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Abstract
This paper introduces the Yet Another Kernel Launcher (YAKL) C++ portability
library, which strives to enable user-level code with the look and feel of Fortran code.
The intended audience includes both C++ developers and Fortran developers unfa-
miliar with C++. The C++ portability approach is briefly explained, YAKL’s main
features are described, and code examples are given that demonstrate YAKL’s usage.
YAKL fills a niche capability important particularly to scientific applications seeking
to port Fortran code quickly to a portable C++ library. YAKL places heavy empha-
sis on simplicity, readability, and productivity with performance mainly emphasizing
Graphics Processing Units (GPUs). Central to YAKL’s ability to allow Fortran-like
user-level code are three features: (1) a multi-dimensional Array class that allows For-
tran behavior; (2) a limited library of Fortran intrinsic functions; and (3) an efficient
pool allocator that transparently enables cheap frequent allocations and deallocations
of YAKL Arrays. While YAKL allows Fortran-style code, it also allows Arrays that
exhibit C-like behavior as well, including row-major index ordering and lower bounds
of “0”. YAKL currently supports CPUs, CPU threading, and Nvidia, AMD, and Intel
GPUs.
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1 Introduction

Code portability can be an overwhelming subject to consider because of how quickly
configurations can tensor out to different coding languages / augmentations, compilers,
programming interfaces, hardware targets, and system capabilities. This paper focuses
on lower-level languages commonly used in scientific software programming such as
Fortran, C, C++, CUDA, HIP, and SYCL – specifically Fortran and C++. This is not to
say that other languages are not important or common in scientific software but rather
to set the scope of what is considered here. Further, the primary focus of this paper is
on accelerated Graphics Processing Unit (GPU) hardware targets, though attention is
paid to Central Processing Unit (CPU) considerations and CPU-level threading that
typicallymaps to POSIX (PortableOperating System Interface) threads, or “pthreads”.

Already, five to six languages have been mentioned, not to mention that C++ itself
has many expressions in terms of which features are used and whether modularity is
achieved largely through inheritance or template expressions. There are quite a few
compilers to consider, each capable of its own set of languages, APIs, and hardware
targets, including but certainly not limited to: GNU,1 Clang,2 IBM,3 Intel,4 Cray
/ HPE,5 and Nvidia (including what was formerly PGI).6 There are many parallel
programming interfaces / specifications to consider as well, including the Message
Passing Interface (MPI)7 [1], OpenACC,8 [2] and OpenMP9 [3] in its two somewhat
distinct flavors ofOpenMP<=4.0 forCPU-level threading andOpenMP target offload
for accelerators with disparate memory spaces. Hardware targets include but are not
limited to CPUs, SIMD units, pthreads, and Nvidia, AMD, and Intel GPUs. There are
systems that allow data allocated with malloc to be paged automatically to disparate
accelerator memory spaces and device allocated memory to be paged automatically
to host memory. There are systems that allow MPI to use pointers to data in separate
device memory spaces. If one relies on these system features, then the code is likely
no longer portable to machines that do not have these features.

1 https://gcc.gnu.org/.
2 https://clang.llvm.org/.
3 https://www.ibm.com/products/xl-cpp-linux-compiler-power.
4 https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html.
5 https://www.hpe.com/us/en/compute/hpc/cray.html.
6 https://developer.nvidia.com/hpc-sdk.
7 https://www.mcs.anl.gov/research/projects/mpi/.
8 https://www.openacc.org/.
9 https://www.openmp.org/.
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An approach to portability that is growing in popularity over time is the use of
portable C++ libraries such as kokkos10 [4], RAJA11 [5], and SYCL / OneAPI /
Data Parallel C++12 [6]. These libraries rely on the ability of the C++ language to
encapsulate code as an object, most often as a “functor” (a class that overloads the
operator() operator). Often, this is achieved using a C++ “lambda” expression,13

which conveniently creates an anonymous functor in-place for the programmer, auto-
matically capturing the required data. Over the last three years, a C++ portability
library called Yet Another Kernel Launcher (YAKL)14 has been developed (and is
still actively developed) largely to support the Energy Exascale Earth SystemModel’s
(E3SM’s) efforts under the U.S. Department of Energy Exascale Computing Project.
YAKL is a relatively simple and small C++ library for portability to CPUs, Nvidia
GPUs, AMD GPUs, and Intel GPUs that specializes in allowing user-level code that
maintains much of the look and feel of the dominant style of Fortran code currently
used by the E3SM.

YAKLwasfirstmotivated by the absence of otherC++portability frameworks being
able to support AMDGPUs, which was eventually remedied in the other frameworks.
Its current motivation is the ability to quickly port Fortran code to a portable C++
library and to support development practices that are familiar to Fortran domain science
developers such as multi-dimensional arrays, frequent allocation and deallocation
of arrays, and use of simple reduction intrinsics such as sum and minval. YAKL
currently supports CPU targets, CPU threading (through the OpenMP specification),
Nvidia GPUs (through the CUDA language), AMDGPUs (through theHIP language),
and IntelGPUs (through theSYCLspecification). Importantly, SYCLcan also produce
code for Nvidia and AMD GPUs, and HIP can also produce code for Nvidia GPUs.
YAKLhas alreadybeenusedby anumber of published studies [7–10]. Particularlywith
a kernel whose algorithm is well-suited to floating point operation (“flop”) capable
hardware, YAKL was shown to be capable of achieving up to 80% of peak single
precision flops per second (flop/s) on an Nvidia Tesla V100 GPU [7].

Fortran developers less familiar with C++ might find it useful to first read Sect. 3.1.
A brief overview of C++ portability is given in Sect. 2. Then an overview of YAKL’s
main features is given in Sect. 3. The YAKL hardware targets are described in Sect. 4.
Finally, concluding remarks and future work are detailed in Sect. 5.

2 A Brief Description of the C++ Portability Approach

It is important to note that C++ portability is not a language extension but rather just a
library fully specified within the C++ language that uses additional hardware-specific
languages such as CUDA, HIP, SYCL, and OpenMP to target specific hardware under

10 https://github.com/kokkos/kokkos/.
11 https://github.com/LLNL/RAJA.
12 https://www.khronos.org/sycl/.
13 https://en.cppreference.com/w/cpp/language/lambda.
14 https://github.com/mrnorman/YAKL.

123

https://github.com/kokkos/kokkos/
https://github.com/LLNL/RAJA
https://www.khronos.org/sycl/
https://en.cppreference.com/w/cpp/language/lambda
https://github.com/mrnorman/YAKL


212 International Journal of Parallel Programming (2023) 51:209–230

Fig. 1 An example of encapsulating code as an object using a lambda expression and then passing it to a
function to launch it with CPU threading using the OpenMP specification

the hood. Therefore, portable C++ libraries benefit fully from the many available
mature C++ compilers.

2.1 Code as an Object

The core of C++ portability is the ability to express code as an object that can be
passed to functions as parameters. This ismost conveniently performed using a lambda
expression, which creates an anonymous class object (meaning it has no class name),
either copies by value whatever variables are needed or references them, and then
wraps a section of code inside an overloaded operator() operator. The class object
created by the lambda expression can then be passed as a parameter to a function that
can then execute the code inside that class object on any desired hardware target. See
Fig. 1 as an example. Instead of running the lambda inside a for loop with OpenMP
threading, one could call it inside a CUDA kernel or a SYCL parallel dispatch to run
on Nvidia GPUs and Intel GPUs, respectively.

2.2 Shallow-Copy Data Structures and Copy-by-Value Lambda Expressions

Another common thread among C++ portability libraries is that they seek to allow
developers to run on accelerated hardware that has its own distinct memory space.
The complication of this is that for machines that do not page data automatically
between host and device memory spaces, pointers and references to host data are
invalid in device memory (and vice versa). Even when machines do page data, it is
typically more efficient to move and manage the data manually.

By default, lambda expressions will capture data by reference. However, since host
references are invalid in devicememory, this is no longer acceptable. Therefore, inmost
C++ portability libraries, lambdas must capture data by value, meaning the lambda
syntax is typically:[=] (parameters...) {...}. The exception to this is with
SYCL’s use ofBuffer objects because, in SYCL, one obtains an appropriate accessor
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that is already valid in the desired memory space. Therefore, lambdas that use these
accessors may pass them by reference.

When copying data structures by value into a lambda expression, it is common for
those data structures to use what are called shallow-copy semantics, which means that
the actual underlying data pointer is valid already on the device it is being launched
on, and only a small amount of metadata of the data structure is copied explicitly,
while the pointer is used as is. This way, large amounts of data are not copied every
time a kernel is launched. This can, however, lead to confusion for developers used to
Fortran assignment semantics,which are deep-copy semantics. InmostC++portability
frameworks, to copy the underlying data, one most use an explicit “deep copy” routine
rather than assigning to an object directly. This will be explained in further detail later.
Therefore, keep in mind that in C++ portability libraries, assigning one array object
to another is more akin to pointer assignment – it does not copy or duplicate the
underlying data.

2.3 Some Subtleties of C++ Portability Libraries

A complication that is more subtle is that C++ lambda expressions only capture
by value variables in local scope. Therefore, variables at the class scope, global
scope, and namespace scope are still captured by reference inside the resulting
class object. To avoid this behavior, one must pull all variables used inside the
lambda expression’s code that live in class, global, or namespace scope into local
scope before creating the lambda expression. This can be conveniently done with
auto &varname = ::varname or auto &varname = this->varname,
though YAKL has its own syntax for this called YAKL_SCOPE, which is covered later.

Another subtlety in C++ portability libraries is calling member functions from
your own class from parallel_for kernels. As a general rule, it is best practice
to make all class methods that are called from device kernels static, meaning they
belong to the class itself, not any particular instance of that class. The reason is that
static methods have no this-> reference (which is generally only valid in host
memory). One can capture the class by value in lambda expressions, making the
this-> reference valid inside parallel_for kernels (meaning you can you class
methods and data inside that parallel_for call). However, member functions
called by parallel_for kernels still cannot use class member data or functions
because those will still invoke this-> references that are only valid in host memory.

In short: (1) it is a best practice to make all class member functions that are called
from device kernels static and to pass any required class data by parameter; and
(2) it is a best practice to pull all class, global, and namespace scoped data into local
scope before creating the lambda expression.

3 An Overview of YAKL’s Main Features

The YAKLC++ 17 library, with currently around 11K lines of core code (not counting
unit test code), is geared toward simplicity, clarity, and readability with a particu-
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lar niche application of allowing Fortran-like behavior in the user-level code. Much,
though not all, of YAKL’s API is patterned after the kokkos API. Notable simplifi-
cations in YAKL compared to other C++ portability libraries include allowing only
allowing two memory spaces (host and device), only allowing basic Array slicing of
contiguous chunks andwhole dimensions, and only supporting basic scalar reductions:
minval, maxval, and sum, though there are other simplifications as well.

While the example below highlights YAKL’s ability to enable user-level code that
looks like Fortran, please note that YAKL also allows C-style behavior as well.

3.1 An Example of Fortran Code Compared to Fortran-Style YAKL Code

It is helpful to start with an example of what a given snippet of Fortran code would
look like once converted to YAKL. The examples in Figs. 2 and 3 are computing the
maximum stable time step over a Cartesian grid Shallow-Water model. Figure 2 shows
the Fortran code example using OpenACC directives as an example of parallelization
on GPUs. Figure 3 shows the corresponding Fortran-style YAKL code that does the
same calculation. The using and typedef statements at the top of Fig. 3 would
typically be placed in a header file somewhere and reused by all of the YAKL code so
that the main code is more readable.

The features that allow a developer used to coding in Fortran to feel more comfort-
able in C++ are: (1) avoiding the need to reverse the indexing order, (2) avoiding the
need to change to a zero-based indexing strategy, and (3) being able to allocate and
deallocate arrays at any place in the program without worrying about performance
penalties (enabled by the YAKL pool allocator). While this small example would not
be too arduous to move to a C-style indexing strategy, managing many thousands of
lines of code with arbitrary lower indexing bounds in the arrays and potentially com-
plex integer arithmetic based on the chosen indexing strategy becomes a difficult task
to manage.

As evident from this example, most of the code looks the same, particularly in the
calculations themselves. There are some changes when moving to YAKL, however.
First, the developer will need to become familiar with a C++ function syntax, which
is unavoidable when moving from Fortran to C++. Here, the intent(in) arrays
are declared with the type defined realConst2d type. The size and epsilon
Fortran intrinsic routines remain identical in syntax when using YAKL. Those can be
used inside kernels as well. Since YAKL does not support in-kernel reductions, the
intermediate values must be stored in a new array dt2d first and then reduced with a
call to minval.

The starkest change between Fortran and Fortran-style YAKL, however, is how
the looping is expressed. The syntax was made as minimal as possible when design-
ing YAKL, but some level of change of this nature is unavoidable. By commenting
out the corresponding do loops, it can be seen what looping is implied by the
parallel_for call. More information on the behavior of parallel_for is
given in Sect. 3.2.1.

In brief, though, the syntax is as follows:
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Fig. 2 Example Fortran code with OpenACC directives to compute the maximum stable time step of a 2-D
Shallow-Water Model

parallel_for( LABEL , Bounds<N>(D1,D2,...) , YAKL_LAMBDA (int i1, int i2,

...) { CODE });,
where LABEL is a string label for the kernel; N is the number of loops; D1, D2 and so
on are the loop bounds ({1, . . . , D1}, {1, . . . , D2}, etc. for Fortran-style loop bounds)
where the left-most bound is for the outermost loop and the right-most bound is for
the innermost loop; and i1, i2, and so on are the loop index variables with the left-
most variable being for the outermost loop and the right-most variable being for the
innermost loop.

The allocation in line 16 of Fig. 3 should be thought of as the equiva-
lent of the Fortran code: real, allocatable :: dt2d(:,:) followed by
allocate(dt2d(nx,ny)). Also note that allocations like this in YAKL are very
cheap because they are done using a pool allocator (see Sect. 3.9).

Finally, note in line 20 of Fig. 3 that the parallel_for call includes a string
label for the kernel launch. While a label is not required, it is helpful when it comes to
automatic timing of all of the kernels in the code as well as labeling kernel launches
clearly in GPU profiling tools such as Nvidia’s nvprof and nsight tools. It also enables
automated “printf” debugging of the code to dump to one file per process every action
that occurs in YAKL, including labeled calls to parallel_for.

3.2 parallel_for, Bounds, YAKL_LAMBDA, and fence

YAKL achieves parallel dispatch using the following possible function definitions:

template <class F, int N> void parallel_for( char const *label , Bounds
<N> bounds ,

F const &code );
template <class F, int N> void parallel_for( Bounds<N> bounds ,
F const &code );
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Fig. 3 Example C++ portable code with Fortran-style YAKL to compute the maximum stable time step of
a 2-D Shallow-Water Model. This corresponds to converting Fig. 2 to Fortran-style YAKL

The string label is optional, though very highly recommended. When there are a
lot of parallel_for calls, and it is hard to come up with meaningful names,
the YAKL_AUTO_LABEL() macro function is available, which simply inserts the
filename (with the path removed) augmented with the line number. This way, it is
readily known where the call lives in the code.

The parallel_for functions are defined in a yakl::c:: namespace and a
yakl::fortran:: namespace, where each namespace has that language’s behav-
ior. In the c namespace, if you pass a scalar, N as the loop bounds, it is assumed to
iterate over {0,1,...,N-1}; whereas in the fortran namespace, it is assumed
to iterate over {1,2,...,N}

TheBounds class comes in ayakl::c:: namespace and ayakl::fortran::
namespace, and it describes the looping implied in the parallel kernel launch. The
Bounds class accepts an integer template parameter that determines how many tightly
nested loops are being dispatched. Bounds in thec namespace default to a lower bound
of zero, and bounds in the fortran namespace default to a lower bound of one. Each
loop in the Bounds class constructor’s parameters is described either by an integer, an
initializer list of two parameters that describes the inclusive lower and upper bounds, or
an initializer list of three values that describes the inclusive lower bound, the inclusive
upper bound, and the stride. Negative strides are not currently supported, and this is
partially to protect the user from attempting to use parallel_for for work that
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depends on the order in which loop indices are processed (e.g. prefix sums and other
general loop-carried dependencies). If a loop cannot be cast with a positive stride,
then it contains a loop-carried dependency. Examples of specifying loop bounds are
as follows:

yakl::c::Bounds<2>(ny,nx); // Outer loop
from 0 to ny-1, inner loop from 0 to nx-1

yakl::fortran::Bounds<1>(nx); // Loop from 1 to nx
yakl::c::Bounds<1>({-1,nx+1,2}); // for (int i=-1; i <= nx+1; i+=2)
yakl::fortran::Bounds<1>({1-hs,nx+hs}); // do i = 1-hs , nx+hs

Finally, the code is recommended to be passed to the parallel_for function by
using a C++ lambda expression via theYAKL_LAMBDAmacro. On the CPU, this maps
simply to [=], meaning variables used are passed by value. While the CPU could
technically pass data by reference, since it isn’t possible to pass data by reference on
GPUs (as CPU references are not valid in GPU memory in general), it was deemed
wise to use copy-by-value behavior even on the CPU. In the CUDA andHIP backends,
it maps to [=] __host__ __device__.

When creating the lambda expression, the parameters passed to the lambda
expression are the looping indices assigned by the parallel_for call in the
hardware backend. For instance, if Bounds<3>(nz,ny,nx) is passed to the
parallel_for function, then the lambda expression must accept exactly three
parameters to accept indices for each of these loop:

// do k = 1 , nz
// do j = 1 , ny
// do i = 1 , nx
parallel_for( yakl::fortran::Bounds<3>(nz,ny,nx) , YAKL_LAMBDA
(int k, int j, int i) { ... }

All calls to parallel_for are asynchronous with respect to host code. However,
the order of parallel_for calls on the device is respected, meaning that a sub-
sequent call to parallel_for call will not start until all previous device work
has been completed. To synchronize after any asynchronous call in YAKL, use the
yakl::fence() routine, which synchronizes the host code with respect to all exist-
ing asynchronous work on the device. All calls to parallel_for are assumed to
be run on the device for which the YAKL code is targeted. YAKL can only target one
device at a time.

There is an optionalLaunchConfig parameter to theparallel_for function.
This object contains two template parameters: an integer vector length that determines
the number of threads in a “block” in CUDA and HIP, and a boolean bit-for-bit flag
that defaults to false, which determines whether the launched kernel should be run in
serial on the CPU instead of on the GPU whenever the C Pre-Processor (CPP) macro
YAKL_B4B is defined (there is more on this behavior in Sect. 3.11).

3.2.1 Handling Loops that are not Tightly Nested

“Tightly nested” loops as used here means: (1) all loops appear consecutively with no
work in between and (2) inner loop bounds do not depend on outer loop indices. There
are some common approaches to handling situations where these are not both true.
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If there is work in between loop bounds, the two common approaches are:

1. Push that work down into inner loops and simply duplicate the processing of that
line of code.

2. Perform that work before entering the tightly nested loops and store to a temporary
array that is used in the tightly nested loops.

There are also many cases where one loop’s bounds will depend upon another. For
instance, in many ocean models, not all vertical levels are active for every horizontal
grid point. In these cases, the number of vertical levels depends upon the element index.
To alleviate the situation, the typical practice is to have the inner loop over vertical
levels iterate to themaximumnumber of vertical levels and place an if-statement inside
the innermost loop.

3.3 Multi-dimensional Dynamically Allocated Array Classes

The next most important feature of the YAKL library is the dynamically allocated
multi-dimensional Array class, which takes four template parameters: (1) data type,
(2) number of dimensions, (3) memory space, and (4) style. The data type is tem-
plated and can be any type (e.g. float, int const, or bool). The memory
space can be either yakl::memHost or yakl::memDevice. For all hardware
targets with separate device memory spaces (i.e., most if not all GPU targets), host-
space Array objects cannot be (portably) used on the device, and vice versa. The
exception is when the CPP macro YAKL_MANAGED_MEMORY is specified, in which
case yakl::memDevice Array objects can be accessed on the host. Finally, the
style parameter can either beyakl::styleC oryakl::styleFortran. C-style
Array objects have row-major index ordering (meaning the right-most index varies
the fastest) and zero-based indexing. Fortran-style Array objects have column-major
indexordering (meaning the left-most indexvaries the fastest) andbydefault one-based
indexing, though the lowest index of a given dimension can be any integer.

All YAKL Array objects have contiguous indexing. When creating an Array
object in devicememory, it is not recommended to use a data type that has a constructor
because devicememory is nearly always allocatedwith the hardware backend’s version
of malloc, which does not call the constructor. However, when creating an Array
object in host memory, the C++ new operator is used, meaning any data type should
be suitable.

All Array objects have debugging capabilities (when turned on) to detect things
like out of bounds indexing, indexingwith the wrong number of dimensions, and using
data in the wrong memory space (device data on the host or host data on the device).
There are also YAKL flags that cause all allocations to be performed with Managed
or Shared memory to allow device data to be used on the host.

3.3.1 Shallow and Deep Copy

As mentioned earlier, YAKL Array objects use shallow copy semantics for assign-
ments, meaning if a and b are Array objects, then a = b will copy the metadata
from b to a, but then they will each share the same data pointer. Thus, changes to one
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will affect the other, similar to pointer assignment or the equivalence statement
in Fortran. In order to maintain separate data pointers and copy the data itself between
them, a “deep copy” is needed, which is achieved via thedeep_copy_to()member
function: e.g., b.deep_copy_to(a).

One can only deep copy between Array objects of the same data type and total
number of elements. The developer assumes responsibility for maintaining proper
indexing when performing a deep copy between C-style and Fortran-style Array
objects or between Array objects with differing numbers of dimensions.

3.3.2 Memory Space Management

YAKL’s Array objects have convenient functions to transfer the data between
memory spaces. ThecreateHostCopy() andcreateDeviceCopy()member
functions will create a separate copy of the Array object in host and device memory
spaces, respectively, and deep copy the data. Even if the object is already in that mem-
ory space, a separate object with a separate data pointer is created with a full deep copy
to avoid any semantics confusion when using the routine. If the user expect an object
with a separate data pointer and the data pointer is, instead, shared, this would lead
to code bugs that might be difficult to track down. If the user wishes to simply create
a similar object in host or device memory without copying the underlying data, the
createHostCopy() and createDeviceCopy() member functions are also
available, respectively.

If the array objects already exist, then one can deep copy the data between different
memory spaces with the deep_copy_tomember function described in the previous
section.

3.3.3 Automatic and Manual Array Deallocation

YAKL Array deallocation works similarly to Fortran’s automatic deallocation
semantics. Whenever an Array object falls out of scope, it is automatically deallo-
cated. YAKL Array objects count the number of references to the same data pointer.
As soon as the number of references drops to zero, the data is deallocated. Therefore,
if an Array object is created and allocated inside function, as long it is not shallow
copied to a global object or returned from the function, it will be deallocated as soon
as the function ends.

The highest likelihood for memory leaks (in all contexts) is with statically scoped
Array objects that technically do not fall out of scope until the program ends. While
this should never lead to memory usage that grows unbounded over the executable’s
runtime, it can nonetheless lead to errors and bad behavior. In these cases, one can
deallocate the Array object manually in one of two ways: (1) explicitly call the
deallocate() member function; or (2) replace the Array object with an empty
Array object via shallow copy assignment, e.g., arr = real2d(); using the
typedef from Fig. 3.
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3.4 Multi-dimensional Statically-Sized SArray Classes

YAKL also has statically sized multi-dimensional array objects via the SArray (for
C-style indexing) and FSArray (for Fortran-style indexing) classes. These are the
multi-dimensional equivalent of simple arrays in C with the dimension size known at
compile time, e.g., float data[128]. These are placed in the stack of whatever
context they are defined. They can be defined insideparallel_for kernels as small
thread-private arrays. With YAKL’s debugging turned on, the indices are checked
during runtime. While some host architectures allow runtime-sized stack arrays, this
is not allowed in YAKL because most accelerator devices do not allow this behavior.
The dimension sizes must be known at compile time.

3.5 Handling Parallel Data Races

Reductions: YAKL allows handling kernel-wide reduction operations via intrin-
sic functions, which mimic Fortran intrinsic syntax: sum, minval, and maxval,
minloc, and maxloc. These are based on vendor provided libraries for optimal
performance.

Atomic Instructions: Whenever multiple parallel threads might read/write to
the same data location, one needs to use atomic instructions. YAKL supports
these at a low level with the following three functions: atomicAdd(a,b),
atomicMin(a,b), and atomicMax(a,b). These correspond to serial equiva-
lents of a=a+b, a=min(a,b), and a=max(a,b), respectively.

3.6 “Scalar Live-Out”

There are cases where a scalar value is written to inside a device parallel_for
kernel and it must be read on the host after the kernel has finished. Since all variables
inside a parallel_for call are copied by value, this means the scalar data must
actually be allocated on the device beforehand if it is to be accessed afterward. To
make this process easier, YAKL has a ScalarLiveOut class where room for a
single scalar value is allocated on the device in the constructor, the initial value can be
assigned in the constructor, the variable can be written to with a simple operator=
assignment, and it can be read subsequently on the host with the hostRead()mem-
ber function. In the rare case that it is necessary, one can get the device reference for
modification with the operator() overload.

The most common need for a scalar live-out situation is in device-resident error
checking routines where a boolean value is used to determine if, for instance, the data
is within physical bounds or not.

3.7 Limited Fortran Intrinsics Library

There is a limited (but growing) library of Fortran intrinsic routines in YAKL. These
currently include size, shape, lbound, ubound, allocated, associated, epsilon, tiny, huge,
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sign, mod, merge, minval, minloc∗, maxval, maxloc∗, sum, product∗, any, matmul∗,
transpose∗, count, and pack∗. Routines with a superscript asterisk are only available
for SArray and FSArray objects and do not invoke parallel kernels. The routines
minval, maxval, sum, any, and count will invoke parallel_for device kernels
whenever operating on dynamically allocateArray objects, but they use simple inline
looping for SArray and FSArray objects. The reason for this is that statically sized
arrays are intended to be relatively small and dynamically sized arrays are intended to
be larger. This removes ambiguity in terms of what behavior to expect when calling
one of these intrinsics.

Therefore, any of these routines may be called on an SArray or FSArray object
anywhere in the code, but routines that invoke a parallel_for kernel should not
be called inside another parallel_for call.

3.7.1 Componentwise Operator Library

YAKL also has a library of componentwise operators that can be performed on
YAKL Array objects in the yakl::componentwise namespace. These include
unary operators and binary operators between two arrays or between an array and a
scalar. Each of these operators launches a parallel_for in the default stream.
These are largely to make error checking code more convenient to write (e.g.,
if (any(arr < 0)) {...}).

3.8 YAKL_INLINE and Calling Functions from parallel_for Kernels

When calling a function from a parallel_for kernel, it is recommended to use the
YAKL_INLINEmacro, which gives it modifiers for the appropriate hardware backend
to run on the device. For instance, in the CUDA and HIP backends, YAKL_INLINE
maps to __forceinline__ __host__ __device__. It is very highly recommended
that any class member function decorated with YAKL_INLINE also be decorated
with static to avoid any potential use of the class’s this-> pointer. While YAKL
does have a YAKL_CLASS_LAMBDA macro that captures *this, the user can still
run into erroneous situations when trying to use a class’s own on the GPU from inside
YAKL_INLINE functions.

3.9 A Transparent and Efficient Pool Allocator

As mentioned earlier, it is a common practice in many Fortran codes to use automatic
arrays in functions and subroutines. To enable efficient frequent allocations and deal-
locations on the device in C++, YAKL enables a transparent pool allocator under the
hood for all YAKL allocations, including Array objects. Allocations on the host are
typically not that expensive, but on GPU devices, they can be prohibitively expensive.
A pool allocator allocates an initial large block of memory and then hands out chunks
quickly upon request. Even for host allocations, YAKL has proven to often be faster
than system malloc calls – likely due to how closely packed arrays are in memory
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when using the pool compared to using malloc. The pool allocator is intended for
use outside parallel_for calls, not inside them.

YAKL’s pool allocator, “Gator”, is based on a simple linear allocation mechanism,
which traverses linearly through existing allocations to find space for a requested allo-
cation. This is certainly not the fastest allocation method, but it is beneficial in terms
of reducing segmentation and improving memory locality. Further, since pool allo-
cations typically overlap with device kernel executions, the relatively small increase
in searching time is typically unnoticeable compared to faster allocation mechanisms
that use the available space less efficiently. Particularly in the presence of allocations
frommultiple parallel CPU threads in indeterminant order, the projects that use YAKL
found it important to use the available pool space as efficiently as possible.

Whenever a pool runs out of space, an additional pool is allocated and remains in
place until YAKL’s finalize() routine is called. The user can control the initial
size of the pool (in MB) with the GATOR_INITIAL_MB environment variable, can
control the size of additional pools with the GATOR_GROW_MB environment variable,
and can disable the pool with the GATOR_DISABLE environment variable. YAKL
also has an InitConfig class to control this with runtime information as well.

YAKL exposes Fortran hooks to the pool allocator through a Fortran module
gator_mod. Fortran codes can pass contiguous pointers to these routines to allocate
data from the Fortran side. This is advantageous for porting Fortran codes because
one can allocate efficiently through the pool allocator using “Managed” or “Shared”
memory, and those arrays are accessible on the host and device in both C++ and
Fortran.

The “Gator” class is also available to the user to use on their own for pools the may
need to manage for other purposes. Note that YAKL’s pool allocator is not intended to
quickly manage things like CUDA “Shared Memory” within kernels. It is only meant
to manage device resident allocations from the host.

3.10 YAKL_SCOPE and Using Non-Local Data Inside parallel_for Kernels

There are case when the code launched by a parallel_for call uses data that isn’t
immediately in local scope but is rather in global or namespace scope or in the class
scope. In these cases, as mentioned earlier, C++ lambda expressions will not capture
out-of-local-scope data by value. Therefore references to these data are invalid on the
device and will lead to invalid memory address errors or segmentation faults in the
best case scenarios.

The YAKL_SCOPE macro function is intended to help in this case to bring that
data into local scope before creating the lambda. For instance, for global scope
and class scope data, the call would be YAKL_SCOPE(data,::data); and
YAKL_SCOPE(data,this->data), respectively. After these calls, the variable
data can safely be used in the code wrapped in a YAKL_LAMBDA expression and
launched by a parallel_for call.
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3.11 Bitwise Floating Point Reproducibility

There are many projects for which bitwise floating point reproducibility is important.
For instance, in climate, initially small (evenmachine precision) differences in floating
point values will diverge rapidly into distinct weather states in a matter of only a
week or two of simulation time. This chaotic behavior makes determining acceptable
and unacceptable answer changes difficult. Therefore, having a bitwise reproducible
answer (even if only during testing) is important if only to understand when the answer
could have changed.

The issue largely comes in regarding floating point mathematical operations
that can occur in a non-deterministic order, since floating point arithmetic is not
generally commutative. The reduction libraries used by YAKL are deterministic.
The atomicAdd instructions, however, are not. Therefore, for any kernel that
contains an atomicAdd instruction, the user can place an optional parameter,
yakl::DefaultLaunchConfigB4b at the end of the parallel_for call to
ensure that whenever the CPP macro YAKL_B4B is defined during compilation, that
kernel is run in serial on the CPU.

When the user defines YAKL_B4B, YAKL automatically turns on “Managed”
memory for CUDA and HIP and “Shared” memory for SYCL. This allows the
device data in the kernel to be accessible on the host so that kernels with the
yakl::DefaultLaunchConfigB4b parameter at the end can be run success-
fully in serial on the CPU. Since these are run serially when YAKL_B4B is defined,
floating point determinism is maintained. Whenever YAKL_B4B is not defined, those
kernels still run in parallel efficiently on the GPU with non-deterministic results.

3.12 Hierarchical Parallelism

YAKL supports two levels of parallelism on the GPU: one intended for thread-
ing inside a vector unit (e.g., “Streaming Multiprocessor” for Nvidia GPUs or
“Compute Unit” for AMD GPUs); and one for threading across multiple vec-
tor units. The functions to launch on these are called parallel_inner and
parallel_outer, respectively. When parallel_outer is called, it creates
an object called an InnerHandler, which must be accepted after the loop indices
in the lambda function passed to it. The parallel_inner routine then accepts this
InnerHandler object as a parameter. This data structure holds internal YAKL
data to manage the two-level parallelism. Technically, this is only required because of
SYCL, which requires this kind of behavior. CUDA and HIP would not require this
object. Since the goal is single source portability, though, it is required for all contexts.

There are two other functions also defined that will be commonly used in this
context. A single_inner function ensures only one inner thread performs the
work inside, and a fence_inner function synchronizes kernel work within an
inner loop until all previous inner loop threads have completed. For example,
this maps to __syncthreads() in CUDA and HIP. Both single_inner
and fence_inner both require the InnerHandler object to satisfy SYCL
requirements. Further, all lambda functions passed to parallel_inner and
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single_inner should be standard C++ pass-by-reference lambdas rather than
using YAKL_LAMBDA: i.e.,
[&] ( ... ) { ... }.

3.13 “Streams”

YAKL supports multiple parallel “streams” (using CUDA terminology). In SYCL,
these are called “queues.” A stream / queue should be thought of as a first-in, first-
out queue into which all device operations are enqueued and completed in the order
they were enqueued. By default, YAKL uses a single default stream / queue for
all operations. The user can, however, use multiple queues by defining the CPP
macro YAKL_ENABLE_STREAMS at compile time. YAKL’s create_stream()
routine returns a YAKL yakl::Stream object. Streams can be used to record
yakl::Event objects, streams can wait on event objects, and the host can wait
on event or stream objects to be completed. parallel_for, parallel_outer,
and intrinsics that launch kernels all take optional stream arguments that default to the
default stream.

One thing to be aware of, however, is that YAKL’s default use of a non-blocking
pool allocator for all device allocations creates a potential aliasing problem when
using multiple streams simultaneously. If the user deallocates and allocates during
runtime, then multiple Array objects will likely be aliasing overlapping memory
address ranges at the same time from the host’s perspective. This is fine when using
a single stream because device work is guaranteed to be performed in-order. It is
advantageous, even, because it reduces device memory usage compared to allocating
all variables at the same time at program initialization.

When using multiple streams at the same time, however, there is generally no
guarantee in what order the work will be completed. This means these Array
objects aliasing the same memory range might end up running at the same time,
producing indeterminate and incorrect results. To avoid this, the user has two
options. First, the user can disable the pool at initialization during runtime using
the yakl::InitConfig class or using the export GATOR_DISABLE=1 shell
environment variable. This will then use expensive device allocation routines every
time an Array object is allocated, and the performance hit might be unacceptably
large. The alternative is for the user to manage the dependencies of data on streams
themselves.

This is donevia theArray class’sadd_stream_dependency(yakl::Stream
stream) member function. If you know that your Array object, arr, is used
by kernels launched in stream1, then you can declare that stream dependence
with arr.add_stream_dependency(stream1). Then, whenever that array
is deallocated, either with an explicit deallocate call or by falling out of scope, events
will be declared in all streams that array is dependent upon, and it will not actually be
released from the pool until those events are completed. This removes any possibility
of Array objects aliasing the same memory range being used at the same time on the
device. If the user desires to use multiple streams and the pool allocator simultane-
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ously, they take responsibility for declaring stream dependencies for data used during
runtime.

3.14 Debugging and Profiling Capabilities

YAKL has a number of debugging capabilities, the vast majority of which are turned
on with the CPP macro variable YAKL_DEBUG defined at compile time. This flag
turns on checks that ensure the following things among others:

• The Array constructor used has the correct dimensionality
• Non-owned Array objects are not wrapping nullptr
• Array indices are in bounds and have the correct dimensionality
• Arrays are not indexed before they are allocated
• Host Arrays are not indexed inside device kernels
• Device Arrays are not indexed on the host unless Managed / Shared memory is
turned on via the CPP macro variable YAKL_MANAGED_MEMORY

• Deep copies are only between Array objects of the same type and total element
count

• Array slices are performed appropriately
• Array reshaping maintains the total element count
• No intrinsic routine or Create[Host | Device]Copy routine is called on
an unallocated array.

• All entries are freed from the memory pool before calling yakl::finalize()
• Bounds objects passed to parallel_for have appropriate bounds (strides are
positive, and upper bounds are greater than or equal to lower bounds).

YAKL also has an automated “printf” debugging capability enabled by defining
the CPP macro YAKL_VERBOSE_FILE at compile time. This will dump one file per
process containing all activity in the YAKL library, flushing after each line printed, to
enable the user to determine where each MPI task fails in a failed run.

YAKL has built-in timers as well as hooks to switch to other timing libraries. Using
yakl::timer_start(char const *label) and yakl::timer_stop
(char const *label), YAKL keeps track of the runtime between those calls
for each CPU thread and MPI task (using a fence() operation before each to
ensure GPU work has completed). YAKL will print out the timers in human read-
able fixed column width format for the main task to stdout at the end of the run by
default, but the user can override this behavior if they desire. Timers are enabled by
specifying the CPP macro YAKL_PROFILE. If the user wishes to automatically gen-
erate timers for all YAKL kernel launches (including internal ones), the CPP macro
YAKL_AUTO_PROFILE will accomplish this. All parallel_for calls without
labels will stated as unlabeled with no distinctions between them.
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4 A Look at the YAKL Hardware Targets

4.1 Nvidia GPUs with CUDA

YAKL’s CUDA hardware target is used to target Nvidia GPUs. Memory allocations
and frees are performed with cudaMalloc and cudaFree. If the C Pre-Processor
(CPP) macro YAKL_MANAGED_MEMORY is defined, then cudaMallocManaged
is used to allow device allocations to be used on the host. If the CPP macro
_OPENACC is defined along with YAKL_MANAGED_MEMORY, then all allocated
memory is run through acc_map_data to ensure the OpenACC runtime does
not automatically create data statements for those pointer address ranges. Simi-
larly, if the CPP macro _OPENMP45 is defined, then managed allocations are run
through omp_target_associate_ptr to ensure the OpenMP runtime leaves
data within those address ranges alone. Memory transfers are performed with
cudaMemcpyAsync.

CUDA has hardware atomic functions for addition, minimum, and maximum oper-
ators, and they are used when possible.When the CUDA compute capability is too low
for a given data type and operation, then a compare and swap (CAS) implementation
is used instead.

CUDA makes the following definitions:

#define YAKL_LAMBDA [=] __host__ __device__
#define YAKL_DEVICE_LAMBDA [=] __device__
#define YAKL_CLASS_LAMBDA [=, *this] __host__ __device__
#define YAKL_INLINE __host__ __device__ __forceinline__
#define YAKL_DEVICE_INLINE __device__ __forceinline__
#define YAKL_SCOPE(a,b) auto &a = b
#define YAKL_SEPARATE_MEMORY_SPACE
#define YAKL_CURRENTLY_ON_HOST() (! defined(__CUDA_ARCH__))
#define YAKL_CURRENTLY_ON_DEVICE() (defined(__CUDA_ARCH__))

The latter macro functions are useful for determining whether a section of code is
currently being executed in the host compiler pass or the device compiler pass in order
to hide host-only code from device compilation. This is how YAKL handles managed
data structures (which contain host-only reference counting and allocation / free calls)
being passed to device kernels without warnings and errors.

For kernel launches, the “chevron syntax” is used, and the total amount of thread-
ing, nIter is decomposed into vectorSize threads within a CUDA “block”
and ceil(nIter / vectorSize) threads distributed across CUDA blocks,
where nIter represents the total number of threads being distributed in parallel.
vectorSize defaults to 128 but can be changed in the parallel_for call. All
CUDA kernels and cudaMemcpy calls are performed in the CUDA default stream
(which is the same as stream “0”) unless the user specifies a different stream. One
aspect of CUDA not experienced with other hardware backends is that the kernel
launch parameter size has a limit of typically 4 Kb. Whenever a function is called
with more than this, the kernel has to first be loaded into a temporary buffer in device
memory and then launched from device memory with a dereferencing of the functor.
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For reductions, the Nvidia “CUB” library15 is used, and for FFTs, the Nivdia
“cuFFT” library is used.16

For reductions, the Nvidia CUB is used.

4.2 AMDGPUs with HIP

The HIP backend is used to target AMD GPUs, and it is unsurprisingly very similar
to the CUDA backend. The following macros differ from CUDA’s

#define YAKL_CURRENTLY_ON_HOST() (! defined(__HIP_DEVICE_COMPILE__))
#define YAKL_CURRENTLY_ON_DEVICE() defined(__HIP_DEVICE_COMPILE__)

Reductions use the “hipCUB” library,17 and FFTs use the rocFFT library.18 Also, with
HIP, the default vector length is 256.

4.3 Intel GPUs with SYCL

The SYCL backend is used to target Intel GPUs. The SYCL backend is different from
the CUDA and HIP backends in a number of ways, though the workflow is still simi-
lar. In this backend, the software abstractions of CUDA/HIP streams maps to a SYCL
queue object. While CUDA and HIP enqueue tasks to the default stream respectively
for each, the SYCLworkflow is intended to explicitly create a SYCL queue during ini-
tialization for enqueueing tasks. Because there is some static initialization in the SYCL
runtime, one cannot simply create a global SYCL queue object because initialization
order of static data is not guaranteed in C++. Therefore, a “singleton” C++ pattern was
used so that upon first access, the SYCL queue is created and used thereafter when
referenced. YAKL’s SYCL backend makes the following macro definitions:

#define YAKL_LAMBDA [=]
#define YAKL_DEVICE_LAMBDA [=]
#define YAKL_CLASS_LAMBDA [=, *this]
#define YAKL_INLINE __inline__ __attribute__((always_inline))
#define YAKL_DEVICE_INLINE __inline__ __attribute__((always_inline))
#define YAKL_SCOPE(a,b) auto &a = std::ref(b).get()
#define YAKL_CURRENTLY_ON_HOST() (! defined(__SYCL_DEVICE_ONLY__))
#define YAKL_CURRENTLY_ON_DEVICE() (defined(__SYCL_DEVICE_ONLY__))

The Unified Shared Memory, or USM from SYCL 2020 specifications was used to
manage host and device pointers. SYCL is typically used with a “buffer” model in
which host and device pointers are managed inside a buffer data structure. SYCL
kernel launches are traditionally performed two fold: one call to submit work to a
queue and another call to access either host or device handles from buffer objects for
reading or writing. In YAKL, however, the functors are launched directly to avoid this
workflow, which is not compatible with YAKL’s usage or with other specifications
like CUDA or HIP.

15 https://github.com/NVIDIA/cub.
16 https://docs.nvidia.com/cuda/cufft/index.html.
17 https://github.com/ROCmSoftwarePlatform/hipCUB.
18 https://github.com/ROCmSoftwarePlatform/rocFFT.
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A recent development of SYCL is support for the is_device_copyable C++
type trait. YAKL currently overloads this for all functors small enough that the total
parameter space for the functor being launched is less than 2,048 bytes (a current Intel
hardware limitation). Then, SYCL accepts the functor as a device copyable structure,
copies it to the device, and launches it, even though it is not “trivially copyable”.
Whenever the size of the functor is too large to achieve this, it is manually copied to
a device memory buffer similar to large CUDA functors.

In the SYCL backend, reductions are performed using the SYCL 2020 specifica-
tion. Atomic instructions are achieved with the fetch_[min|max|add] member
functions of the relaxed_atomic_ref SYCL class. SYCL parallel_for
launches are performed directly from the default queue object created upon first instan-
tiation of a class with a Singleton pattern, and the SYCL backend synchronizes with
the queue’s wait() function. FFTs are compute using the Intel MKL library.19

SYCLparallel_for calls use thesycl::nd_range approach for specifying
the total number of threads as well as the “local size” to use (an analogue of block
size in CUDA). YAKL currently defaults to a size of 128.

4.4 CPUThreading with OpenMP

The CPU threading in YAKL is implemented with OpenMP pragma statements imple-
mented directly inline with the serial CPU for loops, where the OpenMP collapse
clause is used to collapse all loops into a single level of threadable parallelism.

5 Concluding Remarks and FutureWork

This paper has introduced the Yet Another Kernel Launcher (YAKL) C++ portability
library, which seeks to enable user-level code that looks like Fortran code for scientific
developers who are comfortable in that context. YAKL’s features are explored, and
examples of its use are provided. The hardware backends are described in detail.

From the authors’ experiences, while Fortran is a helpful language in many ways,
it is not always simple to run Fortran code on accelerators. Directives-based runtime
implementations have varying levels of difficulty when modern features of the Fortran
language are used such as classes, type-bound procedures, and non-contiguous point-
ers. Fortran’s module-based structure can make inlining code more difficult, which
can lead to difficulties in calling routines from device kernels. Further, the feature
sets supported from directives-based specifications can vary widely from one com-
piler to another, making portability across many compilers more difficult. There are
many codes for which Fortran with directives works quite well, and there are some
for which the implementations are less reliable. This was the one of the motivations
for moving to C++ for the E3SM-MMF project. The authors’ experiences have been
more predictable and less prone to compiler bugs when using C++ portability.

However, using a C++ portability library is not a decision to be taken lightly, and it
is not necessarily the right decision for all projects. Converting Fortran code to a C++

19 https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html.
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portability library is a daunting task, though that is one of themain tasks that theYAKL
library seeks to make easier by allowing Fortran-like behavior in the resulting user-
level C++ code. For amore complete description ofYAKL, please see the tutorial-style
and API documentation located at https://github.com/mrnorman/YAKL/wiki.

Regarding future work, there is ongoing investigation into the degree to which
YAKL can be built on top of the Kokkos library. Particularly, the parallel dispatch
seems to be the most straightforward aspect of YAKL to use kokkos as a backend
for. Other than this, the main additional functionality that is planned for inclusion
into YAKL includes implementation of additional vendor library provided routines
to act on YAKL Array objects, such as scan operations, batched reductions, sorting
routines, argmin, and argmax – as well as operations at the “inner” parallelism level
for hierarchical parallelism applications.
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