain of our methods for k = 100 ,
ranges from 1.25 (times faster) in DBF Heap, to 2.87 (times faster) in DSPP+P

Table 4 Query scale gain, base
method DBF

Bold values indicate the methods with the highest gain

Method 100 K 200 K 300 K 400 K 500 K

DBF Heap 0.97 0.97 0.99 0.94 0.97
DPS 2.08 2.07 2.09 2.11 2.06
DPS Heap 2.10 2.12 2.14 2.17 2.10
DSPP 3.00 2.96 2.99 3.06 3.03
DSPP Heap 2.74 2.78 2.83 2.88 2.90
DSPP+ 2.29 2.27 2.26 2.30 2.13
DSPP+ Heap 2.24 2.21 2.20 2.24 2.23
DSPP+P 2.96 2.82 2.87 2.89 2.88
DSPP+P Heap 2.78 2.70 2.71 2.76 2.78

301

1 3

International Journal of Parallel Programming (2023) 51:275–308

Heap. In this experiment the DSPP+P method is a clear winner. It is better than DSP
in all k values except the smallest one, k = 20.

In the k scaling experiment the heap methods stand out. For larger k values the
max-Heap buffer is a much faster algorithm, because of its O(log(n)) complexity.
Another interesting result is that DSPP+P Heap is overtaking even the DSPP Heap
method. When we increase the k value, the k-NN calculation is even more compu-
tationally bound. The use of CUDA streams and the associated data transfers/kernel
execution overlap, further accelerates this GPU costly operation, resulting in lower
execution times, even if the DSPP+P methods repeatedly read the query dataset and
transfer it to device memory. We confirm again in this experiment that the read over-
head was successfully leveraged by the concurrent kernel execution invocation of
DSPP+P.

Fig. 9 k scaling experiment (Y-axis in sec.)

Table 5 K scale gain, base
method DBF

Bold values indicate the methods with the highest gain

Method K = 20 K = 40 K = 60 K = 80 K = 100

DBF Heap 1.05 1.04 1.08 1.14 1.25
DPS 2.08 1.71 1.55 1.43 1.34
DPS Heap 2.10 1.90 1.91 1.98 2.12
DSPP 3.00 2.45 2.20 1.98 1.84
DSPP Heap 2.74 2.50 2.49 2.55 2.77
DSPP+ 2.29 1.98 1.78 1.62 1.50
DSPP+ Heap 2.24 2.06 2.14 2.24 2.45
DSPP+P 2.96 2.38 2.13 1.90 1.72
DSPP+P Heap 2.78 2.55 2.59 2.67 2.87

302 International Journal of Parallel Programming (2023) 51:275–308

1 3

4.2 Real Data Experiments

In this section we will present three real data experiments, using the real datasets
documented in Sect. 4. We used three big real datasets [46], which represent water
resources of North America (Water Dataset) consisting of 5.8M line-segments and

Table 6 Real datasets Description Size File size Dataset usage

Water 5 M 186.8 MB Reference or query
Parks 11.5 M 368.1 MB Reference or query
Buildings 114.5 M 2.8 GB Reference or query

Fig. 10 Real data experiment (Y-axis in sec.)

Table 7 Real data gain, base
method DBF

Bold values indicate the methods with the highest gain

Method Gain

DBF Heap 0.94
DPS 3.84
DPS Heap 3.77
DSPP 17.00
DSPP Heap 16.63
DSPP+ 31.42
DSPP+ Heap 31.85
DSPP+P 57.23
DSPP+P Heap 54.79

303

1 3

International Journal of Parallel Programming (2023) 51:275–308

world parks or green areas (Parks Dataset) consisting of 11.5 M polygons and world
buildings (Buildings Dataset) consisting of 114.7 M polygons (Table 6). To create
sets of points, we used the centers of the line-segment MBRs from Water and the
centroids of polygons from Park and Buildings. For all datasets the 3-dimensional
data space is normalized to have unit length (values [0, 1] in each axis).

These experiments will evaluate our new methods performance when targeting
real life data. The first of them queries only the smallest datasets, in order to
compare our new methods performance with our previous ones. The second
and third experiments query the larger real datasets, which our previous methods
couldn’t target.

4.2.1 Real Experiment 1: Parks 11.5 M, Water 5.8 M

In Fig. 10, we can see the first real data experiment results chart. The results in this
experiment are similar to the reference and query scaling experiments. The execu-
tion time of the Brute-force methods is much larger than the rest of our methods.
The execution times range from 5117 s for DBF (slowest method) to just 93 s for
DSPP+P Heap (fastest method). When data volumes increase, the streaming ker-
nel execution implementation in the DSPP+P methods, clearly outperforms all other
methods, even the DSPP ones. In Table 7 we observe that DSPP+P was 57.23 times
faster than DBF. Even in comparison to the best existing method (DSPP), the pro-
posed method (DSPP+P) is 3.36 times faster.

4.2.2 Real Experiment 2: Buildings 114.7 M, Water 5.8 M

The next real data experiment is presented in Fig. 11. In this experiment we eval-
uated only our new methods; our previous ones could not target a query dataset

Fig. 11 Real data experiment (Y-axis in sec.)

304 International Journal of Parallel Programming (2023) 51:275–308

1 3

so large, because its footprint exceeds device memory capacity. The execution
times range from 1500 s for DSPP+ (slowest method) to 807 s for DSPP+P Heap
(fastest method). Once again, when data volumes increase, the streaming kernel
execution implementation in the DSPP+P methods, clearly outperforms all other
methods.

4.2.3 Real Experiment 3: Buildings 114.7 M, Parks 11.5 M

The last real data experiment is presented in Fig. 12. In this experiment we evaluated
again only our new methods. The new methods successfully processed these large
datasets, which were the largest in our experiments. The execution times range from
4010 s for DSPP+ (slowest method) to 1930 s for DSPP+P Heap (fastest method).
Our results are once more validated, when data volumes increase, the streaming ker-
nel execution implementation in the DSPP+P methods, is the performance winner.

5 Conclusions and Future Plans

In this paper, we introduced the first GPU-based algorithms for parallel processing
the k-NN query on reference and query big spatial data stored on SSDs, utilizing
the Symmetric Progression Partitioning technique. Our new algorithms exploit
the manycore GPU architecture, the concurrent kernel execution feature of Nvidia
GPUs, utilize the device memory efficiently, take advantage of the speed and
storage capacity of SSDs and, thus, process efficiently big reference and query
datasets. Through an extensive experimental evaluation on synthetic and real
datasets, we highlighted that the DSPP+P algorithm and especially its Heap

Fig. 12 Real data experiment (Y-axis in sec.)

305

1 3

International Journal of Parallel Programming (2023) 51:275–308

variation, when using large k values and/or larger dataset volumes, is a clear
performance winner.

Our future work plans include:

• development of k-NN GPU-based algorithms for big SSD resident data which
exploit the use of indexes [47] to further speed-up processing,

• implementation of join queries (like k-closest pairs [48]), based on techniques
utilized in this paper.

Acknowledgements The work of M. Vassilakopoulos and A. Corral was funded by the EU ERDF and the
Andalusian Government (Spain) under the project UrbanITA (ref. PY20_00809) and the Spanish Minis-
try of Science and Innovation under the R &D project HERMES (ref. PID2021-124124OB-I00).

Funding Open access funding provided by HEAL-Link Greece. The work of M. Vassilakopoulos and A.
Corral was funded by the EU ERDF and the Andalusian Government (Spain) under the project UrbanITA
(ref. PY20_00809) and the Spanish Ministry of Science and Innovation under the R &D project
HERMES (ref. PID2021-124124OB-I00).

Declarations

Conflict of interest The authors have no competing interests to declare that are relevant to the content of
this article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco
mmons. org/ licen ses/ by/4. 0/.

References

 1. Barlas, G.: Multicore and GPU Programming: An Integrated Approach, 1st edn. Morgan Kaufmann,
Los Altos (2014)

 2. Velentzas, P., Vassilakopoulos, M., Corral, A.: GPU-based algorithms for processing the k nearest-
neighbor query on disk-resident data. In: MEDI Conference, pp. 264–278 (2021). https:// doi. org/ 10.
1007/ 978-3- 030- 78428-7_ 21

 3. Singh, D.P., Joshi, I., Choudhary, J.: Survey of GPU based sorting algorithms. Int. J. Parallel Prog.
46(6), 1017–1034 (2018). https:// doi. org/ 10. 1007/ s10766- 017- 0502-5

 4. Garcia, V., Debreuve, E., Barlaud, M.: Fast k nearest neighbor search using GPU. In: CVPR Work-
shops, pp. 1–6 (2008). https:// doi. org/ 10. 1109/ CVPRW. 2008. 45631 00

 5. Kuang, Q., Zhao, L.: A practical GPU based kNN algorithm. In: SCSCT Conference, pp. 151–155
(2009)

 6. Liang, S., Wang, C., Liu, Y., Jian, L.: CUKNN: a parallel implementation of k-nearest neighbor on
CUDA-enabled GPU. In: YC-ICT Conference, pp. 415–418 (2009). https:// doi. org/ 10. 1109/ YCICT.
2009. 53823 29

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-030-78428-7_21
https://doi.org/10.1007/978-3-030-78428-7_21
https://doi.org/10.1007/s10766-017-0502-5
https://doi.org/10.1109/CVPRW.2008.4563100
https://doi.org/10.1109/YCICT.2009.5382329
https://doi.org/10.1109/YCICT.2009.5382329

306 International Journal of Parallel Programming (2023) 51:275–308

1 3

 7. Garcia, V., Debreuve, E., Nielsen, F., Barlaud, M.: K-nearest neighbor search: fast GPU-based
implementations and application to high-dimensional feature matching. In: ICIP Conference, pp.
3757–3760 (2010). https:// doi. org/ 10. 1109/ ICIP. 2010. 56540 17

 8. Barrientos, R.J., Gómez, J.I., Tenllado, C., Prieto-Matías, M., Marín, M.: kNN query processing in
metric spaces using GPUs. In: Euro-Par Conference, pp. 380–392 (2011). https:// doi. org/ 10. 1007/
978-3- 642- 23400-2_ 35

 9. Arefin, A.S., Riveros, C., Berretta, R., Moscato, P.: GPU-FS-kNN: a software tool for fast and scal-
able kNN computation using GPUs. PLoS ONE 7(8), 1–13 (2012). https:// doi. org/ 10. 1371/ journ al.
pone. 00440 00

 10. Komarov, I., Dashti, A., D’Souza, R.M.: Fast k-NNG construction with GPU-based quick multi-
select. PLoS ONE 9(5), 1–9 (2014). https:// doi. org/ 10. 1371/ journ al. pone. 00924 09

 11. Li, S., Amenta, N.: Brute-force k-nearest neighbors search on the GPU. In: SISAP Conference, pp.
259–270 (2015). https:// doi. org/ 10. 1007/ 978-3- 319- 25087-8_ 25

 12. Gutiérrez, P.D., Lastra, M., Bacardit, J., Benítez, J.M., Herrera, F.: GPU-SME-kNN: scalable and
memory efficient kNN and lazy learning using GPUs. Inf. Sci. 373, 165–182 (2016). https:// doi. org/
10. 1016/j. ins. 2016. 08. 089

 13. Barrientos, R.J., Millaguir, F., Sánchez, J.L., Arias, E.: GPU-based exhaustive algorithms pro-
cessing kNN queries. J. Supercomput. 73(10), 4611–4634 (2017). https:// doi. org/ 10. 1007/
s11227- 017- 2110-y

 14. Riquelme, J.A., Barrientos, R.J., Hernández-García, R., Navarro, C.A.: An exhaustive algorithm
based on GPU to process a kNN query. In: SCCC Conference, pp. 1–8 (2020). https:// doi. org/ 10.
1109/ SCCC5 1225. 2020. 92812 31

 15. Barrientos, R.J., Riquelme, J.A., Navarro, R.H.-G.C.A., Soto-Silva, W.: Fast kNN query processing
over a multi-node GPU environment. J. Supercomput. 78(2), 3045–3071 (2022). https:// doi. org/ 10.
1007/ s11227- 021- 03975-2

 16. Velentzas, P., Vassilakopoulos, M., Corral, A.: In-memory k nearest neighbor GPU-based query
processing. In: GISTAM Conference, pp. 310–317 (2020). https:// doi. org/ 10. 5220/ 00097 81903
100317

 17. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann Series
in Data Management Systems, Academic Press, London (2006)

 18. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM
18(9), 509–517 (1975). https:// doi. org/ 10. 1145/ 361002. 361007

 19. Zhou, K., Hou, Q., Wang, R., Guo, B.: Real-time kd-tree construction on graphics hardware. ACM
Trans. Graph. 27(5), 126 (2008). https:// doi. org/ 10. 1145/ 14090 60. 14090 79

 20. Gieseke, F., Heinermann, J., Oancea, C.E., Igel, C.: Buffer k-d trees: processing massive nearest
neighbor queries on GPUs. In: ICML Conference, pp. 172–180 (2014)

 21. Leite, P.J.S., Teixeira, J.M.X.N., Farias, T.S.M.C., Reis, B., Teichrieb, V., Kelner, J.: Nearest neigh-
bor searches on the GPU—a massively parallel approach for dynamic point clouds. Int. J. Parallel
Prog. 40(3), 313–330 (2012). https:// doi. org/ 10. 1007/ s10766- 011- 0184-3

 22. Mei, G., Xu, N., Xu, L.: Improving GPU-accelerated adaptive IDW interpolation algorithm using
fast kNN search. Springerplus 5(1), 1389 (2016). https:// doi. org/ 10. 1186/ s40064- 016- 3035-2

 23. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: SIGMOD Conference, pp.
47–57 (1984). https:// doi. org/ 10. 1145/ 602259. 602266

 24. You, S., Zhang, J., Gruenwald, L.: Parallel spatial query processing on GPUs using r-trees. In: BigS-
patial@SIGSPATIAL Workshop, pp. 23–31 (2013). https:// doi. org/ 10. 1145/ 25349 21. 25349 49

 25. Nam, M., Kim, J., Nam, B.: Parallel tree traversal for nearest neighbor query on the GPU. In: ICPP
Conference, pp. 113–122 (2016). https:// doi. org/ 10. 1109/ ICPP. 2016. 20

 26. White, D.A., Jain, R.C.: Similarity indexing with the SS-tree. In: ICDE Conference, pp. 516–523
(1996). https:// doi. org/ 10. 1109/ ICDE. 1996. 492202

 27. Aji, A., Vo, H., Wang, F.: Effective spatial data partitioning for scalable query processing. CoRR
1–12 (2015). arXiv: 1509. 00910

 28. Velentzas, P., Vassilakopoulos, M., Corral, A.: A partitioning GPU-based algorithm for process-
ing the k nearest-neighbor query. In: MEDES Conference, pp. 2–9 (2020). https:// doi. org/ 10. 1145/
34159 58. 34330 71

 29. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. IEEE Trans. Big Data
7(3), 535–547 (2021). https:// doi. org/ 10. 1109/ TBDATA. 2019. 29215 72

https://doi.org/10.1109/ICIP.2010.5654017
https://doi.org/10.1007/978-3-642-23400-2_35
https://doi.org/10.1007/978-3-642-23400-2_35
https://doi.org/10.1371/journal.pone.0044000
https://doi.org/10.1371/journal.pone.0044000
https://doi.org/10.1371/journal.pone.0092409
https://doi.org/10.1007/978-3-319-25087-8_25
https://doi.org/10.1016/j.ins.2016.08.089
https://doi.org/10.1016/j.ins.2016.08.089
https://doi.org/10.1007/s11227-017-2110-y
https://doi.org/10.1007/s11227-017-2110-y
https://doi.org/10.1109/SCCC51225.2020.9281231
https://doi.org/10.1109/SCCC51225.2020.9281231
https://doi.org/10.1007/s11227-021-03975-2
https://doi.org/10.1007/s11227-021-03975-2
https://doi.org/10.5220/0009781903100317
https://doi.org/10.5220/0009781903100317
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/1409060.1409079
https://doi.org/10.1007/s10766-011-0184-3
https://doi.org/10.1186/s40064-016-3035-2
https://doi.org/10.1145/602259.602266
https://doi.org/10.1145/2534921.2534949
https://doi.org/10.1109/ICPP.2016.20
https://doi.org/10.1109/ICDE.1996.492202
http://arxiv.org/abs/1509.00910
https://doi.org/10.1145/3415958.3433071
https://doi.org/10.1145/3415958.3433071
https://doi.org/10.1109/TBDATA.2019.2921572

307

1 3

International Journal of Parallel Programming (2023) 51:275–308

 30. Wang, L., Huang, M., El-Ghazawi, T.A.: Exploiting concurrent kernel execution on graphic pro-
cessing units. In: HPCS Conference, pp. 24–32 (2011). https:// doi. org/ 10. 1109/ HPCSim. 2011.
59998 03

 31. Wende, F., Cordes, F., Steinke, T.: On improving the performance of multi-threaded CUDA applica-
tions with concurrent kernel execution by kernel reordering. In: SAAHPC Conference, pp. 74–83
(2012). https:// doi. org/ 10. 1109/ SAAHPC. 2012. 12

 32. Jiao, Q., Lu, M., Huynh, H.P., Mitra, T.: Improving GPGPU energy-efficiency through concurrent
kernel execution and DVFS. In: CGO Conference, pp. 1–11 (2015). https:// doi. org/ 10. 1109/ CGO.
2015. 70541 82

 33. Dai, H., Lin, Z., Li, C., Zhao, C., Wang, F., Zheng, N., Zhou, H.: Accelerate GPU concurrent kernel
execution by mitigating memory pipeline stalls. In: HPCA Conference, pp. 208–220 (2018). https://
doi. org/ 10. 1109/ HPCA. 2018. 00027

 34. Lin, Z., Dai, H., Mantor, M., Zhou, H.: Coordinated CTA combination and bandwidth partitioning
for GPU concurrent kernel execution. ACM Trans. Archit. Code Optim. 16(3), 23–12327 (2019).
https:// doi. org/ 10. 1145/ 33261 24

 35. Zhao, C., Gao, W., Nie, F., Wang, F., Zhou, H.: Fair and cache blocking aware warp scheduling for
concurrent kernel execution on GPU. Futur. Gener. Comput. Syst. 112, 1093–1105 (2020). https://
doi. org/ 10. 1016/j. future. 2020. 05. 023

 36. López-Albelda, B., Castro, F.M., González-Linares, J.M., Guil, N.: Flexsched: efficient scheduling
techniques for concurrent kernel execution on GPUs. J. Supercomput. 78(1), 43–71 (2022). https://
doi. org/ 10. 1007/ s11227- 021- 03819-z

 37. Zhao, C., Gao, W., Nie, F., Zhou, H.: A survey of GPU multitasking methods supported by hard-
ware architecture. IEEE Trans. Parallel Distrib. Syst. 33(6), 1451–1463 (2022). https:// doi. org/ 10.
1109/ TPDS. 2021. 31156 30

 38. Preparata, F.P., Shamos, M.I.: Computational Geometry—An Introduction. Texts and Monographs
in Computer Science, Springer, Berlin (1985)

 39. Hinrichs, K.H., Nievergelt, J., Schorn, P.: Plane-sweep solves the closest pair problem elegantly. Inf.
Process. Lett. 26(5), 255–261 (1988). https:// doi. org/ 10. 1016/ 0020- 0190(88) 90150-0

 40. Velentzas, P., Vassilakopoulos, M., Corral, A.: GPU-aided edge computing for processing the k
nearest-neighbor query on SSD-resident data. Internet of Things 15, 100428 (2021). https:// doi. org/
10. 1016/j. iot. 2021. 100428

 41. Velentzas, P., Moutafis, P., Mavrommatis, G.: An improved GPU-based algorithm for processing the
k nearest neighbor query. In: PCI Conference, pp. 372–375 (2020). https:// doi. org/ 10. 1145/ 34371
20. 34373 43

 42. NVIDIA: CUDA 7 Streams Simplify Concurrency (2015). https:// devel oper. nvidia. com/ blog/ gpu-
pro- tip- cuda-7- strea ms- simpl ify- concu rrency/ Accessed 11 Jan 2021

 43. Zhou, H., Bateni, S., Liu, C.: S3dnn : Supervised streaming and scheduling for GPU-accelerated real-
time DNN workloads. In: RTAS Conference, pp. 190–201 (2018). https:// doi. org/ 10. 1109/ RTAS.
2018. 00028

 44. Katiyar, P., Vu, T., Eldawy, A., Migliorini, S., Belussi, A.: Spiderweb: a spatial data generator on
the web. In: SIGSPATIAL Conference, pp. 465–468 (2020). https:// doi. org/ 10. 1145/ 33975 36. 34223
51

 45. Vu, T., Migliorini, S., Eldawy, A., Belussi, A.: Spatial data generators. In: SpatialGems—SIGSPA-
TIAL International Workshop on Spatial Gems, pp. 1–7 (2019). https:// doi. org/ 10. 1145/ 33912 34.
34212 34

 46. Eldawy, A., Mokbel, M.F.: Spatialhadoop: a mapreduce framework for spatial data. In: ICDE Con-
ference, pp. 1352–1363 (2015). https:// doi. org/ 10. 1109/ ICDE. 2015. 71133 82

 47. Roumelis, G., Velentzas, P., Vassilakopoulos, M., Corral, A., Fevgas, A., Manolopoulos, Y.: Paral-
lel processing of spatial batch-queries using xbr+-trees in solid-state drives. Clust. Comput. 23(3),
1555–1575 (2020). https:// doi. org/ 10. 1007/ s10586- 019- 03013-0

 48. Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: Closest pair queries in spatial
databases. In: ACM SIGMOD Conference, pp. 189–200 (2000). https:// doi. org/ 10. 1145/ 342009.
335414

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1109/HPCSim.2011.5999803
https://doi.org/10.1109/HPCSim.2011.5999803
https://doi.org/10.1109/SAAHPC.2012.12
https://doi.org/10.1109/CGO.2015.7054182
https://doi.org/10.1109/CGO.2015.7054182
https://doi.org/10.1109/HPCA.2018.00027
https://doi.org/10.1109/HPCA.2018.00027
https://doi.org/10.1145/3326124
https://doi.org/10.1016/j.future.2020.05.023
https://doi.org/10.1016/j.future.2020.05.023
https://doi.org/10.1007/s11227-021-03819-z
https://doi.org/10.1007/s11227-021-03819-z
https://doi.org/10.1109/TPDS.2021.3115630
https://doi.org/10.1109/TPDS.2021.3115630
https://doi.org/10.1016/0020-0190(88)90150-0
https://doi.org/10.1016/j.iot.2021.100428
https://doi.org/10.1016/j.iot.2021.100428
https://doi.org/10.1145/3437120.3437343
https://doi.org/10.1145/3437120.3437343
https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
https://doi.org/10.1109/RTAS.2018.00028
https://doi.org/10.1109/RTAS.2018.00028
https://doi.org/10.1145/3397536.3422351
https://doi.org/10.1145/3397536.3422351
https://doi.org/10.1145/3391234.3421234
https://doi.org/10.1145/3391234.3421234
https://doi.org/10.1109/ICDE.2015.7113382
https://doi.org/10.1007/s10586-019-03013-0
https://doi.org/10.1145/342009.335414
https://doi.org/10.1145/342009.335414

308 International Journal of Parallel Programming (2023) 51:275–308

1 3

Authors and Affiliations

Polychronis Velentzas1 · Michael Vassilakopoulos1 · Antonio Corral2 ·
Christos Antonopoulos1

 * Polychronis Velentzas
 cvelentzas@uth.gr

 Michael Vassilakopoulos
 mvasilako@uth.gr

 Antonio Corral
 acorral@ual.es

 Christos Antonopoulos
 cda@uth.gr

1 Department of Electrical and Computer Engineering, University of Thessaly, Sekeri & Cheiden
Str., 38334 Volos, Greece

2 Department of Informatics, University of Almeria, Carretera Sacramento, La Cañada de San
Urbano s/n, 04120 Almeria, Spain

	GPU-Based Algorithms for Processing the k Nearest-Neighbor Query on Spatial Data Using Partitioning and Concurrent Kernel Execution
	Abstract
	1 Introduction
	2 Related Work and Motivation
	2.1 Brute-Force Techniques
	2.2 Spatial Subdivision Techniques
	2.3 Similarity Techniques
	2.4 Concurrent Kernel Execution
	2.5 Motivation

	3 kNN Disk Algorithms
	3.1 Disk Brute-Force Algorithm
	3.2 Disk Plane-Sweep Algorithm
	3.3 Disk Symmetric Progression Partitioning
	3.4 Improved Disk Symmetric Progression Partitioning
	3.5 Improved Disk Symmetric Progression Partitioning with Pinned Memory
	3.6 k-NN Distance List Buffer
	3.7 k-NN Max-Heap Distance List Buffer

	4 Experimental Study
	4.1 Synthetic Data Experiments
	4.1.1 Reference Dataset Scaling
	4.1.2 Query Dataset Scaling
	4.1.3 k Scaling

	4.2 Real Data Experiments
	4.2.1 Real Experiment 1: Parks 11.5 M, Water 5.8 M
	4.2.2 Real Experiment 2: Buildings 114.7 M, Water 5.8 M
	4.2.3 Real Experiment 3: Buildings 114.7 M, Parks 11.5 M

	5 Conclusions and Future Plans
	Acknowledgements
	References

