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Abstract

The development of parallel applications is a difficult and error-prone task, especially
for inexperienced programmers. Stencil operations are exceptionally complex for
parallelization as synchronization and communication between the individual pro-
cesses and threads are necessary. It gets even more difficult to efficiently distribute
the computations and efficiently implement communication when heterogeneous
computing environments are used. For using multiple nodes, each having multiple
cores and accelerators such as GPUs, skills in combining frameworks such as MPI,
OpenMP, and CUDA are required. The complexity of parallelizing the stencil
operation increases the need for abstracting from the platform-specific details and
simplify parallel programming. One way to abstract from details of parallel pro-
gramming is to use algorithmic skeletons. This work introduces an implementation of
the MapStencil skeleton that is able to generate parallel code for distributed memory
environments, using multiple nodes with multicore CPUs and GPUs. Examples of
practical applications of the MapStencil skeleton are the Jacobi Solver or the Canny
Edge Detector. The main contribution of this paper is a discussion of the difficulties
when implementing a universal Skeleton for MapStencil for heterogeneous com-
puting environments and an outline of the identified best practices for communica-
tion intense skeletons.
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1 Introduction

High-performance computers consist frequently of multiple computing nodes, each
consisting of multicore (CPUs) and potentially several (GPUs). Such hardware is
often used in e.g. natural sciences or data science applications. In order to exploit the
resources provided by such heterogeneous computing environments, programmers
typically have to deal with a challenging combination of low-level frameworks for
the different hardware levels such as message passing interface (MPI) [13], OpenMP
[17], and CUDA [7]. In addition, this requires investigating the way data is
distributed, choosing the number of threads, and a deep understanding of parallel
programming. This raises a high barrier for the average programmer to develop an
efficient program. Furthermore, without experience programming becomes a tedious
and error-prone task. High-level concepts for parallel programming bring multiple
benefits. Besides facilitating programming, most frameworks are able to produce
portable code which can be used for different hardware architectures.

CoLE introduced algorithmic skeletons as one high-level approach to abstract from
low-level details [6]. Algorithmic skeletons encapsulate reoccurring parallel and
distributed computing patterns, such as Map. They can be implemented in multiple
ways e.g. as libraries [3, 11, 12], Domain-specific languages (DSLs) [20], and
general frameworks [2, 16]. Although a variety of implementations exists, the
research how to efficiently implement skeletons on heterogeneous computing
environments is still ongoing.

The MapStencil skeleton is particularly complex as it accesses multiple data points
from the same data structure. Race conditions have to be avoided and the pieces of
data which are used by distinct processes and threads have to be efficiently
transferred. This is especially challenging on heterogeneous computing environments
with multiple nodes and GPUs as sending data from one node to another node
requires MPI while sending data from one GPU to another GPU might require
multiple CUDA operations (and possibly MPI). Furthermore, the efficiency of
distinct memory spaces has to be taken into account. For example, the efficiency of
the shared memory of the GPU depends among others on the number of GPUs and
threads used, how often data points are read in the map operations, and the size of the
stencil. Practical applications of the MapStencil skeleton are found e.g. in image
processing, the Jacobi solver, or filters in e.g. processing telescope data.

The main contribution of this paper is a discussion of an efficient implementation
of the MapStencil skeleton regarding heterogeneous computing environments. To the
best of our knowledge, this is the first implementation of this skeleton enabling a
combined use of all the mentioned levels of parallel hardware, i.e. multiple nodes
consisting of multicore CPUs and multiple GPUs. Our paper is structured as follows.
Section 2 summarizes related work, Sect. 3 introduces the Muesli, pointing out its
concepts and benefits. In Sect. 4 the conceptual implementation of the MapStencil
skeleton is discussed. Benchmark applications, as well as experimental results, are
presented in Sect. 5. In Sect. 6, we discuss possible extensions. Finally, we conclude
in Sect. 7 and briefly point out future work.
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2 Related Work

Cheikh et al. [4] mention in their work the difficulties of implementing stencil
operations in heterogeneous parallel platforms containing CPUs and GPUs. They
recognize problems such as border dependency, which happens when the data is
divided into tiles that will be processed by different devices. The constant need for
communication between the GPUs in order to update the values that belong to the
borders and are necessary for the next calculations are responsible for generating
overhead. In order to overcome this problem, the authors suggest improvements in the
program formulation, tile division, and tuning the program according to the GPU. In
contrast to this work they do not target multi-node environments. Other high-level
frameworks also propose the use a specific skeleton for stencil operations (e.g. SkePU
[10] and FastFlow [2]). In contrast to our approach, none of them supports the combined
use several cluster nodes each having multiple cores and multiple GPUs. SkePU’s
MapOverlap skeleton can be used over vectors (1D) and matrices (2D) and uses an
OpenCL backend. The FastFlow stencil operation proposed by Aldinucci et al. [1]
proposes a similar approach supporting the use of multiple GPUs. They state that there
is no mechanism that allows communication between devices and therefore they
propose the use of global memory persistence in order to reduce the need for data
transfers between host and devices. Their experimental results expose this problem and
show that the execution times are smaller using one GPU when compared to two GPUs
for some instances where the cost of communication is higher than the cost of the other
calculations. There exist further approaches to optimize stencil operations among
others PATUS [5] and Pochoir [18]. However, they are limited in their functionality in
contrast to a skeleton framework as they do not support other common programming
patterns as e.g. reduce operations which impedes to write a program where multiple
operations should be accelerated. Moreover, Pochoir does not support GPU execution
and Patus does not support multi node execution. The tuning of stencil operations has
been topic to many other publications [14, 21] as well as the investigation on memory
spaces of the GPU [15, 19]. The rapid changes in the architecture of Nvidia GPUs
especially regarding the sizes of the different memory spaces makes findings not
transferable to recent architectures. Moreover, either the performance of single GPUs is
tested or the framework is limited to stencil operations.

Our work enriches the research by two aspects. Firstly, not only (one node) multi-
GPU setups are tested but the efficiency of heterogeneous computing environments
as explained above (i.e. with multiple nodes) are investigated. Secondly, the levels of
the GPU memory hierarchy are investigated further, to verify if the reduction in
memory latency for shared memory outperforms the time needed to copy the data, for
bigger instances.

3 Muenster Skeleton Library
In the beginning, skeletal parallel programming was mainly implemented in

functional languages, since it derives from functional programming [6]. Today, the
majority of skeleton frameworks are based on C/C++ (e.g. [2, 3, 9]). This is caused
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by the good performance of C/C++ but also since imperative and object-oriented
languages are prevalent for natural sciences and among HPC developers. Further-
more, frameworks for parallel computing such as CUDA, OpenMP, and MPI
integrate seamlessly into C/C++ which allows employing different layers of
parallelization.

The C++ library used in our approach is called Muesli [12]. Internally, it is based
on MPI, OpenMP, and CUDA. It provides task- and data-parallel skeletons for
clusters of multiple nodes, multicore processors, and GPUs. These are among others
Fold, multiple versions of Map, Gather, and multiple versions of Zip.

Muesli relieves the programmer from low-level details such as the number of threads
started and copying data to the correct memory spaces and helps to avoid common
errors in parallel programming such as deadlocks. The abstraction level reduces the
time needed to implement a program, while not increasing the execution time
significantly. The algorithmic skeletons provided rely on two distributed data structures
that Muesli provides: distributed arrays (DA) and matrices (DM). In the sequel, we will
focus on data-parallel skeletons. Classic examples are Map, Fold, and Zip. A distinctive
feature of Muesli is that for Map and Zip there are in-place variants and variants where
the index is used for calculations. In the present paper, we will focus on the recent
addition of a MapStencil skeleton. MapStencil gets a user function as an argument that
specifies the exact operation to be executed for each element of a distributed matrix.
Such a user function can be a sequential C++ function or a C++ functor. Functions
and functors use the concept of currying, meaning that their arguments can be supplied
one by one rather than all at the same time. Their last arguments are supplied by the
skeleton. The snippet in Listing 1 shows the computation of the scalar product of two
distributed arrays a and b (in a slightly simplified syntax).

1 class Sum : public Functor2<int, int, int>{

2 public: MSL_USERFUNC int operator () (int x, int y)

3 const {return x+y;}};

4 Sum sum;

5 auto product = [] (int i, int j) {return ixj;};

6 DA<int> a(3,2); // delivers: {2,2,2}
7 DA<int> b = a.mapIndex(sum); // delivers: {2,3,4}
& a.zipInPlace(b,product); // delivers: {4,6,8}
9 int scalarproduct = a.fold(sum); // delivers: 18

Listing 1: Scalar product in Muesli.

4 MapStencil Skeleton

The MapStencil skeleton computes a matrix where the value of each element
depends on the corresponding element in another matrix and on some of its
neighbors within a square with a given height as a parameter, as depicted in Fig. 1.'

! Other stencil shapes such as rectangular or irregular stencils can be handled by using the smallest
surrounding square, although this may introduce some overhead.
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A stencil determines to which neighbors the argument function of MapStencil is
applied in order to determine the value of the considered element. Since the matrix is
typically partitioned among the participating nodes, cores, and GPUs, computations
at the border of each tile depend on the border of tiles that are assigned to other
hardware units (nodes, cores, or GPUs). Thus, accessing them (often) requires time-
consuming communication, which should hence be minimized. Since the size of the
stencil is a parameter of the skeleton, the implementation of the skeleton has to cope
with stencils of different sizes. The design of the skeleton will be explained by firstly
discussing possible data distributions, and secondly explaining the user interface.

4.1 Data Distribution

As the goal is to design a MapStencil skeleton that works in multi-node and multi-
GPU (per node) environments, one of the first considerations is the distribution of
data. One possible approach is to distribute the data for the MapStencil skeleton as
displayed in Fig. 2. For simplicity, we assume that the number of rows of the
processed data structure is a multiple of the number of computational units. If this is
not the case some padding has to be applied. The inter-node distribution assigns rows
to each node, as displayed on the left-hand side of the figure. Between two nodes, an
overlap exists as elements from the neighbor nodes are required for the calculation of
the stencil operation. The size of the overlap depends on the stencil size and the size
of a row. The row-wise distribution has the advantage that each node has to
communicate with at most two other nodes. Moreover, only the upper and lower
border need to be exchanged. The right and left values beyond each row can e.g. be
treated as neutral values for the calculation. The first and last node only need to
exchange the lower or upper border and start with the calculation as soon as they
have received the border.

In case that the data would have been distributed into (e.g. square-shaped) blocks,
one node might need to communicate with up to eight neighbors. In the case of a set-
up with more than four nodes, a block-wise distribution might be beneficial, as fewer
elements have to be exchanged. For an n X n matrix, a 3 x 3 stencil (we call this size
s = 1), and a block size of k x k, only up to 4(k 4 1) elements need to be exchanged
per node, rather than up to 2# for a row-wise distribution (for natural numbers » and k&
with n > 2k > 0).

For the intra-node distribution, also different approaches can be considered. Here,
a row-wise distribution is often more efficient than a block-wise distribution as few
computing nodes provide more than four GPUs (per node) and hence k >n/2 and

Fig. 1 MapStencil: the value of
an element as the one depicted in
red depends on those values in
the surrounding square (here of Y
size 3 x 3 and depicted in
yellow) belonging to the
considered stencil (here depicted
in blue) (Color figure online)
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Fig. 2 Data distribution

2n<4(k + 1). One possible approach targeting a heterogeneous environment with
CPUs and GPUs is displayed in Fig. 3. It assigns rows to the (multicore) CPU and the
attached GPUs. Obviously, this requires communication depending on the stencil
size and the number of rows between CPU and GPUs as well as between GPUs
which is not depicted in the figure. In case that multiple cores are available per node,
the number of (CPU) rows is divided between the cores.

Another approach is displayed in Fig. 4, using only GPUs. This has the advantage
that no borders that are inside the node have to be communicated with the time-
expensive device-to-host and host-to-device memory transfers but can be copied with
device-to-device copy steps. Moreover, for CUDA-aware MPI versions it is not
necessary at all to copy data from the GPU to the CPU and data can also be
exchanged between GUPs on different nodes.

A last variation to the data distribution has been made in order to benefit from the
shared memory of the GPUs. Shared memory belongs to one CUDA block® of
threads started by a GPU. The number of blocks which can start concurrently
depends on the GPU used and the number of threads started per block. The latency of
shared memory is approximately 100x lower than that of uncached global GPU
memory.’ However, using shared memory is only efficient, if the data copied to the
shared memory is accessed multiple times as the extra copy step to the shared
memory costs time. Another drawback of shared memory is that it cannot be
allocated persistently. Shared memory is always limited to one block in one kernel
call. This means in case overhead is created it is created in each kernel call and
therefore in each iteration.

Stencil operations are considered a good application scenario for using shared
memory as one element is likely to be read multiple times. For example for

2 Not to be confused with a block of a block-wise distribution.

3 https:/developer.nvidia.com/blog/using-shared-memory-cuda-cc/ accessed 27.04.2021.

@ Springer


https://developer.nvidia.com/blog/using-shared-memory-cuda-cc/

International Journal of Parallel Programming (2022) 50:433-453 439

to 1tz i3 - - tm
CPU
™ o o o oo oo o
to t1 to t3 tm
Node 04 GPU 0
m  om  m  om om0 Gpsmmeds
to ta t3 tm
GPU 1
tmxgpucols
Fig. 3 Intra-node distribution using CPU
to 1 f2 itz - - T
GPU 0
tmxgpucols
Node 04
to 1 f2 itz - T
GPU 1
tmxgpucols

Fig. 4 Intra-node distribution without CPU

numerically solving the heat equation [8], a cross-shaped stencil as in Fig. 1 is
required to calculate the current element. This means that each element is read four
times. In Conway’s game of life* additionally, the diagonal neighbors are read.
Hence, one element is read up to nine times. In the Gaussian blur, the stencil size
varies depending on the parameters of the Gaussian function.

In order to make the best use of the shared memory, we have used a block-wise
distribution of the data on the GPU for this application, as depicted in Fig. 5. Each
color represents a block of threads on the GPU. The figure is shortened to increase
the readability. For processing, for instance, a 16384 x 16384 matrix, it was divided
into 512 x 512 = 262, 144 blocks of size 32 x 32, such that one block of the matrix
corresponds to one CUDA block. In the figure, the surrounding block highlights the
elements which need to be read to calculate the next element with a 3 x 3-stencil. nv
stands exemplarily for a neutral value. Due to hardware restrictions, one block never
contains more than 32 rows and columns, since CUDA-capable GPUs cannot start
more than 1024 threads per block.

The need for a block-wise distribution can be explained by a simple example.
When processing a 1024 x 1024 matrix with one GPU, a row-wise distribution would
result in having one row processed by one block. For calculating the heat distribution
with a 3 x 3 stencil, the upper row, the current row, and the following row would
need to be loaded for each block into the shared memory, loading 3072 elements in
total per block. All elements in the upper and lower row would be read once, and all
elements in the current row twice. If in contrast a 32 x 32 sub-matrix is processed by
each block, each block needs to load (32 x 4) + 4 = 1028 elements from the borders
and 1024 elements to be processed. This amounts to only 2032 elements. Still, most
border elements are only accessed once, but the elements processed are read twice for

* http:/math-fail.com/2010/07/conways-game-of-life-in-html-5_.html.
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Fig. 5 Shared memory GPU distribution

the corners, three times for the borders, and four times for all 900 elements in the
middle of the block. This advantage increases with repeated accesses to the data as e.
g. in the game of life and the Gaussian blur.

For a stencil accessing just four elements, the block-wise distribution still reduces
the number of elements loaded by ~30% and on average a loaded element is read
more often than for a row-wise distribution. However, it has to be investigated
experimentally at which point the time saved by shared memory accesses is sufficient
to compensate for the time required to load the elements into shared memory.

The depicted distribution has one major disadvantage. Although GPUs are often
treated as allowing almost unlimited parallelism, the number of threads which can be
started is limited by the architecture. For example, the Nvidia RTX 2080 Ti has 68
streaming multiprocessors. Each multiprocessor can start at most 1024 threads in
parallel for the Nvidia 7.5 GPU architecture. Additionally, those threads must be in
one block; half a block cannot be processed by one multiprocessor. In the example
given, 69.632 threads can run in parallel. For massive data structures, this results in
starting threads after the first 69.632 have been finished. For normal Map Operations,
this is of minor importance as there exists not a lot of overhead for initializing new
blocks of threads. However, using the shared memory can make a huge difference as
initializing new blocks requires loading elements again to the shared memory. The
Nvidia GTX 2080 Ti has 64K of shared memory per multiprocessor. For big data
structures, it is expected to be more efficient to let one thread calculate multiple
elements as starting new threads will not directly invoke a parallel computation but
produce overhead since the shared memory needs to be initiated again. Instead, it
should be faster to start the maximum number of threads which can run in parallel
and load more elements into the shared memory to avoid repeated copy calls. During
implementation, the available size of the shared memory has to be checked. Figure 6
shows a simplified example of how threads could be reused. In the ideal example of
having a 192 x 2016 data structure and the mentioned GPU, the columns can be split
for each block to process 32 columns starting 68 blocks of each 1024 threads
(32 x 32) and therefore exploiting the maximum number of blocks which can be
started. Each multiprocessor has 64 KB shared memory (when configuration settings
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are set appropriately); it can save up to 16.000 integers. Assuming we have a 3 x 3
stencil, all 12804 (66 x 194) elements can be loaded into the shared memory,
calculating 12288 elements. As a result, the first block processes all rows of the first
32 columns, making maximum use of the shared memory by calculating four
elements per thread.

Obviously, this example is chosen to illustrate the ideal case. It can be generalized
that the number of threads started and the number of elements calculated by one
thread is dependent on the hardware used and the size of the datastructure.

4.2 Using MapStencil

When computing a new matrix, the MapStencil skeleton must keep the original
matrix and cannot just change it in place as old values need to be read.’

1 JacobiBorder borderFunctor(n, m, 75);

2 JacobiSweepFunctor jacobi;

3 jacobi.setStencilSize (1); // i.e. a 3z3 stencil
4 DM<float> differences(n, m, O, true);

5 DM<float> board(n, m, 75, true);

6 DM<float> swpBoard(mn, m, 75, true);

7 while (globalDiff > EPSILON && numIter < MAXITER) {

8 if (numIter 7% 50 == 0) {

9 board.mapStencilMM(swaoard, jacobiFunctor, borderFunctor) ;
10 differences = board.zip(swpBoard, differenceFunctor);

11 globalDiff = differences.fold(maxFunctor, true);

12 } else {

13 if (numIter % 2 == 0) {

14 board.mapStencilMM (swpBoard, jacobiFunctor, borderFunctor);
15 } else {

16 swpBoard.mapStencilMM (board, jacobiFunctor, borderFunctor);
17 }

18 }

19 numlter++;

20 %}

Listing 2: Jacobi method using the MapStencil Skeleton.

Exemplarily, the usage will be described by the computation of the static heat
distribution. An excerpt of the program is shown in Listing 2. MapStencil requires
three parameters: the input matrix to be processed, a functor for the stencil
computation, and a functor for computations at the borders. At the start (line 1-3), the
functors are initialized. For the stencil functor, the stencil size is set. Its parameter 1 is
the distance from the center, i.e. we use a 3 x 3 stencil. The stencil functor could be
enhanced by taking stencils with different sizes for width and height. However, this
was considered a routine piece of work as the same data distribution as previously
described can be used. For the border functor (line 1), the size of the matrix and the
default value (here 75) are passed as arguments. Afterwards, three n x m distributed
matrices are created (lines 4-7): board and swpBoard are used in turns to store

5 A variant of the skeleton which immediately overwrites old values by new values is however possible
and could be applied, for instance, for implementing the Gau-Seidel method for solving systems of linear
equations.
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Fig. 6 Improved shared memory GPU distribution

the input and output heat matrix of each stencil computation, respectively, while
differences is used to store their difference. The stencil computation needs to be
repeated until either the maximal difference between two subsequent matrices is
smaller than the desired EPSILON or the maximal number of iterations is reached
(line 7). Every 50 iterations, it is checked how much the two data structures differ.
Their difference is calculated by a Zip skeleton and from the resulting distributed
matrix its maximal element is computed using a Fold skeleton (lines 10—11). One
advantage of Muesli is that it differentiates between operations which require to
update data and operations which already have the appropriate data on the
computational unit. This feature enables to optimize the transition between different
skeleton calls, as not all data is transferred between host and GPUs.

class JacobiBorder: public Functor2<int, int, float> {

1

2 public:

3 JacobiBorder (int glob_rows, int glob_cols, float default)

4 glob_cols_(glob_cols), glob_rows_(glob_rows), default_(
default) {}

5 MSL_USERFUNC

6 float operator () (int x, int y) comnst {

7 if (y <0 |l y > (glob_cols_ - 1)) {return 100;}

8 if (x < 0) {return 100;%}

9 if (x > (glob_rows_ - 1)) {return 0;}

10 return default_;

11 }

12 private:

13 int glob_rows_;

14 int glob_cols_;

15 int default_ = 75;

16 };

Listing 3: Example of a functor for processing the border.
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1 class JacobiSweepFunctor: public DMMapStencilFunctor<float, float,
JacobiNeutralValueFunctor> {

2 public:

3 JacobiSweepFunctor () : DMMapStencilFunctor (){}

4 MSL_USERFUNC

5 float operator () (int rowIndex, int colIndex, PLMatrix<float> *

input) const {

6 float sum = O0;

7 for (int i = -stencil_size; i <= stencil_size; i++) {
8 if (i == 0)

9 continue;

10 sum += input.get(rowIndex+i, colIndex);

11 sum += input.get(rowIndex, colIndex+i);

12 }

13 return sum / 4;

14 }

15 };

Listing 4: Example of stencil functor.

The functors for computing the border and the stencil can be seen in Listing 3 and
Listing 4, respectively. In our example, we assume 100 degree centigrade at the top,
left, and right border of the board and 0 degree centigrade at the bottom. The usage of
a functor allows to define more complicated patterns such as cyclic or toroidal
patterns as the functor can have arbitrary attributes (e. g. glob_rows_).

For the stencil functor, one argument is the distributed input matrix. By applying
get to it with a row and a column index as parameters, the matrix element at this
position can be accessed. In case that the row or column index is smaller than zero or
bigger than the number of rows or columns minus 1, the framework internally uses
the border functor.

5 Experimental Results

We have tested the MapStencil skeleton with the three example applications
mentioned in Sect. 4, namely the Jacobi method, the Gaussian blur, and the game of
life. We have measured the run-times and speedups for different hardware
configurations with different numbers of nodes and different numbers of GPUs per
node. We have also investigated different fractions of the computations assigned to
the CPUs. Moreover, we have investigated the use of shared memory on the GPUs
and different block sizes.

For the experiments, the HPC machine Palma II was used.® Palma II has multiple
nodes equipped with different GPUs. We have used configurations with up to four
nodes with Ivybridge (E5-2695 v2) CPUs. Each node has 24 CPU cores and 4
GeForce RTX 2080 Ti GPUs.

For the first experiments, the program implementing the Jacobi method shown in
Sect. 4 was used. Moreover, an implementation of the game of life has been
considered in our experiments. It is played on a board of cells. Depending on the
surrounding cells a considered cell will be alive or not after one iteration. In contrast

® https:/confluence.uni-muenster.de/display/HPC/GPU+Nodes.
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to the Jacobi method, where the stencil accesses four neighbor elements, the
calculation of the stencil for the game of life reads all eight surrounding elements and
the current element.

5.1 CPU Usage

Firstly, we consider a configuration consisting of a single node with a CPU and up to
4 GPUs. We allocate different fractions of the calculation to the CPU and the rest to
the GPUs. The findings are displayed in Table 1. In order to keep the dataset smaller,
the run-times on two GPUs have been excluded in Table 1. The Jacobi solver is set to
perform a maximum of 5000 iterations. All program executions were checked to
perform the same number of iterations in order to ensure that different floating-point
rounding behavior does not influence the comparison.

It can be seen that with a rising percentage of elements calculated on the CPU the
run-time increases linearly. Even for small experimental settings having a 512 x 512
matrix, the version including the CPU requires 0.02 s without the CPU, 0.9 s when
only calculating 5% on the CPU. When calculating 25% on the CPU this increases to
3.75 s. This finding repeats for bigger data structures and also when using multiple
GPUs. Therefore, the CPU should only be used for communication and the GPU for
calculation for compute intense tasks. As the differences increase for bigger data
sizes, we conclude that with the communication involved in the MapStencil skeleton
the produced overhead for including the CPU outweighs the advantages of
outsourcing calculations to the CPU. This finding might not hold true for skeletons
which do not require communication. In the sequel, we will merely use the CPU for
communication purposes and let the GPUs do the calculations. For this configuration,
the variant using four GPUs first performs worse than on just one GPU for a small
matrix, but it gains slightly for bigger data sizes. This effect will be discussed in-
depth in the next subsection.

5.2 Experiments on Multiple Nodes and GPUs Using Global Memory

In order to study the usefulness of using several GPUs and nodes, we will consider a
bigger problem size. As we have seen, the use of multiple GPUs does not pay off, if
the considered problem size is too small. Thus, we now let our Jacobi solver perform
up to 10,000 iterations also on bigger matrices and only finish early if the results do
not differ by more than 0.001. However, for the tested data sizes the program never
finished early. This setting is used on a different number of nodes and GPUs per
node. On the GPUs, we use global memory only. The run-times of the parallel
program on 1-4 nodes with 1-4 GPUs each are displayed in Fig. 7. Some of the
numbers are additionally listed in Table 2. In this table, a comparison to a sequential
C++ implementation can be found running on a Skylake (Gold 5118) CPU and the
corresponding speedups.

From the numbers, it can be seen that the run-time for small problem sizes
(512 x 512 matrix) does not improve when adding more hardware. In this case, the
initialization overhead outweighs the advantage of starting more threads concur-
rently. This changes with a growing data size. As can be seen in Fig. 7, the program
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Table 1 Run-times (in s) for different fractions calculated by the CPU for the Jacobi Solver

Matrix 512 x 512 1000 x 1000 5000 x 5000

CPU % 1 GPU 4 GPUs 1 GPU 4 GPUs 1 GPU 4 GPUs
0 0.0291 0.0505 0.0966 0.1579 1.5244 1.4389

5 0.9121 1.4287 3.3705 3.8408 77.8069 76.9942
10 1.6239 2.1743 6.1082 6.5869 146.3872 145.4040
15 2.3374 2.8821 8.8477 9.3290 215.5982 214.1764
20 3.0690 3.5955 11.5590 12.0882 284.9108 285.1225
25 3.7524 4.3260 14.2981 14.7681 356.1769 357.0563

Best values are depicted in bold

running on a single node becomes slower than the multinode programs for bigger
matrix sizes, as more computations can be distributed between the nodes. Moreover,
the programs using multiple GPUs are faster than a single GPU program. However,
the improvement is far less than linear. For the biggest tested data size, it can be seen
that for one node a speedup of ~ 38 is reached which does not significantly differ
from the speed-up achieved for 5000 rows and columns processed. Adding more
GPUs for one node improves the speedup to ~ 51. The speedup is limited as the
communication between the GPUs has to be synchronous. Adding more nodes
improves the speedup clearly at a data size of 5000 rows and columns. Beforehand
the initialization overhead restrains the advantage from the calculation. After that
point, the program scales better. On 4 nodes the run-time is divided by 3. In contrast
adding four GPUs reduces the run-time by ~0.25% (1 — (69.1/93.2)).

As a second example, the game of life was considered. The sequential program
ran also on a Skylake (Gold 5118) CPU. The game of life was configured to calculate
20000 iterations. The interesting difference is that the game of life reads more
elements for the stencil calculation. Moreover, in contrast to the Jacobi Solver, the
difference to the previous iteration is not checked. Hence, the calculation takes more
time in contrast to the required communication. As can be seen in Table 3, this alters
the speedup. The speedup is considerably better than for the Jacobi Solver. Partly, it
has to be taken into account that the corresponding sequential program requires more
time. But mentionable for the 4096 x 4096 matrix more speedup is achieved than for
the 10,000 x 10,000 matrix of the Jacobi Solver (Table 4).

Adding more GPUs for the smallest problem size leads to a slow down. For a
matrix with 4096 rows and columns adding more GPUs improves the speedup from
262.318 to 430.864 for two GPUs and to 527.098 for four GPUs. For a matrix with
8192 rows and columns adding more GPUs improves the speedup from 265.071 to
495.936 for two GPUs and to 816.368 for four GPUs. This highlights that with an
increasing data size it is advantageous to use more GPUs. For two nodes the speedup
increases from 265.071 to 503.238 for one GPU for the biggest tested data size.
However, the repeated transfer operations make the speedup improvement from one
node to two nodes slightly worse, for four GPUs from 816.368 to 1142.374. This
effect becomes more obvious when comparing the run-time to four nodes. In that
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Fig. 7 Run-times (in s) on multiple nodes and GPUs per node using GPU global memory only for the

Jacobi Solver

Table 2 Run-times (in s) and speedups on multiple nodes and GPUs per node only using GPU global

memory for the Jacobi Solver

Matrix size Seq. C++ 1 GPU Speedup 2 GPUs Speedup 4 GPU Speedup
1 Node
5122 9.406 0.298 31.532 0.608 15.475 1.417 6.639
1000? 35.488 1.497 23.702 1.642 21.616 2.172 16.341
50002 888.922 23.420 37.955 20.237 43.925 18.793 47.302
10,0002 3544.270 93.156 38.047 73.815 48.015 69.092 51.298
2 Nodes
5122 9.406 0.955 9.854 1.378 6.827 2.326 4.043
10002 35.488 1.700 20.873 2.138 16.600 2.904 12.217
50007 888.922 12.334 72.071 11.185 79.472 12.218 72.758
10,0002 3544.270 48.285 73.404 40.636 87.221 39.388 89.984
4 Nodes
5122 9.406 1.097 8.573 1.609 5.846 2.331 4.035
10002 35.488 1.469 24.156 2.028 17.498 2.775 12.786
50007 888.922 9.390 94.668 9.092 97.774 10.243 86.780
10,0002 3544.270 31.435 112.749 29.443 120.379 27.551 128.642

Numbers in bold face are mentioned in the text

case, each node processes only 2048 rows for the 8192 x 8192 matrix. The GPUs are
not fully occupied and the additional overhead of initializing a GPU on another node
and transferring the data slows down the overall program.

5.3 Experiments on Multiple Nodes and GPUs Using Shared Memory

Another aspect to inspect is the run-time when using shared memory. Thus, we
varied how many threads are started, which affects how many elements are loaded
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Table 3 Run-times (in s) and speedups on multiple nodes and GPUs per node only using GPU global
memory for the game of life

Matrix size Seq. C++ 1 GPU Speedup 2 GPUs Speedup 4 GPUs Speedup

1 Node
10247 193.444 1.083 178.643 1.330 145.490 2.370 81.614
40962 2957.470 11.275 262.318 6.864 430.864 5.611 527.098
81922 11891.900 44.863 265.071 23.979 495.936 14.567 816.368
2 Nodes
10247 193.444 2.077 93.123 2.989 64.722 4.456 43.412
40962 2957.470 6.627 446.262 4.720 626.525 5.730 516.132
81922 11891.900 23.631 503.238 14.166 839.476 10.410 1142.374
4 Nodes
10247 193.444 2.565 75.424 4.037 47916 6.940 27.876
40967 2957.470 6.427 460.170 8.328 355.141 11.968 247.117
81922 11891.900 23.344 509.416 18.282 650.481 18.588 639.758

Best values are depicted in bold

into the shared memory. In Fig. 8 the run-times for starting 64 threads (8 x 8 tile) and
256 (16 x 16 tile) threads are shown. The run-time slightly improves when loading
more elements in contrast to fewer elements. However, it is still slower than the
global memory program. The loading of the elements into the shared memory
produces too much overhead to speed up the program. This overhead is produced for
each kernel call. For the biggest data size, the run-times for one GPU are 93.156 s
without shared memory and 100.205 s with shared memory, while for four GPUs the
run-time increases from 69.092 s to 73.108 s. For multiple nodes this difference
decreases, however it is expected that with multiple calls also in this setting overhead
is produced. Additionally to the proposed optimization in the data distribution, the

Table 4 Run-times (in s) on multiple nodes and GPUs per node using GPU global memory (GM) versus
shared memory (SM) for the Jacobi Solver

Matrix size 1 GPU 4 GPUs
GM SM §2 SM 162 GM SM 82 SM 16%size
1 Node
5122 0.298 0.307 0.307 1.417 1.399 1.371
10007 1.497 1.615 1.616 2.172 2.091 1.786
10,0007 93.156 100.205 99.569 69.092 73.108 73.146
2 Nodes
5122 0.954 0.890 0.907 2.326 2317 2.258
10007 1.700 1.670 1.675 2.905 2.630 2.599
10,0007 48.285 51.402 51.311 39.388 38.673 39.675

Best values are depicted in bold
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CUDA configurations were specified to cudaDeviceSetCacheConfig (cu-
daFuncCachePreferShared) and cudaDeviceSetSharedMemConfig
(cudaSharedMemBankSizeEightByte). The first setting prefers shared
memory, which means that more shared memory space is available. The second
setting sets the bank size to eight bytes to support floating-point number access. Both
settings did not significantly affect the run-time.

As previously said, the performance of the shared memory depends on multiple
factors, among others how often elements are read. Hence, it was expected, that the
game of life should profit from the shared memory, as more elements are read. The
results only slightly change for using the shared memory for calculating the game of
life, as can be seen in Table 5. This means reading one element up to nine times does
not suffice in our case to speed up the program significantly. For one GPU the run-
time increases from 44.86 to 48.55 s and 47.60 s. This difference is slightly smaller
than the previous one but still slower than using the global memory.

To further examine the shared memory the Gaussian blur is added as an example.
The Gaussian blur uses the Gaussian function to reduce detail in images. This
perfectly suits the application context, as the stencil size can be varied as a parameter
of the function. The results evaluate the run-time of the calculation of the Gaussian
blur over 100 iterations, with a 512 x 512 pixel-sized image. The number of
iterations had to be increased to ensure that the run-times are meaningful. The run-
times are listed in Table 6 and shown in Fig. 9. The listed stencil sizes go from
11 x 11 to 21 x 21 stencils. This means for calculating one pixel 121-441 elements
have to be read.

It can be seen that starting less than 64 threads (8 x 8 tile) results in a major
slowdown. Starting not enough threads slows down the whole program as the
parallelism cannot be exploited. Starting 64 or 256 threads results in a minor

1 Node

200-

150

Runtime
=
o
o

u
S

o

0 2000 4000 6000 8000 10000 12000 14000
2 Nodes

100 EEE 8 Tile Width
= 16 Tile Width
80- — 1GPU
-—-- 2GPUs
= ey B @ —— =

Runtime

.....

0 2000 4000 6000 8000 10000 12000 14000
Matrix Size

Fig. 8 Run-times (in s) on multiple nodes and GPUs per node using GPU shared memory for the Jacobi
Solver
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speedup. For the tested problem, 64 threads are the best solution found. However, the
speedup is less than 1.09 having only minor effects on the run-time. Starting more
threads slows down the run-time, which could be due to bank conflicts. To underline
our finding it is compared to a hand-written parallel program. Table 7 lists the
speedups for the different tile sizes. Those run-times only include the calculation of
the Gaussian blur and not the data transfers from CPU to GPU. As can be seen, the
differences are minimal.

Another application context is to process a larger picture. We changed the
processed picture to a 6000 x 4000 image, making it plausible to let one thread
calculate multiple data points as proposed by other publications (such as e.g.
[15, 19]). We tested the program with letting one thread calculate one to eight
elements. More elements are not reasonable as the shared memory is limited. From
the run-time, the optimal tile size was chosen, which was in all displayed cases four
elements per thread. The results can be seen in Table 8. Letting one thread calculate
multiple elements slightly improved the low-level program’s run-time. Depending on
the application context, shared memory might provide more speedup. However, it did
not significantly accelerate this application.

This observation can be attributed to the fact that in contrast to previous hardware,
newer GPUs have a big L2 Cache. The access time for L2 Cache is close to shared
memory and reduces the potential for shared memory to speed up the program.
Therefore, findings from previous publications have to be verified on newer hardware
as we could not reproduce their results. In conclusion, only stencil operations with a
very big stencil size or repeated access to the elements should use the shared
memory.

6 Discussion and Outlook

The major focus of our work was the data distribution between nodes and
computational units. Our findings could be extended by analyzing n-dimensional
data structures (with n > 2). We presume that for n-dimensional data structures,

Table 5 Run-times (in s) on multiple nodes and GPUs per node using GPU global memory (GM) versus
shared memory (SM) for the game of life

Matrix size 1 GPU 4 GPUs
GM SM §2 SM 162 GM SM 82 SM 162
1 Node
10242 1.083 1.361 1.314 2.370 4221 4238
40962 11.274 12.279 11.953 5.611 19.588 19.058
81922 44.863 48.552 47.606 14.567 70.207 69.336
2 Nodes
10242 2.077 1.770 1.765 4.456 3.857 3.823
40962 6.627 7.509 6.747 5.730 5.452 5.684
81922 23.631 26.356 24.614 10.410 11.100 10.403

Best values are depicted in bold
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Table 6 Run-times (in s) and speedups on a single node using GPU global memory and shared memory
for the Gaussian blur (muesli)

Stencil- Seq. C+4+ GM  Tile size Speedup (to Speedup
size GM) seq.
22 42 82 162 322

11 129.73 0.899 6.603 1.616 0.848 0.869 0.931 1.061 153.020
13 183.30 1.276 9309 2284 1.197 1229 1327 1.066 153.146
15 241.93 1.739 12.679 3.105 1.624 1.681 1.812 1.071 148.999
17 308.87 2267 16.547 4.046 2.104 2.187 2356 1.078 146.801
19 383.32 2.861 20942 S5.116 2.651 2753 2976 1.079 144.584
21 467.19 3.523 25859 6.312 3.262 3.397 3.667 1.080 143.226

mmm Global Memory

|
|
|

Run-time
e

w

11

4 Tile Width
8 Tile Width
16 Tile Width
32 Tile Width

13

15

17

Stencil Size

19
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Fig. 9 Run-times (in s) for the Gaussian blur with different tile sizes on one GPUs using GPU global

memory or GPU shared memory

Table 7 Speedups for a low-

level implementation in contrast
to Muesli on a single node using
GPU global memory and shared

memory for the Gaussian blur

Stencil-size ~ GM Tile size
22 42 82 162 322

11 1.013 1.072 1.021 1.032 1.025  0.992
13 1.009  1.055 1.010 1.017 1.011 0.972
15 1.001 1.050 1.009 1.013 1.012  0.976
17 0.997 1.040 1.001 1.008  0.999 0.919
19 0987 1.040 1.004 1.008 0.999  0.969
21 0982 1.039 1.004 1.001 0.998  0.960

block-wise distribution becomes more efficient. For example, a three-dimensional
data structure of size 64 x 64 x 64, which should be distributed on eight nodes either
the data could be distributed fully exploiting one dimension and then switching to the
next dimension, which would result in having blocks of size 8§ x 64 x 64 per node.
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Assuming each node has 8 GPUs and each GPU has a split of 1 x 64 x 64. In
contrast splitting the data block-wise each node has 32 x 32 x 32 elements.
Continuing, each GPU has one block of 16 x 16 x 16 elements. Assuming a 3 x 3
and a 9 x 9 stencil, the first distribution requires each GPU to load 8,972, 42.560
(3 x 66 x 66 — 4096, 9 x 72 x 72 — 4096) surrounding elements. In contrast, the
block-wise distribution requires to load only 1,736, 9,728 (18 x 18 x 18 — 4096,
24 x 24 x 24 — 4096) elements.

Irregular stencils are another interesting topic. We can handled them by
embedding them into the next biggest surrounding square, but this may introduce
some overhead. Avoiding this overhead is difficult in a library such as Muesli. An
optimization could be handled by e.g. a pre-compiler that analyzes patterns of
irregular accesses and chooses an appropriate data exchange scheme.

7 Conclusions and Future Work

MapStencil computes a matrix where the value of each element depends on the
corresponding element in another matrix and on some of its neighbors. We have
added a MapStencil skeleton to the algorithmic skeleton library Muesli. The
corresponding implementation supports all typical hardware levels, i.e. a cluster
consisting of several nodes each providing one or more multicore CPUs and possibly
multiple GPUs. To the best of our knowledge, there is no MapStencil implementation
yet, which also supports any combination of these hardware levels. In the present
paper, we have focussed on the data distribution, the load distribution between CPU
and GPUs, the usefulness of multiple nodes and GPUs for MapStencil, and the
question whether MapStencil should use GPU shared memory. From the point of
view of the users, MapStencil processes a whole distributed matrix in one step. They
do not have to bother about the transformation of global indexes to local ones and
vice versa or about complicated communication steps between GPUs and CPUs or
between nodes.

As an example program, the Jacobi solver for systems of linear equations has been
used. The results showed for the case of many iterations that using the CPU in
addition to the GPUs slows down the program significantly. For this reason, in the

Table 8 Run-times (in s) using GPU global memory (GM) versus shared memory (SM) for the Gaussian
blur letting each thread calculate the optimal number of elements

Stencil size GM SM 42 SM 82 SM 162 SM 322 Speed-up
Muesli

11 6.9 13.25 6.83 6.89 7.02 1.01

21 27.57 52.98 27.11 27.42 28.01 1.02
Low level

11 7.61 11.82 5.95 5.92 6.02 1.29

21 27.71 50.86 23.87 23.63 24 1.17

Best values are depicted in bold
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following experiments, the CPU was merely used to communicate between nodes.
This is of course different in a setting without GPUs. Next, a version using the global
memory of the GPU was tested with up to four nodes each equipped with up to four
GPUs. For the program implementing the Jacobi solver, a single GPU achieves a
speed-up of ~ 38. Four nodes with one GPU each achieve a speed-up of ~ 112. To
complement the Jacobi solver, the game of life was also considered in our
experiments. One of the most important differences is that the game of life reads nine
elements to calculate the stencil while the Jacobi Solver reads only four elements.
This increases the proportion of the required calculation time and therefore improves
the speedup. For a single GPU a speedup of ~ 265 could be achieved and for four
GPUs a speedup of ~816. Using the GPU shared memory could not achieve a
notable benefit. As part of the experiments, the number of elements loaded into the
shared memory was tested. An increasing number of elements loaded could neither
improve the results for the game of life nor for the Jacobi solver. Letting one thread
calculate multiple elements improved the speedup slightly. As future work, we want
to experiment with CUDA-aware MPI. Unfortunately, the MPI version on our
hardware is not CUDA-aware. As soon as we get a CUDA-aware MPI, we would
like to check out how far this enables improvements of our skeleton implementations.
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