
Vol.:(0123456789)

International Journal of Parallel Programming (2023) 51:109–127
https://doi.org/10.1007/s10766-022-00741-6

1 3

SMSG: Profiling‑Free Parallelism Modeling for Distributed
Training of DNN

Haoran Wang1,2 · Thibaut Tachon1 · Chong Li1 · Sophie Robert2 ·
Sébastien Limet2

Received: 10 September 2022 / Accepted: 21 November 2022 / Published online: 12 December 2022
© The Author(s) 2022

Abstract
The increasing size of deep neural networks (DNNs) raises a high demand for
distributed training. An expert could find good hybrid parallelism strategies, but
designing suitable strategies is time and labor-consuming. Therefore, automating
parallelism strategy generation is crucial and desirable for DNN designers. Some
automatic searching approaches have recently been studied to free the experts from
the heavy parallel strategy conception. However, these approaches all rely on a
numerical cost model, which requires heavy profiling results that lack portability.
These profiling-based approaches cannot lighten the strategy generation work due
to the non-reusable profiling value. Our intuition is that there is no need to estimate
the actual execution time of the distributed training but to compare the relative cost
of different strategies. We propose SMSG (Symbolic Modeling for Strategy Genera-
tion), which analyses the cost based on the communication and computation seman-
tics. With SMSG, the parallel cost analyses are decoupled from hardware charac-
teristics. SMSG defines cost functions for each kind of operator to quantitatively
evaluate the amount of data for computation and communication, which eliminates
the heavy profiling tasks. Besides, SMSG introduces how to apply functional trans-
formation by using the Third Homomorphism theorem to control the high search-
ing complexity. Our experiments show that SMSG can find good hybrid parallelism
strategies to generate an efficient training performance similar to the state of the art.
Moreover, SMSG covers a wide variety of DNN models with good scalability.
SMSG provides good portability when changing training configurations that a pro-
filing-based approach cannot.

Keywords Distributed training · Deep network networks · Parallel modeling ·
Symbolic cost model · Functional transformation · Performance analysis

 * Chong Li
 ch.l@huawei.com

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-022-00741-6&domain=pdf

110 International Journal of Parallel Programming (2023) 51:109–127

1 3

1 Introduction

The size of DNN models has been scaling up dramatically in recent years. Many
gigantic models achieved remarkable accuracy in domains like natural language
processing (NLP) [1], computer vision [2], recommendation systems [3], etc.
The execution of such a gigantic model requires tremendous computational and
memory resources [1]. To be able to train gigantic models in a distributed way,
different parallelism, like data parallelism [4], operator parallelism [5] and pipe-
line parallelism [6], have been proposed. Different parallelisms were initially
designed for different basic model structures. Mixing parallelisms [7] could pro-
vide a more general approach for modern complex structures and a more efficient
solution to train a DNN model than applying single parallelism.

Efficient mixing parallelism with hybrid strategies could be designed by
a human expert [7]. However, it is time and labor-consuming to find a well-
behavior strategy for each given DNN model. Experts usually spend months to
decide an efficient parallel strategy for a new DNN model. Therefore, the DNN
model researchers crucially desired to generate efficient strategy generation
systematically.

Several strategy searching approaches have been proposed, like [8–13], and
could provide effective hybrid strategies for their targeted DNN models. However,
these approaches exhibit poor generality for new-coming DNN models because
they are all based on a profiling-based cost model. The number of operators in the
modern DNN model is more than 1000 [1], and the number of possible partition
dimensions increases exponentially w.r.t the number of devices [13]. Therefore,
the profiling work takes a lot of time [8]. Besides, when the shapes or the sub-
structures of a DNN change or deal with a different hardware environment, the
profiling tasks must be prepared again. All these time-costly tasks result in the
poor generality of these approaches.

To avoid the limitations of the profiling-based approaches, we propose SMSG
(Symbolic Modeling for Strategy Generation), a profiling-free approach to
expand the generality of automatic strategy searching in this paper. Our main con-
tributions are the followings. (i) Based on the computation and communication
semantics, we build a symbolic cost model to quantitatively evaluate the relative
cost instead of predicting the execution time of different parallelism strategies.
This model separates the cost into two parts: the hardware parameters and the
computation and communication data quantity. We decouple the hardware char-
acteristics from the parallel execution details with this model. Therefore, we only
need to profile the hardware parameters rather than the execution time of each
operator under uncountable configurations.

(ii) Inspired by the Homomorphism theory, we derive the strategy generation
from the symbolic cost model and reduce the exponential complexity caused
by the redistribution cost between operators. Therefore, the searching time is
restricted to an acceptable range, contributing to our approach’s generality.

To validate the generality of SMSG, we conducted the following experi-
ments. We choose expert-designed strategies for targeted DNN models as the

111

1 3

International Journal of Parallel Programming (2023) 51:109–127

best performance baseline, and we choose TensorOpt [8], the method of operator-
level strategy searching, as the automatic searching approach baseline. First, we
compare the strategy quality of ResNet [2] on different hardware architectures.
With careful profiling, SMSG and TensorOpt can find the strategy with similar
end-to-end performance as the expert-designed strategy. However, the experi-
ments also show that profiling-based approaches like TensorOpt find strategies
with sub-optimal performance without carefully profiling results. Moreover, we
tested SMSG on varieties of DNNs including ResNet50/101/152, Wide & Deep
[3], Bert [14], GPT-3 [1], and T5 [15]. The similar performance of the expert-
designed strategy validates the generality of SMSG.

2 Modeling the Cost of Distributed Training

2.1 Distributed Strategies Searching

DNN training aims to find proper parameters to predict results from new inputs. A
training iteratively executes Forward Propagation (FPG) and Backward Propaga-
tion (BPG). An FPG computes a batch of inputs using current parameters to predict
results; a BPG starts from the derivative of the last operator back to the derivative of
the first operator, computes the gradients, and updates the parameters according to
the Loss. The input data of a DNN model is always processed in a batch, i.e. dozens
or hundreds of data items are executed simultaneously in an iteration step.

A DNN model could be represented as a computational graph, which is a directed
acyclic graph (DAG), where vertices are the operators and edges connected to the
operators signify the dataflow direction in the graph. Operators are DNN-level
mathematical computations such as Matrix Multiplication (MatMul), Convolution
(Conv), Element-wise operator (Ele-W, e.g. Add/Mul), etc. The data of DNN train-
ing is tensor structured as a multi-dimension array. The tensor dimension, which
organizes data (e.g. an image, a sentence, or a vector of features) in a batch, is called
batch dimension.

DNN training can be parallelized differently. In the paper, we take the following
most used parallelisms as examples:

• Data parallelism partitions a batch into several mini-batches onto multi-devices
while each device owns the same entire DNN models. Data parallelism is effi-
cient for the DNNs with a small parameter size because there is no extra com-
munication cost except the parameter updating at the end of each step (training
iteration). The cost of parameter updating corresponds to the qp in Sect. 2.3.
However, gigantic state-of-the-art models can have trillions of parameters [1]
where data parallelism suffers from high parameter updating costs.

• Operator parallelism splits the other dimension except for the batch dimension
of the operator, which causes extra intra-communication, which corresponds to
the qc . The number of possible dimensions of operator parallelism for a single
operator is enormous, so the analysis of the intra-communication cost is compli-

112 International Journal of Parallel Programming (2023) 51:109–127

1 3

cated. Besides, different dimensions partitioned for connected operator generates
data redistribution, corresponding to the qr.

Figure 1 shows a computational example composed by two MatMul. The first
MatMul is partitioned along its batch dimension according to Data Parallelism. In
contrast, the second one is partitioned along the vertical dimension of its second
input tensor, which is one kind of model parallelism. It can be conducted from
this graph that the output of the first MatMul is the same tensor as the first input
of the second MatMul. Data redistribution is generated because of the mismatch
of the data partitioning.

Deep Learning (DL) frameworks [16–18] can accelerate the development of
DNN models by systematically generating execution code from a computational
graph. Advanced frameworks can even automatically insert communication for
distributed training from parallelism strategies. A parallelism strategy denotes
along which dimensions the tensors of an operator are partitioned, as shown in
Fig. 3.

Deciding on a suitable hybrid parallelism strategy is difficult for the following
reasons: (i) Different types of operators may prefer different parallelism strate-
gies. For example, it is not suitable to partition the kernel tensor of a Conv op
because the shape of the kernel is usually 3 ∗ 3 or 5 ∗ 5 . A common practice for
Conv op is to partition it along its batch dimension (data parallelism) or channel
dimension (one of the possible operator parallelism strategies) [2]. (ii) Besides,
the shape of the operators also affects the strategy choices [8]. A MatMul op is
more suitable for data parallelism when its parameter tensor is small and should
be configured as operator parallelism when its parameter tensor is very large. (iii)
The operators are not executed separately. They are all connected in the com-
putational graph via the edges [19]. The output tensor of an operator is also the
input tensor of its successive operator. If the parallel strategies differ for these
two operators, the tensor needs to be redistributed in the cluster, which generates
additional cost and should also be considered.

Due to these difficulties, it is time and labor-consuming to design efficient par-
allelism strategies according to researchers’ expertise and experiments. Moreo-
ver, expert-designed hybrid parallelism usually returns bad performances when
migrated to new DNN models. Therefore, systematic strategy searching has
become a crucial research topic.

Fig. 1 Simplest computational
graph with DP/MP examples

113

1 3

International Journal of Parallel Programming (2023) 51:109–127

2.2 Profiling‑Based Modeling

Many parallelism strategy generators have been proposed recently: OptCNN [11],
ToFu [13], TensorOpt [8], etc. OptCNN supports automatic operator-level (data par-
allelism and operator parallelism) parallel strategy generation for each layer (a group
of operators to perform one object) in a neural network with a numerical cost model
and a dynamic programming algorithm. ToFu and TensorOpt extend OptCNN to
generate strategies for each operator. The results of these works show the feasibility
and the potential of automatic parallelism strategy generation.

The principal idea of distributed cost modeling is to describe the time consump-
tion of distributed training. Related works [8, 12] try to build a general cost model
to predict the actual execution time. They compare the predicted time of different
parallelism strategies of the given DNN on a specific hardware platform and choose
the strategy with the lowest predicted time. Let us take OptCNN [11] as an example
since other solutions are extensions of it.

A computational graph G = (V ,E) is defined by the vertices set V such that
vi ∈ V is an operator and the edges set E such that eij represents the dataflow direc-
tion between vi and vj . The hybrid parallelism strategy S of the Graph G is defined
as the set of operator-level strategies. Let Op an operator, if n denotes its number
of input tensors, SOp = {si, 1 ≤ i ≤ n} where si = [xd1, xd2,…] is a set of integer to
define how to partition each tensor of di dimension.

The predicted global execution time T is defined as follows:

• te(vi, Svi ,D) is the time to execute the operator vi under its strategy. It includes the
time for local computation and the communication time caused by the partition
strategy. te is an average time measured from several executions of the operator vi
profiled with its strategy under hardware environment D.

• tp denotes the parameter updating time at the end of each iteration (after back-
ward propagation). Parameter updating is usually implemented by all-reduce,
requiring the same profiling method as te.

• tr , the redistribution cost between two connected operators vi, vj , is usually esti-
mated by the multiplication of the data size and the known communication band-
width.

This modeling methodology describes the total cost generated from the distributed
training. Experiments show that optimal hybrid strategies are found in this way.
However, OptCNN can only search layer-level strategies; Tofu/TensorOpt searches
operator strategies only for small DNNs. The main limitation of these modeling
methods is that they require inevitable preparation work to profile the operator
under different configurations. New types of DNNs come out today, which also car-
ries out new types of operator and partition dimensions. This modeling methodol-
ogy becomes unrealistic for the following reasons: (i) A computational graph may

(1)T(G,S,D) =
∑

vi∈V

(
te(vi, Svi ,D) + tp(vi, Svi ,D)

)
+

∑

eij∈E

tr(eij, Svi , Svj ,D)

114 International Journal of Parallel Programming (2023) 51:109–127

1 3

contain thousands of operators. Even the operators could be classed into dozens of
types, but profiling works are required when the shape of the operator changes. (ii)
For one operator, all the dimensions of its tensors are splittable, thus causing a poly-
nomial search space, making the profiling work heavy. (iii) Profiling results of an
operator are heavily dependent on the hardware. Re-profiling is needed when the
type, number of the accelerator, or cluster connections change.

Due to the heavy preparation work, these profiling-based modeling methods lack
portability and generality. As a result, a more general method for new DNNs with
different environments is demanded.

2.3 Profiling‑Free Modeling

The profiling task is inevitable for these approaches because, from an AI expert’s
point of view, the operator is the basic unit of performance modeling that cannot be
split. As a result, te(vi, Svi ,D), tp(vi, Svi ,D) are unsplittable and the values could only
be estimated through profiling.

Our insight is to model the cost through a parallel computing model like the
bridging model of Valiant [20]. We model the computation and communication
costs caused by parallel strategy instead of the execution time of operators and
edges. With such a modeling methodology, the parallel execution analysis can be
decoupled with the hardware environment, which is critical in avoiding the heavy
profiling task. Besides, we do not need to compare the real predicted time to eval-
uate the performance of hybrid parallelism strategies S . The relative value could
compare the performance.

Based on what has been presented above, we propose the following symbolic cost
model as a metric to compare the performance of two strategies S on a computa-
tional graph G:

In this model, the variables could be classified into two categories as follows:

• Profiled Hardware Parameters: w, g denote the accelerator’s real-time computa-
tion and communication capacities. The calibrated FLOPS and bandwidth usu-
ally cannot be fully used, and these two values are obtained through profiling the
hardware environment.

• Data Quantity Function Without Profiling: qx(vi, Svi), qc(vi, Svi) and qp(vi, Svi) are
respectively the computation quantity and intra-communication caused by paral-
lelism and parameter updating communication for an operator vi under the strat-
egy Svi . qr(e, Svi , Svj) denotes the quantity of data redistribution caused by con-
flicting strategy of two connected operators.

(2)

C(G,S) =
∑

vi∈V

(
w × qx(vi, Svi) + g × (qc(vi, Svi) + qp(vi, Svi))

)

+
∑

eij∈E

g × qr(eij, Svi , Svj)

115

1 3

International Journal of Parallel Programming (2023) 51:109–127

The hardware features and parallel costs are separated with this symbolic modeling
method. The computation and communication capacities w, g can be estimated by
profiling the hardware. The quantities qx, qc, qp , and qr can be symbolically analyzed
without profiling.

Various new DNNs have come out in recent years, but they are all based on
20+ computational operators (e.g., MatMul, Conv, Etc.) and 100+ element-wise
operators. These operators can be classed into 20+ types. We analyze the seman-
tics of these 20+ operator types and build the symbolic cost model for each opera-
tor type under different strategies. As for the possibilities of partition dimension,
even though there are many dimensions for each operator, only a few are practi-
cal for parallel training after semantic studying. For example, Conv operator has
seven possible partition dimensions including batch, input_channel, input_height,
input_weight, output_channel, kernel_height, kernel_weight, but only batch and two
channels are practical because the other dimensions generates super large commu-
nication cost. For partitioning kernel dimension, the communication is hard to be
implemented because the shape is usually small, like 3 × 3 . As a result, we define
the cost model for the 20+ types of operators with limited possible partition dimen-
sions, which could be generally applied to any DNN.

Our symbolic model can help find the optimal strategy because it is essentially an
abstraction of the profiling-based model. In fact, the two models describe the same
parallel cost in different scope, te(vi, Svi ,D) in profiling-based model is actually the
summation of w × qx(vi, Svi) + g × qc(vi, Svi) in our symbolic model. tp(vi, Svi ,D)
equals to g × qc(vi, Svi) and tr(e, Svi , Svj ,D) = g × qc(e, Svi , Svj) . Thanks to symbolic
modeling, heavy profiling works are avoided. We can quantitatively evaluate the cost
of computation, intra-communication, and redistribution with the defined symbolic
cost model. We only profile the communication and computation capacity of the
hardware. However, because we do not use the real profiled value, the redistribution
cost of the symbolic cost invokes high search complexity.

Section 3 proposes a method to reduce the strategy generation complexity.
Although this complexity reduction comes at the cost of decreasing the quality of
the strategy found, we present a scheme to mitigate the decrease in quality. This
scheme can be seen as a heuristic-based greedy approach in which we prove that the
heuristic-based vertex reordering preserves the graph cost thanks to its definition of
homomorphism.

3 Functional Transformation and Reduction

The cost of a vertex depends on its own strategy (computation amount qx , intra-com-
munication qc and parameter updating qp) but also of the strategy of its neighbors
(redistribution qr). Choosing a strategy for a vertex will influence its neighbors that
will influence their neighbours until the whole graph recursively. Finding the opti-
mal distribution strategy for real-life deep neural networks is impossible in a reason-
able amount of time.

116 International Journal of Parallel Programming (2023) 51:109–127

1 3

Example 1 We illustrate the complexity of the problem through the following mini-
mal example. Consider a toy neural network represented on Fig. 2 of 3 operators on
3-dimensional tensors that we aim to distribute over four devices. Operators may be,
for example, a relu followed by an element-wise twofold increase followed by the
sum of all elements. Possible distributions of a 3D tensor over four devices are illus-
trated on Fig. 3, and the number is 6. As there are three operators, the total number
of possibilities for this tiny graph is 63 = 216.

We plan to cut the complexity of this problem by making decisions based on local
contexts and not questioning them afterward, which is a greedy method. To mitigate the
difference between our cost and the optimal one, we treat vertices by order of decreas-
ing importance. This way, the most critical vertices will have a strategy that benefits
them the most. Although the less important ones may not benefit from the best strategy,
the global impact on performances will be smaller. In order to justify this reordering,
we formulate our algorithm as a homomorphism that presents the benefit of being com-
putable in any order.

To do so, we will first introduce how the cost may be computed from a homomor-
phism of a vertex list in Sect. 3.3. However, the data-flow representation of the compu-
tation is not a list but a directed acyclic graph (DAG). Morihata [21] showed that the
homomorphism theory (especially its third theorem) might be extended to trees. The
only difference between a tree and a DAG lies in the number of parents (outputs) that
may be more than one in a DAG which leads to several possible paths from one vertex
to another. To remove the existence of these different paths, we propose to consider the
spanning tree of the DAG that would select only one of those paths for each case.

3.1 Notations

S is the set of all strategies of all vertices in G. We note si the strategy of vertex vi in S.
The cost of the computational graph was given by Eq. 3.

This way, Eq. 3 can be rewritten

(3)
costop(vi, si) = w × qx(vi, si) + g ×

(
qc(vi, si) + qp(vi, si)

)

costrdst(vi, vj, si, sj) = g × qr(eij, si, sj)

Fig. 2 Minimal neural network example

Fig. 3 Possible distribution of a 3D tensor over 4 devices

117

1 3

International Journal of Parallel Programming (2023) 51:109–127

Remark that if sj ∉ S (because vj has not been seen yet) then
costrdst(vi, vj, si, sj) = 0 . Assume function strt(v) gives the set of possible strate-

gies for a given vertex v. We note S
i<|V| the strategies of the first i vertices visited.

The strategy generation consists of taking for each vertex the strategy that minimizes
its cost. It may be expressed recursively as

The remaining of this section will express Eq. 5 as a homomorphism. As a pre-
liminary, we introduce the following notations taken from [22]. hom(⊕, f , a)(l) is a
homomorphism that maps function f on each element of l before reducing with the
binary operator ⊕ whose first application will be with initialization element a. For
example

We note �list the polymorphic type: list of elements of any type � . Functions will
be noted in Curry notation. For example, f ∶ A → B → C is the function f that,
when applied to an argument of type A will produce a function of type B → C that
when applied to an argument of type B will produce a value of type C. We use
++ ∶ � list → � list → � list as the concatenation operator. The function composi-
tion is noted (f◦g)(x) = f (g(x)) . To access elements of a pair, we use function first
fst(x, y) = x and function second snd(x, y) = y.

3.2 Redistribution Cost as a Homomorphism

We define the leftward operation costall_rdst to compute all redistribution costs of
a linear graph (list). A leftward operation is a recursive operation for which the

(4)C(G, S) =
∑

vi∈V

costop(vi, si) +
∑

(vi,vj)∈E

costrdst(vi, vj, si, sj)

(5)

S0 = �

S
i<|V| = search(vi, si,G)

costv(vi, si, S,G) = costop(vi, si) +
∑

(vi,vj)∈E
costrdst(vi, vj, si, sj)

search(vi, S,G) = S ∪ {si} such that si ∈ strt(vi) minimizes costv(vi, si,G, S)

hom(⊕, f , a)([x, y, z]) = a⊕ f (x)⊕ f (y)⊕ f (z)

(a) (b)

Fig. 4 Leftward and rightward processing of cost
all_rdst

 over a vertex list

118 International Journal of Parallel Programming (2023) 51:109–127

1 3

elements are added to the left (input) side (see Fig. 4a). To be a leftward operation, h
and ⊕ need to be defined such that Eq. 6 holds.

We define the operation costall_rdst leftward, that respects Eq. 6 below in Eq. 7.

Suppose that S, for which si, sj ∈ S , is a global constant fixed for the whole cost
computation. As edges direction do not influence the redistribution cost, function
costall_rdst is also computable rightward (in the output direction, as illustrated in
Fig. 4b). A rightward operation must define h and ⊗ such that Eq. 8 holds.

We define the operation costall_rdst rightward, that respects Eq. 8 below in Eq. 9.

Thus, by the third homomorphism theorem [22], costall_rdst is a homomorphism
because it is defined both leftward (Eq. 7) and rightward (Eq. 9).

3.3 Cost and Strategy Generation as a Homomorphism

The intra-communication cost is defined directly as the homomorphism

Hence, the whole cost of the linear graph (costl) may be defined as the addition of
the two homomorphism, where l represents the linear graph

The two may also be computed together as

(6)

h([v] ++ x) = v⊕ h(x)

with

h ∶ 𝛼 list → 𝛽 list

⊕ ∶ 𝛼 → 𝛽 → 𝛽

(7)

costall_rdst = fst◦h

h([v] ++ x) = v⊕ h(x)

h
(
[v0]

)
= (0, v0)

vi ⊕ (c, vj) = (c + costrdst(vi, vj, si, sj), vi)

(8)

h(x++ [v]) = h(x)⊗ v

with

h ∶ 𝛼 list → 𝛽 list

⊗ ∶ 𝛽 → 𝛼 → 𝛽

(9)

costall_rdst = fst◦h

h(x++ [v]) = h(x)⊗ v

h
(
[v0]

)
= (0, v0)

(c, vj)⊗ vi = (c + costrdst(vi, vj, si, sj), vi)

costall_op = hom(+, costop, 0)

costl(l) = costall_op(l) + costall_rdst(l)

119

1 3

International Journal of Parallel Programming (2023) 51:109–127

and symmetrically for the rightward notation.

In this case too, the third homomorphism theorem tells us that costl is a homomor-
phism because it is defined both leftward (Eq. 10) and rightward (Eq. 11). Now that
we have shown how the cost may be formulated as a homomorphism, the strategy
generation may be, in turn, written leftward

and rightward

The strategy generation being a homomorphism allows us to state that the vertex list
(linear graph) may be processed in any order. This homomorphism may be extended
to trees thanks to the work of Morihata [21] thereby enabling us to consider a much
more complex graph topology than a mere vertex list.

3.4 Tree Homomorphism

For the sake of understanding, this section will consider homomorphisms of binary
trees defined in Eq. 14. This definition may be read as: a tree is either a node with a
value V, a left-hand-side tree and a right-hand-side tree, or a leaf.

In order to define homomorphisms, we need to be able to describe contexts and
paths in the tree. These will be represented thanks to a zipper [23]. A path in the
binary tree would be a sequence of left (Left) or right (Right) choices that we repre-
sent in Eq. 15. The relation between a tree path and a zipper is illustrated in Fig. 5.

(10)

costl = fst◦h

h([v]++x) = v⊕ h(x)

h
(
[v0]

)
= (costop(v0, s0), v)

vi ⊕ (c, vj) = (c + costrdst(vi, vj, si, sj) + costop(vi, si), vi)

(11)

costl = fst◦h

h(x++ [v]) = h(x)⊗ v

h
(
[v0]

)
= (costop(v0, s0), v)

(c, vj)⊗ vi = (c + costrdst(vi, vj, si, sj) + costop(vi, si), vi)

(12)

costl = fst◦h

h([v] ++ x) = v⊕ h(x)

h
(
[v0]

)
=

(
search(v0, �, []), [v0]

)

vi ⊕ (S, L) =
(
search(vi, S, L), vi ++ L

)

(13)

costl = fst◦h

h(x++ [v]) = h(x)⊗ v

h
(
[v0]

)
=

(
search(v0, �, []), [v0]

)

(S, L)⊗ vi =
(
search(vi, S, L), vi ++ L

)

(14)���� Tbin = Node (V × Tbin × Tbin) | Leaf

(15)���� zip = (Left (V × Tbin) | Right (V × Tbin))list

120 International Journal of Parallel Programming (2023) 51:109–127

1 3

Applying the third theorem of homomorphism on trees requires the definition of
an upward and downward computation. The downward version is represented Eq. 16
and the upward version in Eq. 17.

Remark that going from a binary tree to any (bounded) degree trees requires a minor
adjustment to the tree, zipper and computation definition by adding the required
number of additional cases.

3.5 From Tree to Graph

Trees differ from DAGs in the sense that a node may have several parents in the case
of a DAG. To address this issue, we treat the DAG as its spanning tree (only pick-
ing one parent of each node) while computing the redistribution cost with respect
to all of the DAG edges. The number of parents (inputs) of each node can easily
be bounded by the maximum number of inputs an operator in neural networks can
have. This allows us to treat any DAG cases, but our proof that the reordering of the
vertices preserves the cost cannot be extended to general DAGs in its current form.

Although trees are not general enough to cover any DAGs, they are already a
substantial improvement over other methods that treat linear graphs [8, 11]. Those

(16)

cost↓ = fst◦h↓
h↓([]) = (�,Leaf)

h↓([Left(vi, l)]++x) = ��� (S, T) = h↓(x)

�� (search(vi, S, T), Node(v0, l, T))

h↓([Right(vi, r)]++x) = ��� (S, T) = h↓(x)

�� (search(vi, S,T), Node(v0,T , r))

(17)

cost↑ = fst◦h↑
h↑(x++[v]) = h↑(x)⊗ v

h↑([]) = (�,Leaf)

(S, T)⊗ [Left(vi, l)] = (search (vi, S, T), Node (vi, l, T))

(S,T)⊗ [Right(vi, r)] = (search (vi, S,T), Node (vi,T , r))

(a) (b)

Fig. 5 A zipper structure representing the path highlighted of the binary tree

121

1 3

International Journal of Parallel Programming (2023) 51:109–127

methods are consequently suitable for coarser grained graph representation, whereas
a finer-grained representation provides more possibilities.

This work does not provide implementation details because a more practical point
of view was already given in previous work [19].

4 Evaluation

4.1 Experiment Environment

DNN Models: We evaluate SMSG on real-world DNN models:

• Computer Vision:

– ResNet50 with the Cifar10 dataset,
– ResNet50/101/152 [2] with the ImageNet dataset,
– Fully Convolution Network (FCN) [24] with a dedicated remove sensor data-

set;

• Recommendation Systems:

– Wide & Deep [3] with the Criteo dataset;

• Neural Language Processing:

– BERT [14] with the Wiki-en dataset,
– PanGu-Alpha 2.6B and 13B [25] (B stands for billion, which signifies the size

of parameters),
– T5 [15] (Text-to-Text Transfer Transformer) with a dedicated text dataset.

Evaluation Metric: We choose the average step time to compare the performance
of the hybrid parallel strategies. Step time is the training time of one batch of data,
including the FPG and BPG, which is inversely proportional to throughput. Shorter
step time denotes better performance.

Hardware Environments: The experiments are conducted on an Atlas900 AI clus-
ter [26]. Each Atlas node is composed of eight Ascend910 accelerators. Our experi-
ments test until 64 accelerators, where the four nodes are connected with a 64-port
switch. All the Ascend910 clusters are inter-connected directly, even from a differ-
ent node. We also implemented an 8 NVIDIA-V100 GPU cluster as a control group
to show the better portability of our approach.

Deep Learning Framework: Our experiments are conducted on MindSpore,
which automatically supports lancer distributed training with a given strategy. The
strategy found by SMSG will be taken as input for Mindspore, and the training will
be conducted on this DL framework.

Searching Algorithm: SMSG offers the ability to model the cost and compute it
with homomorphism. As for the searching algorithm, we implemented a linear-com-
plexity searching algorithm D-Rec [19] for the experiments in this section.

Baseline: The research on automatic parallel plan search is still in its infancy:
the generality of related methods is not complete, such as OptCNN, Flexflow, and

122 International Journal of Parallel Programming (2023) 51:109–127

1 3

TensorOpt’s search algorithms can only handle linear computational graphs; in addi-
tion, on classical neural networks, it is difficult for automatic parallel plan search to
find manual parallel plans that experts have intensively studied for months. There-
fore, the comparison baseline chosen in this section is the expert-designed parallel
plan.

The following lists the expert-designed parallel plans used for different networks:

• ResNet: For all variants of ResNet, parallel plans are respectively analyzed for
the convolutional and fully connected layers by taking into account the cost of
redistribution. Fine-tuned OWT [27] for networks with different layers and input
data is chosen as the expert-designed parallel plan here.

• FCN: The FCN network tested here is trained with a high-precision image such
that model parallel (operator-level) should be put more importance. There is no
published paper to describe them, but these expert-designed parallel plans were
studied internally by experienced researchers for more than one month.

• Wide & Deep: HugeCTR [28] is a dedicated distributed training framework
developed by NVIDIA that can support typical CTR network deployments such
as Wide & Deep. The expert-designed parallel plan here follows the HugeCTR
idea.

• BERT, T5: The baseline is a fine-tuned expert-defined parallel plan based on
Megatron-LM [7], the well-known transformer-based manual parallel plan.

• PanGu-alpha: Pangu-alpha’s expert-designed parallel plan is introduced in its
published paper [29].

Competitive Approach: To show the better portability of SMSG compared with the
previous approaches, we choose TensorOpt [8] as the competitive approach, which
is a representative approach proposed in 2021 and can be regarded as the state-of-
the-art approach for operator-level search.

4.2 Generality

We tested the quality of the hybrid parallel strategy found by SMSG in an extensive
range of real-world DNN models. Table 1 shows the average step times of training
varieties of DNN models with expert-designed strategies and the strategies found by
SMSG. This table does not include the results of TensorOpt for two reasons. First,
the baseline of expert-designed strategies has their optimality guaranteed by the
efforts spent by the researchers. Secondly, TensorOpt lacks generality: (1) it cannot
deal with non-linear graphs; (2) it requires manually configuring the search space
for a new unknown DNN model.

The last column shows the performance percentage of SMSG to Baseline (high
than 100% denotes a better performance). It can be found that the minimum per-
formance percentage of SMSG to the baseline is 90.40% for the BERT model.
The experiments show that SMSG can find good hybrid strategies for varieties
of real-world DNN models with a correct performance higher than 90% to the

123

1 3

International Journal of Parallel Programming (2023) 51:109–127

expert-designed strategies. The −10% variations are not statistically significant and
can be said to be a good performance. Even though the results of TensorOpt are not
given in Table 1, it can be conducted from Fig. 6 that an inappropriate parallel plan
leads to more than −60% performance decrease.

The hardware parameters and quantity functions are separated thanks to the pro-
filing-free modeling. SMSG only profiles the communication and computation of
the 8 Ascend cluster once (it takes a few minutes), and the hardware parameter val-
ues can generally be used for all the DNN models. The DNN models are different
compositions of the 20 kinds of operators. SMSG shows its generality in searching
for varieties of DNN models with the predefined quantity functions and the one-time
profiled cluster parameters.

4.3 Portability

The experiments in this subsection demonstrate the portability of SMSG and
the profiling-based approach when the training environments are changed. For

Table 1 Performance on varieties of DNN models

Performance: step time/ms (8 Ascends)

DNN models Baseline SMSG Percentage (%)

CV ResNet50-Cifar 48.58 45.91 105.83
ResNet50-ImageNet 57.53 61.18 94.03
ResNet101-ImageNet 86.73 93.38 92.88
ResNet152-ImageNet 120.57 127.46 94.59
FCN 485 512 94.72

Rec.Syst. Wide & Deep 21.6 22.38 96.51
NLP BERT 110.63 122.38 90.40

PanGu-Alpha 2.6B 4826 4876 98.91
PanGu-Alpha 13B 13990 13988 100.01
T5 1288 1279 100.70

(a) (b)

Fig. 6 Portability w.r.t. the scale of cluster

124 International Journal of Parallel Programming (2023) 51:109–127

1 3

profiling-based approaches like TensorOpt, profiling the operators under different
parallel configurations of typical DNN models usually takes more than one day. On
the contrary, for SMSG, profiling a hardware configuration takes only some min-
utes. In this section, the results of SMSG shown in Fig. 6 and Table 2 are obtained
with the profiled communication and computation capacity on targeted hardware
architecture because it only takes some minutes. However, for the TensorOpt, we
kept one profiling base and varied the training configurations to show the impact of
the profiling data. We choose two typical DNN models, ResNet152-ImageNet and
Wide & Deep, to test.

Figure 6 shows the percentage performance of TensorOpt and SMSG w.r.t. the
number of cluster devices. Both for ResNet and Wide & Deep, it can be easily con-
ducted that with the increase in device numbers, the quality of strategies found by
TensorOpt decreases because they do not have enough profiling data of the possible
partition dimensions, so they missed the optimal strategies. However, the profiling-
free approach SMSG can keep a good strategy quality because of the leveraged pro-
filing time.

The same conduction can be made from Table 2 that searching the strategy with
different profiled data from a different architecture for TensorOpt, the decrease of
strategy quality is evident, while SMSG keeps good results. The cost model of Ten-
sorOpt is based on the profiled execution time of operators on the actual hardware.
The execution time of an operator with the same parallel strategy is different on
GPUs and Ascends. That is why the strategy quality of TensorOpt decreases when
executed on GPUs with profiling data on Ascends. Heavy profiling tasks (a few
days) limit the portability of these profiling-based approaches, while SMSG with a
lightened profiling job is more practical.

5 Conclusion

This paper proposes SMSG, a profiling-free strategy generation method for dis-
tributed DNN training. The main idea of SMSG is that its symbolic cost model is
built based on the relative cost instead of the execution time. The hardware param-
eters and similar data quantity functions are separated. The cost functions can be
optimized independently of the hardware. Besides, we introduce homomorphism

Table 2 Portability w.r.t. hardware architecture

Performance: percentage w.r.t the baseline

Profiling base DNN models Tensoropt
(8 Ascends) (%)

Tensoropt
(8 GPUs) (%)

SMSG (%)

8 GPUS ResNet152-ImageNet 62.12 99.18 99.53
Wide & Deep 49.55 98.25 98.33

8 Ascend ResNet152-ImageNet 98.16 71.56 94.59
Wide & Deep 97.23 66.89 96.51

125

1 3

International Journal of Parallel Programming (2023) 51:109–127

to re-organize the redistribution cost so that the searching algorithm does not have
graph topology dependency. These two contributions offer generality and portability
for the DNN parallel strategy generation.

Acknowledgements This work was partially supported by the National Key R&D Program of China
under Grand No. 2021ZD0110403 and by the French industrial doctoral framework CIFRE under
No.2019/2451.

Author Contributions Haoran Wang, Thibaut Tachon, Chong Li contributed equally and wrote the main
manuscript text. All authors reviewed the manuscript.

Declarations

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. Brown, T., Mann, B., Ryder, N.: Language models are few-shot learners. Adv. Neural Inf. Process.
Syst. 33, 1877–1901 (2020)

 2. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

 3. Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., Anderson, G., Corrado,
G., Chai, W., Ispir, M., Anil, R., Haque, Z., Hong, L., Jain, V., Liu, X., Shah, H.: Wide & deep
learning for recommender systems. In: Proceedings of the 1st Workshop on Deep Learning for
Recommender Systems. DLRS 2016, pp. 7–10. Association for Computing Machinery, New York,
(2016)

 4. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural
networks. Adv. Neural Inf. Process. Syst. 60(6), 1097–1105 (2012)

 5. Dean, J., Corrado, G.S., Monga, R.: Large scale distributed deep networks. In: Proceedings of the
25th International Conference on Neural Information Processing Systems - Vol. 1. NIPS’12, pp.
1223–1231. Curran Associates Inc., Red Hook, (2012)

 6. Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, M.X., Chen, D., Lee, H., Ngiam, J., Le, Q.V., Wu,
Y., Chen, Z.: GPipe: Efficient training of giant neural networks using pipeline parallelism. Curran
Associates Inc., Red Hook (2019)

 7. Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., Catanzaro, B.: Megatron-LM: training
multi-billion parameter language models using model parallelism. arXiv preprint arXiv: 1909. 08053
(2019)

 8. Cai, Z., Yan, X., Ma, K., Wu, Y., Huang, Y., Cheng, J., Su, T., Yu, F.: Tensoropt: exploring the
tradeoffs in distributed DNN training with auto-parallelism. IEEE Trans. Parallel. Distrib. Syst.
33(8), 1967–1981 (2022)

 9. Fan, S., Rong, Y., Meng, C., Cao, Z., Wang, S., Zheng, Z., Wu, C., Long, G., Yang, J., Xia, L.,
Diao, L., Liu, X., Lin, W.: DAPPLE: a pipelined data parallel approach for training large models.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1909.08053

126 International Journal of Parallel Programming (2023) 51:109–127

1 3

In: Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming. PPoPP ’21, pp. 431–445. Association for Computing Machinery, New York, (2021)

 10. Tarnawski, J.M., Narayanan, D., Phanishayee, A.: Piper: Multidimensional planner for DNN par-
allelization. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.S., Vaughan, J.W. (eds.)
Advances in Neural Information Processing Systems, vol. 34, pp. 24829–24840 (2021)

 11. Jia, Z., Zaharia, M., Aiken, A.: Beyond data and model parallelism for deep neural networks. In:
Talwalkar, A., Smith, V., Zaharia, M. (eds.) Proceedings of Machine Learning and Systems, vol. 1,
pp. 1–13 (2019)

 12. Jia, Z., Lin, S., Qi, C.R., Aiken, A.: Exploring hidden dimensions in accelerating convolutional neu-
ral networks. In: Dy, J., Krause, A. (eds.) International Conference on Machine Learning. Proceed-
ings of Machine Learning Research, vol. 80, pp. 2274–2283 (2018)

 13. Wang, M., Huang, C.-C., Li, J.: Supporting Very Large Models using Automatic Dataflow Graph
Partitioning. EuroSys ’19. Association for Computing Machinery, New York (2019)

 14. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol. 1
(Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis,
Minnesota (2019)

 15. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., Liu, P.J.:
Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res.
21(140), 1–67 (2020)

 16. Abadi, M., Barham, P., Chen, J., : Tensorflow: a system for large-scale machine learning. In: 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pp. 265–283.
USENIX Association, Savannah, GA (2016)

 17. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L.: Pytorch: an imperative style, high-performance deep learning library.
Adv. Neural Inf. Process. Syst. 32, 8026–8037 (2019)

 18. Huawei: MindSpore. Huawei. https:// www. minds pore. cn/
 19. Wang, H., Li, C., Tachon, T., Wang, H., Yang, S., Limet, S., Robert, S.: Efficient and systematic par-

titioning of large and deep neural networks for parallelization. In: European Conference on Parallel
Processing, pp. 201–216, Springer, (2021).

 20. Valiant, L.G.: A bridging model for multi-core computing. J. Comput. Syst. Sci. 77(1), 154–166
(2011)

 21. Morihata, A., Matsuzaki, K., Hu, Z., Takeichi, M.: The third homomorphism theorem on trees:
downward & upward lead to divide-and-conquer. SIGPLAN Not. 44(1), 177–185 (2009)

 22. Gibbons, J.: Functional pearls: the third homomorphism theorem. J. Funct. Program. 6(4), 657–665
(1996)

 23. Huet, G.: The zipper. J. Funct. Program. 7(5), 549–554 (1997)
 24. Schwing, A., Urtasun, R.: Fully connected deep structured networks (2015)
 25. Zeng, W., Ren, X., Su, T., Wang, H., Liao, Y., Wang, Z., Jiang, X., Yang, Z., Wang, K., Zhang, X.,

Li, C., Gong, Z., Yao, Y., Huang, X., Wang, J., Yu, J., Guo, Q., Yu, Y., Zhang, Y., Wang, J., Tao,
H., Yan, D., Yi, Z., Peng, F., Jiang, F., Zhang, H., Deng, L., Zhang, Y., Lin, Z., Zhang, C., Zhang,
S., Guo, M., Gu, S., Fan, G., Wang, Y., Jin, X., Liu, Q., Tian, Y.: PanGu-� : Large-scale autoregres-
sive pretrained chinese language models with auto-parallel computation. CoRR (2021) arXiv: 2104.
12369

 26. Huawei: Atlas900. https://e. huawei. com/ en/ produ cts/ cloud- compu ting- dc/ atlas/ atlas- 900- ai
 27. Krizhevsky, A.: One weird trick for parallelizing convolutional neural networks. arXiv preprint

arXiv: 1404. 5997 (2014)
 28. Oldridge, E., Perez, J., Frederickson, B., Koumchatzky, N., Lee, M., Wang, Z., Wu, L., Yu, F.,

Zamora, R., Yilmaz, O., et al.: Merlin: a gpu accelerated recommendation framework. Proceedings
of IRS (2020)

 29. Zeng, W., Ren, X., Su, T., Wang, H., Liao, Y., Wang, Z., Jiang, X., Yang, Z., Wang, K., Zhang, X.,
et al.: Pangu-� : Large-scale autoregressive pretrained chinese language models with auto-parallel
computation. arXiv preprint arXiv: 2104. 12369 (2021)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://www.mindspore.cn/
http://arxiv.org/abs/2104.12369
http://arxiv.org/abs/2104.12369
https://e.huawei.com/en/products/cloud-computing-dc/atlas/atlas-900-ai
http://arxiv.org/abs/1404.5997
http://arxiv.org/abs/2104.12369

127

1 3

International Journal of Parallel Programming (2023) 51:109–127

Authors and Affiliations

Haoran Wang1,2 · Thibaut Tachon1 · Chong Li1 · Sophie Robert2 ·
Sébastien Limet2

 Haoran Wang
 haoran.wang@etu.univ-orleans.com

 Thibaut Tachon
 thibaut.tachon@huawei.com

 Sophie Robert
 sophie.robert@univ-orleans.fr

 Sébastien Limet
 sebastien.limet@univ-orleans.fr

1 Huawei Technologies France S.A.S.U., 18-20 Quai du Point du Jour,
92100 Boulogne-Billancourt, France

2 LIFO, Bat. 3IA, Université d’Orléans, Rue Léonard de Vinci, 45067 Orléans, France

	SMSG: Profiling-Free Parallelism Modeling for Distributed Training of DNN
	Abstract
	1 Introduction
	2 Modeling the Cost of Distributed Training
	2.1 Distributed Strategies Searching
	2.2 Profiling-Based Modeling
	2.3 Profiling-Free Modeling

	3 Functional Transformation and Reduction
	3.1 Notations
	3.2 Redistribution Cost as a Homomorphism
	3.3 Cost and Strategy Generation as a Homomorphism
	3.4 Tree Homomorphism
	3.5 From Tree to Graph

	4 Evaluation
	4.1 Experiment Environment
	4.2 Generality
	4.3 Portability

	5 Conclusion
	Acknowledgements
	References

