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Abstract
To minimize power consumption while maximizing performance, today’s multicore

processors rely on fine-grained run-time dynamic power information—both in the

time domain, e.g. ls to ms, and space domain, e.g. core-level. The state-of-the-art

for deriving such power information is mainly based on predetermined power

models which use linear modeling techniques to determine the core-perfor-

mance/core-power relationship. However, with multicore processors becoming ever

more complex, linear modeling techniques cannot capture all possible core-per-

formance related power states anymore. Although artificial neural networks (ANN)

have been proposed for coarse-grained power modeling of servers with time reso-

lutions in the range of seconds, few works have yet investigated fine-grained ANN-

based power modeling. In this paper, we explore feed-forward neural networks

(FFNNs) for core-level power modeling with estimation rates in the range of

10 kHz. To achieve a high estimation accuracy while minimizing run-time over-

head, we propose a multi-objective-optimization of the neural architecture using

NSGA-II with the FFNNs being trained on performance counter and power data

from a complex-out-of-order processor architecture. We show that relative power

estimation error for the highest accuracy FFNN decreases on average by 7.5%

compared to a state-of-the-art linear power modeling approach and decreases by

5.5% compared to a multivariate polynomial regression model. For the FFNNs

optimized for both accuracy and overhead, the average error decreases between

4.1% and 6.7% compared to linear modeling while offering significantly lower

overhead compared to the highest accuracy FFNN. Furthermore, we propose a

micro-controller-based and an accelerator-based implementation for run-time

inference of the power modeling FFNN and show that the area overhead is

negligible.
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1 Introduction

To take effective management decisions, both power and thermal (P&T) manage-

ment of multicores depend on accurate run-time dynamic power consumption

information at core-level. Due to the cost-prohibitive nature of actually measuring

core power, such run-time power information is usually derived from predetermined

power models [20] which use observable performance counters, operating

frequency, and voltage as inputs. The performance counters are necessary to model

the activity and thus indirectly the power consumption of each core. Apart from the

spatial resolution (core-level), such dynamic power information also has to have a

high time resolution (ls to ms) to be useful for P&T management of the processor

[22, 23]. Most dynamic power models with such spatial and time resolution

commonly assume a linear relationship between performance counters and dynamic

power and a nonlinear relationship between changes of the voltage/frequency state

and dynamic power [2, 4, 6, 14, 25, 29, 32].

Previous works have shown that the relationship between performance counters

and dynamic core power can also be nonlinear at core-level at least for low time-

resolutions (1 s) [19]. Furthermore, for server-level energy accounting with low

time resolutions (0.5 Hz–1 Hz), multiple works have already proposed using ANNs

for power/energy modeling to capture such nonlinear relationships [9, 17, 28, 34].

However, the increasing complexity of modern core architectures integrating

hundreds of millions of transistors per core and the importance of effective P&T

management increasingly necessitate fine-grained high accuracy power models

capturing nonlinear performance counter/power relationships. We, therefore,

investigate the use of FFNNs for high rate power estimations on core-level and

the associated run-time inference overhead. With fast P&T management, e.g. [24],

having decision epochs of 0.1 ms, we target a power estimation rate of at least 10 kHz.

A motivational example for using FFNNs is given in Fig. 1 showing core power

on the y-axis and a time frame of 250 ms on the x-axis. PARSEC raytrace is

executed and actual power is shown with the green line; estimated power based on a

linear model is shown as the red line and estimated power based on an FFNN model

is shown with the blue line. One can see that the FFNN model more accurately

estimates the actual power consumption than the linear model thus minimizing

estimation error which allows for more effective P&T management.

In previous work, we presented a methodology to generate FFNNs with high

power modeling accuracy through a single-objective optimization with the goal of
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Fig. 1 Actual core power compared to power estimations using an FFNN model and a linear model
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minimizing the root-mean-square error (RMSE) of the power model [26]. For this

heuristic optimization, the neural architecture space was constrained to a total of

either 2, 3, or 5 layers and the number of neurons per hidden layer were step-wise

increased from 1 to up-to an upper limit of 30 neurons. The step-sizes were 1, 3, and

7 for the respective layers. This approach constrains the number of investigated

neural architectures as not all possible architectures for 2, 3, or 5 layers are

evaluated while exhaustively evaluating those within the specified neuron number

steps.

We extend that work [26] with multi-objective optimization of the neural

architecture such that both the MSE as well as the run-time overhead of the FFNN is

minimized. To allow for more possible solutions, the neural architecture space is

less constrained by allowing all neuron combinations within the upper neuron limit,

i.e. no step-wise reduction of the number of neurons per layer. To avoid an

explosion in training time, we propose a metaheuristic multi-objective optimization

of the neural architectures using a genetic algorithm based on NSGA-II [12].

With this paper we make the following contributions toward fine-grained run-

time power estimation of multicores:

– We explore FFNNs for power estimation on core-level with an estimation rate of

10 kHz.

– We optimize the number of layers and the number of neurons per layer of the

FFNNs with the objective of minimizing both power modeling error as well as

run-time overhead.

– We show that relative estimation error for the optimized FFNNs are between

4.1% and 7.5% lower compared to a state-of-the-art linear modeling approach

and between 2.1% and 5.5% lower compared to a multivariate polynomial

regression model.

– We propose a micro-controller implementation as well as an accelerator

implementation for run-time inference of the FFNNs which allow for minimal

area overhead or very high estimation rates of up to 1.38 MHz.

– The FFNNs optimized for both accuracy and overhead offer on average 60%

lower overhead and slightly smaller accuracy compared to the FFNNs optimized

single-objectively for high accuracy.

2 Related Work

A range of different methodologies for run-time dynamic power estimation on core-

level or even on core-component-level for multicore processors have been proposed.

Works that focus on high estimation rates usually rely on linear models to describe

the relation between performance counters and dynamic power and can be found for

Intel or AMD multicore processors in [2, 4, 6], for IBM multicore processors in [14]

and for embedded ARM multicore processors in [25, 29, 32]. Such linear models

have the advantage of low run-time overheads but can suffer from lower accuracy

compared to more complex models.

McCullough et al. [19] first identified non-linear power responses due to

changing workloads in multicore power traces which have to be accounted for in
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power models. They traced the power consumption of an Intel Core i7, broke down

power consumption on core-level, and explored both linear and non-linear modeling

techniques (polynomial regression and support vector regression). However, the

sampling rate was comparatively low (1 Hz) and their non-linear models did not

significantly improve upon linear models.

Further non-linear modeling techniques gained traction in the research area of

power/energy modeling for datacenter systems and cloud servers. The first to

propose ANNs for power modeling were Cupertino et al. [9]. They determined that

an FFNN architecture with 2 hidden layers—20 neurons in the first layer and 5

neurons in the second layer—to provide accuracy improvements compared to state-

of-the-art linear power modeling techniques. However, the very low sampling rate

of 3 Hz for power and performance counter data limits the applicability to energy

accounting and load balancing in datacenters. In contrast, our work focuses on high

rate power estimations with estimation rates of 10kHz and provides a methodology

to systematically generate FFNN architectures with both high accuracy and low run-

time overhead.

In [15], ANNs were used to predict the power consumption of applications across

different processor architectures with the underlying assumption that the linear

power models for each processor architecture are sufficiently accurate. In [28], the

so-called additivity of performance counters regarding energy modeling of

multicores is explored where additivity denotes the robustness of reusing a

performance counter as model input for a wide range of applications. To determine

the additivity of performance counters for their energy model generation, the use of

linear, tree-based, and ANN models was investigated. However, parametrization

and optimization of the neural network models are not discussed and the focus was

on full system energy modeling with low estimation rates.

Power modeling of multicores with multi-thread inference was explored in [7].

High modeling accuracies were found on the training data for a three-layered ANN

with sigmoid activation function as well as for a linear model. No details were given

on the hyperparametrization approach and due to comparatively similar accuracies

for the ANN and linear model, the remainder of the work used the linear model. In

contrast, our work provides a systematic approach for hyperparametrization of

ANNs for power modeling and shows significant improvements compared to state-

of-the-art linear power models.

Another work exploring three different ANNs (FFNN, Elman, and LSTM) for

cloud server power modeling is given in [17] with BP and Elman having a single

hidden layer with 25 neurons and the LSTM having 2 hidden layers with 10 neurons

each. The resulting power model provides high accuracy at course-grained spatial

(system-level) and time (1 Hz) resolution. In contrast to our work, core-level power

models with high estimation rates (10 kHz) were not explored. Recurrent Elman

neural networks have been proposed for coarse-grained power modeling of cloud

servers where one hidden layer encodes power states and which exploits time-series

performance information [34]. Finally, for system design, the development of P&T

management algorithms and power modeling algorithms, power simulators are often

used, e.g. McPAT [16]. Although the underlying principles of such power
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simulators are highly accurate, they cannot be used for run-time power estimation

due to their large computational overhead.

Multi-objective optimizations of neural network architectures based on NSGA-II

[12] have been proposed in several works [8, 18, 31], usually for image

classification tasks. To the best of our knowledge, we are the first to propose

using NSGA-II to optimize neural architectures for multi-core run-time power

modeling.

In contrast to previous work, this paper focuses on generating FFNN-based

power models accounting for non-linear effects with fine-grained spatial (core-

level) and time (10 kHz) resolution. Extending the power estimations to the core-

level and increasing the time resolution by four orders of magnitude, make a

thorough investigation of the needed FFNN complexity—regarding the number of

hidden layers and neurons—and the overhead for run-time inference necessary. Our

FFNNs are optimized both for accuracy and low run-time overhead with the

resulting power estimations being applicable for run-time P&T management

purposes.

3 Feed-Forward Neural Networks for Power Modeling

Power modeling for runtime power estimation is inherently a regression problem

with the desired power information as a dependent variable and the performance

counters as independent variables. In the following, we first present our previous

single-objective [26] methodology on FFNN power modeling. We focus on

dynamic core-level power information Pcore;j where j denotes the j-th core of the

multicore processor. The core power is estimated during run-time through n
performance counters PCi with 0� i� n all related to their respective cores. With

actual Pcore;j not being observable for each individual core, we use the following

approximation for the model generation step when only the j-th core is active at a

time:

Pcore;j ¼ Ppack � Pidle: ð1Þ

Package-level power Ppack can be observed through instrumentation of the main-

board, i.e. actual power sensors, and Pidle is the idle power of the processor when no

core is active. With only Ppack being observable, we generate different models

(FFNN, polynomial, linear) for Ppack and subtract Pidle to derive core-level power

consumption. Therefore, the PCi and Ppack data used for model generation is

reduced to timeframes where only a single core is active at a time to capture the

power response of that particular core. As we only investigate a homogeneous

multicore processor in this work, the power models for the j-th core can be gen-

eralized to any core of the system by using the performance counters of those cores

as model input, respectively. The error (cost) function for generating the subsequent

power models is then:
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Ppack;error ¼ jPpack;act � Ppack;estj ð2Þ

where the subscripts est and act indicate estimated power and actual observed power,

respectively.

3.1 ANN Architectures and Hyperparameter Solution Space

There exists a multitude of ANN architectures, e.g. FFNN, Elman, LSTM, for

modeling and predicting of non-linear functions and systems. With most fine-

grained power models using linear regression models, we keep our analysis to

comparatively simple ANN architectures. Our goal is to achieve higher estimation

accuracies than with linear modeling techniques while adding as little additional

modeling complexity and run-time overhead as possible. For this reason, we choose

well-known feedforward networks which can theoretically model any nonlinear

function according to the universal approximation theorem [13]. Similar to previous

works, we do not use any input delay on the PCi inputs, i.e. we do not generate any

autoregressive models. While linear regression models are at risk of underfitting the

underlying dynamic power relationship, FFNNs are at risk of both underfitting and

overfitting the power relationship. With a finite amount of training data, FFNNs of

sufficient size can fit each data point perfectly, i.e. memorize the data, while not

actually learning the underlying relationship. In that case, the PCi data is overfitted

and the estimation errors on Pcore for untrained PCi data will be significant.

Therefore, careful consideration has to be taken regarding the chosen hyperparam-

eters of the FFNN which are distinguished between algorithm hyperparameters

(learning related) and model hyperparameters (architecture-related). For the

algorithm hyperparameters, we train a multitude of networks for dynamic power

estimation and compare both the resulting accuracy as well as training time and find

that conjugate gradient backpropagation with Polak-Ribière updates provide the

best training speed/accuracy trade-off. As stop conditions for training the FFNN, we

use the following:

– stop after 1000 training epochs OR,

– an MSE below 1% on the training data OR,

– a minimum performance gradient of 1 � 10�5 OR,

– 5 subsequent failed validation tests where additional training leads to higher

estimation errors on the validation data.

The question of how to determine the optimal FFNN model hyperparameters is still

an ongoing topic of research, therefore, we follow best practices for hyper-

parametrization. As a first step, the model hyperparameters have to be confined. For

the activation function of the hidden neurons, we choose tanh after sweeping over a

set of different activation functions and comparing estimation accuracy.

Single-objective Hyperparameter Solution Space The goal of our single-objective

optimization methodology is to find neural architectures minimizing the power

estimation error. The run-time overhead is then simply a direct consequence of the

chosen solution with the lowest estimation error.
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Our single-objective methodology exhaustively searches through a constrained

solution space of FFNN architectures. Therefore, the solution space FFNN

architectures should be both, representative and well-constrained such that

necessary training time falls within the given compute limitation for generating

the FFNN models.

For the number of hidden layers and hidden neurons per layer, we align ourselves

with the related work for coarse-grained power models for servers/datacenters and

confine the hidden layer and hidden neuron hyperparameters as shown in Fig. 2. We

explore one two-layered shallow network with 1–30 neurons per hidden layer. Note,

that we explore all possible combinations of the number of hidden neurons per

layer, i.e. 900 differently parameterized two-layered FFNNs. We further investigate

Input
Layer

Ouput
Layer

Hidden Layers

Shallow
FFNN

Number of hidden
neurons per layer

1,2,...,30

...
...

...

PC1

PC2

PC14

h1,1

h1,2

h1,30

h2,1

h2,2

h2,30

Pest

Mid-sized
FFNN

Number of hidden
neurons per layer

1,4,7,...,28

...
...

...
...

PC1

PC2

PC14

h1,1

h1,2

h1,28

h2,1

h2,2

h2,28

h3,1

h3,2

h3,28

Pest

Deep
FFNN

Number of hidden
neurons
per layer

1,8,15,22,29

...
...

...
...

...
...

PC1

PC2

PC14

h1,1

h1,2

h1,29

h2,1

h2,2

h2,29

h3,1

h3,2

h3,29

h4,1

h4,2

h4,29

h5,1

h5,2

h5,29
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Fig. 2 Overview of the FFNN architectures investigated by the single-objective methodology; the yellow
shaded rectangles indicate the ability to parameterize the number of hidden neurons per layer, i.e. from at
least one hidden neuron per layer up to the given maximum number
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one mid-sized network with 3 hidden layers where the number of neurons per layer

can be any number of 1, 4, 7, 10, 13, 16, 19, 22, 25, 28 and one deep network with

5 hidden layers where the number of neurons per layer can be 1, 8, 15, 22, 29.

The number of neurons per layer is constrained for the mid-sized and deep

networks to keep the amount of training time on a reasonable level. Although

adding layers and increasing the number of neurons per layer increases the risk of

overfitting, it also decreases the risk of underfitting due to an undersized FFNN.

Overall, the three different layer sizes and possible neurons-per-layer of the

FFNN neural architectures constitute 302 þ 102 þ 55 ¼ 5025 different neural

architectures. This is the overall solution space for the single-objective optimization.

In the following, we present the extension of our previous single-objective

optimization methodology.

Multi-objective Hyperparameter Solution Space The goal of our multi-objective

optimization methodology is to find neural architectures minimizing both the power

estimation error as well as the run-time overhead. To simultaneously optimize both

objectives, we need to explore a larger solution space than for the single-objective

optimization which has to be searched heuristically rather than exhaustively.

We constrain the solution space to FFNN architectures with 2, 3, 4, or 5 layers

with up to 30 neurons per layer without any constraints on the neuron amount.

Therefore, the solution space is 302 þ 303 þ 304 þ 305 ¼ 25; 137; 900 different

neural architectures which is four magnitudes larger than for the single-objective

optimization.

In the following, we show both our single-objective as well as multi-objective

methodologies to find well-performing FFNN architectures for run-time power

estimation.

3.2 Single-Objective Hyperparameter Optimization

Our methodology for the hyperparametrization of the model parameters and for the

final training and computation of expected estimation accuracy are shown in Fig. 3.

We use tenfold cross validations for both, model hyperparametrization and to

train a final FFNN of each size (shallow, mid-sized, and deep), i.e. for actual

deployment.

First, the traced PCi and Ppack data is partitioned into a training/validation data

set (75%) and a holdout data set (25%) such that the holdout data sets contain

benchmarks from different benchmark suites covering diverse power behaviors. The

holdout data set is neither used for hyperparametrization nor to train the three final

FFNNs and can thus be used to determine the actual performance of these FFNNs

on data they have not seen yet. For the hyperparametrization, we iterate over all

possible hidden neuron per layer combinations for each FFNN size (shallow, mid-
sized, deep) and execute the first cross validation loop. In this loop, the training data

set is further partitioned into tenfolds and each fold is used once for validation with

the remaining folds being used for training the FFNN. We repeat this step for each

fold ten times to produce statistically significant results and to be able to remove

outliers, i.e. diverging FFNNs. Thus, 100 FFNNs are generated for each possible
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model hyperparameter combination. After a full hyperparametrization run, the

estimation error on the validation data is averaged for each hyperparameter over all

folds. We then choose the hidden neuron parametrizations for each FFNN size with

the lowest average RMSE under the assumption that these parametrizations provide

the best general fit for the given performance/power data. The benefit of the

repeated tenfold cross validations lies in the robustness of the average RMSE for the

different hyperparameters and thus in choosing with high confidence good

hyperparameters for generating the final FFNNs.

The hidden neuron parametrizations are then used in the second tenfold cross

validation step where we generate an FFNN for each training/validation fold

combination, i.e. 10 FFNNs for each FFNN size (shallow, mid-sized and deep) and

choose those FFNNs for testing which performed best on their corresponding

validation data. We use the second cross validation to minimize the risk of selecting

an overfitting FFNN from the first cross validation where 100 different FFNNs were

generated for each hyperparameter. The risk of the FFNN with the highest accuracy

on their respective validation fold being overfitting is higher when 10 such FFNNs

are available to choose from rather than just one. In the final step, we test the three

chosen FFNNs on the holdout data to assess their potential dynamic power

estimation performance in an actual deployment environment.

Split performance counter and power data into:
training/validation data (75%)

and holdout data (25%)

Set model
hyperparameters

(hidden layers and neurons)

First
10-fold cross
validation

Compute average RMSE
for given set

of hyperparameters

All hyperparameter
combinations
exhausted?

Choose
hyperparameters

with minimal
RMSEavg

Second
10-fold cross
validation

Compare RMSE of FFNNs
on their validation folds

Choose one FFNN of each size
(shallow, mid-sized, deep)

with lowest RMSE
on validation data

Assess final FFNN
performances

(RMSE)
on holdout data

yes

no

repeat 10 times

Fig. 3 Flowchart of model hyperparametrization using a first tenfold cross validation, final FFNN
generation using a second tenfold cross validation and FFNN estimation accuracy assessment on holdout
data
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3.3 Multi-Objective Hyperparameter Optimization

We adapt NSGA-II [12] with simulated binary crossover (SBX) [10] and

polynomial mutation [11] for our multi-objective optimization of the neural

hyperparameters for our power modeling FFNNs. SBX was chosen as the basis for

our crossover operation as it enables gradual changes close to the chosen parent

neural architectures. By this, the solution space is searched with higher probability

in the vicinity and with lower probability in larger distances to existing solutions by

the crossover operation. To ensure diversity of the population and avoiding being

stuck in a local minima, we use polynomial mutation with a comparatively large

percentage of the offspring populations generated by this mutation operator.

Our goal is to find neural architectures minimizing the modeling error while also

minimizing the run-time inference overhead. In addition, we aim to make our

methodology generic in regard to the neural architecture solution space, especially

the number of layers. This has the advantage, that neural architectures with different

number of layers can be searched in a single optimization run allowing for either

faster convergence towards more optimal architectures within the same training

time. The disadvantage of this approach is that in case of small population numbers,

some layer values might be excluded too early from the population without the

chance of getting back into the population.

We choose an explicit encoding of the neural architecture, containing the number

of layers and the number of neurons per layer, as illustrated in Table 1. This

table also contains the used performance metrics. The performance metrics are each

individual’s modeling error (RMSE) and its run-time overhead counted in MAC

operations. The final dense FFNN layer after the last hidden layer is not explicitly

encoded as its specification is fully derived from the last non-zero hidden layer. In

the following, we use a population size of 50 to keep sufficiently large numbers of

individual neural architectures in the population while also keeping the necessary

compute time for each generational step in a reasonable range. We keep also an

archive of all populations generated over the different generations to avoid

computationally costly re-evaluation of the same neural architecture in the case that

it is generated multiple times by crossover/mutation. An overview of our multi-

objective methodology generating and optimizing the population is shown in Fig. 4.

Table 1 Example of population encoding and with performance and NSGA-II metrics

Architecture encoding Objective performance Relative performance NSGA-II

Number Neuron RMSE Overhead Rank Crowding

of Layers Distribution (MACs) Distance

3 6-4-17-0-0 0.55 389 1 Inf

2 25-16-0-0-0 0.45 962 1 0.25

– – – – – –
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Split performance counter and power data into:
training/validation data (75%)

and holdout data (25%)

Initalize random
population of hyperparameters

(number of hidden layers
and neurons per hidden layer)

10 times
10-fold cross
validation

Compute
Overhead

Performance Assessment

Determine ranks and
crowding distance

NSGA-II [12]

Layers Neurons RMSE Overhead Rank CD
2 25-16 0.45 962 1 Inf
3 6-4-17 0.55 389 1 0.25
... ... ... ... ... ...

Current
population

Simulated binary
crossover operator [10]

Mutation
operator [11]

Offspring
individuals

10 times
10-fold cross
validation

Compute
Overhead

Performance Assessment

Offspring
population +

Determine ranks and
crowding distance

NSGA-II [12]

Select new population
based on ranks and
crowding distance

NSGA-II [12]

Another
generation?

Take
Pareto optimal

hyperparameters

Final
10-fold cross
validation

Compare RMSE of FFNNs
on their validation folds

Choose one FFNN
for each hyperparameter

with lowest RMSE
on validation data

Assess final FFNN
performance

(RMSE / MAPE)
on holdout data

10% 90%

Yes

No
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First, the performance counter data is split the same way as previously into

training/validation data as well as holdout data. Afterward, an initial population is

generated with a random number of layers and neurons per layer for each individual

constrained by the overall layer and neuron limits. The crossover operation is shown

in Algorithm 1. The random population of neural architectures is then assessed with

the same repeated tenfold cross validation as in the previous section to get

consistent modeling errors, i.e. RMSE, for each neural architecture. In addition, the

run-time overhead is calculated in multiply accumulate (MAC) operations for a

single inference of the neural network architecture to generate a power estimate.

Based on the error and overhead values, the individual ranks and crowding distance

is computed using NSGA-II [12]. With this, the initial starting population is

complete and functions as the current population.

In the next step, our genetic algorithm optimizes the population over a multitude

of generations by applying a mutation and a crossover operation. Overall, we

generate 50 new neural architectures, i.e. the offspring population, with 10% (5)

neural architectures generated by the mutation operation and 90% (45) generated by

the crossover operation. We decided on this distribution of the mutation/crossover

likelihood to have sufficiently high randomness in the offspring population

throughout the optimization while also having sufficiently high convergence

towards improved neural architectures. In case a newly generated neural architec-

ture has already been evaluated, i.e. is in the generational archive, we reapply the

crossover or mutation operation to get a novel neural architecture while ensuring the

above mutation/crossover distribution.

Our crossover operation for the neural architectures is shown in Algorithm 1.

Note, that the two parent architectures used for a single crossover operation are

chosen by binary tournament from the current population using the crowded

distance operator as described in NSGA-II [12]. We set the SBX parameter

regarding the probability distribution as n ¼ 20 resulting in a wide probability

distribution for the neuron values. With the number of layers being an explicit part

of the solution space and thus optimization, the crossover operator has to

differentiate two cases. In the first case, both parents have the same number of layers

allowing us to simply use SBX once for each layer to generate two children

architectures. In the second case, both parents have different number layers and we

designate randomly with equal chance one of the parents as the dominant parent.

The dominant parent’s layer number is then set for both child architectures. If the

dominant parent architecture has fewer layers than the other parent architecture, we

perform SBX over the neuron values up to the dominant (smaller) layer number

generating two children architectures. If the dominant parent architecture has more
layers than the other parent architecture, we perform SBX over the neuron values up

to the non-dominant (smaller) layer number and copy the dominant parent

architecture’s neuron values of the remaining layers for the two children

architectures.

b Fig. 4 Flowchart of multi-objective FFNN hyperparametrization using NSGA-II, tenfold cross

validations and final FFNN estimation accuracy assessment on holdout data
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Finally, the real-valued neuron values of the children architectures are rounded to

the closest integer values and in case the neuron limits (1 or 30) are underflown or

overflown, the neuron values are set to the respective neuron limits.

For the mutation operation, random individual neural architectures are chosen

from the current population and the number of neurons per layer mutated using

polynomial mutation with the same probability parameter n ¼ 20 as for the

crossover operation [11]. Neuron values are increased and decreased with equal

probability and the resulting neuron values rounded to the nearest integer value,

with the value saturating in case it exceeds the neuron limit.

The performance of the offspring population in regard to modeling error and

overhead is then assessed, and the individual ranks and crowding distance are

determined. After both objectives have been evaluated, the current and the offspring

population are combined and their relative performance is computed according to

NSGA-II. In the final step of a generation, the best individuals—according to ranks

and crowding distance—are selected for the next generation.
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When the maximum number of generations is reached, the performance of the

individual neural architectures of the final generation in the Pareto front is assessed

on the holdout data. For this last step, the approach is similar to the single-objective

methodology with FFNNs generated for the different validation folds and the ones

with the lowest RMSE chosen for assessment on the hold out data with the only

difference that there can be multiple neural architectures in the Pareto front and thus

multiple final FFNNs.

4 Experimental Setup

We use HotSniper [21], which is based on the Sniper multicore simulator [5] and

expands the Sniper simulator with periodic power simulations using McPAT [16].

The sniper simulator uses interval simulation to speedup simulation times while

providing good simulation accuracy. It is widely used for the research of processor

power/thermal management and power modeling, e.g. in [23, 27]. Compared to a

cycle-level simulator, an interval simulator focuses on accurately simulating

performance changes due to stalls of the execution flow, while modeling

performance on a higher abstraction layer when the execution flow is continuous.

Our experimental framework simulates a 16-core processor with Intel Gaines-

town core microarchitecture, with the details given in Table 2.

We trace common performance counters similar to other state-of-the-art work,

e.g. [2], with a sampling rate of 10 kHz. Some works use a larger number of

performance counters—in the range of 50–100—to estimate power due to the

possibility of the estimation error decreasing with an increasing number of

performance counter inputs. However, processors commonly only support recording

a small number of performance counters—in the range of 5–15—at the same time

[4].

We use the power and energy information provided by McPAT in our evaluation

which generates power information on package, core, and core component

granularity with microsecond resolution. Finally, the benchmarks used for training

the FFNNs and generating reference power models are also given in Table 2. The

PARSEC 2.1 benchmarks vips, ferret as well as Splash-2 benchmarks volrend,

water-nsquared and water-spatial had to be left out due to errors with the PIN tool

used by Sniper for benchmark instrumentation. The usage of McPAT for obtaining

power can be a limitation for our work. The simulated power values from McPAT

can have inaccuracies which either favor/are neutral/disfavor our approach

compared to the other state-of-the-art approaches. Our assumption is that the

possible inaccuracies are on average neutral in regard to the comparison of

modeling approaches.
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5 Evaluation

5.1 Reference Power Models

We compare the estimation accuracy of the final FFNNs with the state-of-the-art

linear approach published in [2] and a polynomial regression model as proposed by

McCullough et al. [19]. For the linear model, we execute a set of microbenchmarks

and the PARSEC/Splash-2 benchmarks on the system, trace Ppack and PCi and

generate a core-level linear regression model. Although [19] argues that a

polynomial regression model was not able to accurately capture the non-linear

power relationships—possibly due to overfitting—we still use it to test the

hypotheses that our performance/power data could potentially be described well

through polynomial regression and therefore obviating the need for more complex

ANN methodologies. To generate the polynomial regression model, we use a

similar methodology as described in Sect. 3 for FFNNs. First, we do repeated

tenfold cross validations to determine the best polynomial order and then generate

the final polynomial regression model through another tenfold cross validation

Table 2 Simulation frameworkv

16-cores (2�2 tiles) with NoC interconnect

Intel gainestown core architecture

Memory architecture

L1 caches 32 KB (private)

L2 caches 256 KB (private)

L3 caches 8 MB (shared per tile)

Performance information

Processor Performance

Unit Counter

Core Instruction per cycle IPC

# Branch instructions BPU

# Floating point instructions FP

% C0 state residency of a core C0

L2 & L3 # Load instructions LxLI

Cache # Store instructions LxSI

# Load misses LxLM

# Store misses LxSM

% Cycles lost due to misses LxCLK

Workloads for model generation and evaluation

Suite Benchmarks

PARSEC 2.1 [3] Blackscholes, bodytrack, canneal, dedup, facesim, fluidanimate,

freqmine, raytrace, streamcluster, swaptions, x264

Splash-2 [33] Barnes, cholesky, fft, fmm, lu, ocean, radiosity, radix, raytrace
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choosing the polynomial model with the highest accuracy on its respective

validation fold. We explored maximum polynomial orders of 1–6 for the

independent PCi inputs and found that a maximum polynomial order of 2 offered

the best average estimation performance on the validation data.

5.2 Single-Objective Hidden Neuron Architecture Results

We first look at the best model hyperparameters of the three hidden layer sizes and

the average root mean squared error (RMSE) on the validation data from the tenfold

cross validation from our previous work [26]. For each of the three different FFNN

sizes, the hidden neuron parametrizations with the lowest average RMSE are shown

in Table 3. In addition, the relative error compared to the average core power is

computed as RMSE
Pavg

.

Shallow FFNNs with 2 hidden layers and 14 neurons in the first hidden layer and

29 neurons in the second hidden layer offer on average the best performance on the

validation data. Both the mid-sized and deep FFNN offer worse performance than

the shallow FFNN on the validation folds. Notably, all FFNNs steer towards larger

average neuron counts within the available solution space. However, for the mid-

sized and deep FFNNs where the larger neuron counts could be due to the coarse

granularity of the solution space. Smaller FFNN architectures with specific neuron-

distributions might be outside of the solution space but still offer similar or better

accuracy for FFNNs with three or four layers.

5.3 Multi-Objective Hidden Neuron Architecture Results

As we use a multi-objective metaheuristic, we first investigate its convergence

properties towards good FFNN architectures over time. In Fig. 5, the average

RMSE and overhead values of the neural architectures are shown over 50

generations of genetic optimization. Also, the smallest RMSE and overhead values

of the Pareto-optimal (rank 1) solutions in the population are also shown. We

observe that the average overhead values are steadily decreasing while the average

RMSE values fluctuate over the generations. After further investigating the

population composition from generation to generation, we see that small numbers of

neural architectures with above-average RMSE and very small overheads are

introduced and kept in the population on the lower ranks. For example, neural

architectures with only 1–3 neurons on a single layer drastically decrease overhead

while simultaneously increasing the modeling error. However, this behavior is not

in itself problematic as we manually observe an overall increase in population

Table 3 FFNN architectures

found by the single-objective

optimization methodology with

average RMSE on the

randomized validation data

FFNN Number of Neurons per Average Relative

Hidden layers Hidden layer RMSE Error

Shallow 2 14–29 0.31 W 5%

Mid-sized 3 25–28–25 0.36 W 6%

Deep 5 22–08–22–15–15 0.33 W 6%
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diversity which can lead to more optimal solutions further down the generational

timeline. As was to be expected for the solutions in the actual Pareto front of the

population, the minimal values observed for either the RMSE or the overhead are

both decreasing steadily. We conclude that our heuristic multi-objective optimiza-

tion successfully optimizes the initial random neural architectures.

The Pareto optimal solutions after 50 generations with their corresponding

RMSE values on the validation folds and their run-time overhead are given in

Table 4. All four solutions have quite similar neuron architectures with small trade-

offs between overhead and modeling error. We only found neuron architectures with

different layer numbers and significantly different neuron distributions within the

lower ranks of the final population. When comparing these architectures with the

results of the single-objective optimization methodology in Table 3, we can see that

the overhead values were successfully minimized, however the modeling errors are

slightly larger for our heuristically optimized architectures.

Interestingly, our heuristic methodology has not found the same or similar neural

architectures with lowest RMSE as the exhaustive search. However, this is not
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Fig. 5 Average population performance over 50 generations as well as lowest overhead and RMSE
values of the Pareto optimal solutions

Table 4 FFNN architectures found by the multi-objective optimization methodology with average RMSE

on the randomized validation data

FFNN Number of Neurons per Average Relative Run-time

Hidden layers Hidden layer RMSE Error Overhead

Multi-1 3 5–4–8 0.32 W 5% 326 MACs

Multi-2 3 3–4–8 0.34 W 6% 290 MACs

Multi-3 3 3–2–8 0.37 W 6% 268 MACs

Multi-4 3 4–4–8 0.34 W 6% 308 MACs
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unexpected as the solution space for the heuristic methodology is four magnitudes

larger than for the exhaustive, constrained single-objective methodology. In regard

to compute/training time for the optimization, the heuristic optimization evaluated

2500 different neural architectures, while the single-objective optimization evalu-

ated 5025 architectures.

5.4 Run-Time Inference Overhead for an On-Chip Micro-Controller
Implementation

The computational and memory overhead of run-time inference of the FFNNs for

producing a single power estimation is assessed by the necessary number of MAC

operations and the memory needed to store the 32-bit neuron weights. An overview

of both the compute overhead and memory overhead is given in Table 5 for all the

different FFNN architectures determined through both single-objective and multi-

objective optimization. The number of necessary MAC operations is derived from

input computations and the computations in the hidden layers and the output layer.

Compared to the linear regression model, the shallow FFNN needs approximately

60 times more MAC operations and 40 times more memory while the multi-x
FFNNs optimized for both accuracy and overhead need on average 21 times more

MAC operations and 20 times more memory. Both, the computational and memory

overhead are magnitudes higher for any FFNN implementation and we, therefore,

discuss the feasibility and area overhead of a run-time inference implementation of

the different FFNNs in the following.

At least on IBM multicore processors, micro-controllers are integrated for both

power estimation—so-called power proxies—and for power management purposes

[14]. In the following, we approximate the transistor overhead for power estimations

using the shallow ANN assuming integrated micro-controllers for power estimation.

As a reference micro-controller, the 32-bit ARM Cortex M0 is well established, can

be conservatively operated at 50 MHz with an implementation using less than 100k

Table 5 Necessary

computations and memory for a

single power estimation/model

inference

Model Number of Memory

MAC operations in kBit

Single-objective optimization

Shallow FFNN 827 20

Mid-sized FFNN 1971 56

Deep FFNN 1426 39

Multi-objective optimization

Multi-1 FFNN 326 10

Multi-2 FFNN 290 9

Multi-3 FFNN 268 8

Multi-4 FFNN 308 10

Reference

Linear Model [2] 14 0.5

Polynomial Model 28 1.0
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transistors [1]. Besides, the required SRAM to store the weights for the shallow
ANN would add an additional 120 k transistors. Each MAC operation and its

associated load/store instructions takes 6 cycles on the M0 leading to approximately

5 k cycles for a single inference of the shallow FFNN, therefore, power estimations

could be executed with a periodicity of 100ls.
Depending on the requirements of the P&T management, one micro-controller

would be needed per core if 10kHz power estimations are needed. Such a micro-

controller implementation leads to an overhead of 250 k transistors under conservative

assumptions and has to be compared to the power estimations being used for a complex

out-of-order core having hundreds of millions of transistors. The area overhead of—at

maximum 0.25%—would decrease the average relative power estimation error by

7.5%, translating to better P&T management and thus the possibility of higher

compute performance and/or higher energy efficiency. Area overhead could be further

decreased by custom logic for FFNN inference which would however remove the

programmability of the power estimator through firmware changes. Also, lower

estimation rates in the range of 1 kHz would allow one power estimating micro-

controller to serve multiple cores thus also decreasing area overhead.

In conclusion, the multi-x FFNNs and the shallow FFNN can be implemented for

run-time power modeling on today’s multicore processors. The multi-x FFNNs have,

due to their multi-objective optimization taking overhead into account, a clear

advantage compared to the shallow FFNN with run-time overhead being 60% smaller.

5.5 Run-Time Inference Overhead for an Accelerator Implementation

We further investigate the implementation of the proposed FFNN architectures on

hardware as an alternative to the micro-controller execution in Sect. 5.4. The

simplicity of the FFNN architectures facilitates their synthesis as computation

graphs on FPGA fabric. This follows a dataflow-style architecture, where all the

weights remain on-chip while the activations flow through the network. The

compute graph is pipelined, therefore successive inputs can be processed in different

parts of the graph at any point in time. This leads to large improvements in latency

and throughput, but requires more on-chip memory to hold the intermediate results

between the layers, as well as the weights of the FFNN. The implemented designs

follow the method proposed in [30], but offer a higher numerical precision of 8-bit

for weights and activations.

The resulting inference rates and FPGA resource usage numbers are given in

Table 6. The FPGA 6-input LUTs can be very conservatively translated to a

transistor count of 3.8 million transistors per 10,000 LUTs, assuming worst case

truth tables and no optimization of the logic functions. Of the different FFNN

architectures, the multi-x architectures offer significantly higher inference rates and

simultaneously lower compute logic and memory usage compared to the shallow,

mid-sized, deep architectures.

When comparing the overheads of the possible on-chip micro-controller

implementation in Sect. 5.4 with the FFNN accelerator approach, we observe that

the accelerator approach for the multi-x architectures offers approximately a 100

times higher inference rate at a cost of approximately 20 times more transistors,
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under worst case transistor usage assumptions. Due to the very high inference rate of

the accelerator a single accelerator could be used for a 100-core processor

computing the power estimations for all cores at an effective per-core inference rate

of 10 kHz. This would translate to 5 times lower area overhead compared to the per-

core micro-controller implementation. Also, future very large core architectures

might require higher power estimation rates than today’s multi-core processors,

making such an accelerator implementation on a per-core/compute tile/chiplet level

even more advantageous.

5.6 Estimation Accuracy on Holdout Data

The hyperparameters gained from the single-objective optimization and shown in

Table 3 are used to generate the first three final FFNNs (shallow, mid-sized, deep)

using the second round of tenfold cross validation [26]. Four additional FFNNs

(multi-1/2/3/4) are generated in the same way based on the Pareto optimal

hyperparameters gained from the multi-objective optimization from Table 4. Note

that for actual deployment in a multicore processor, one would only generate either

the shallow FFNN or one of the four multi-x FFNNs as they all occupy the same

Pareto front with the shallow FFNN having lowest error values and the other FFNNs

having higher error values but lower overhead.

However, for providing an extensive performance overview and analysis we also

show the performance of the mid-sized and deep FFNN. The estimation accuracy of

all seven resulting FFNNs is then determined on the holdout data, i.e. data that has

neither been used for the hyperparametrization nor for training the FFNNs. Table 7

shows the RMSE and percentage errors of the seven FFNNs, the model linear and

the multivariate polynomial model as a comparison.

From the FFNNs, the shallow one has the best estimation performance with the

remaining six FFNNs having worse error as was to be expected from the previous

validation data results. Compared to the state-of-the-art linear model [2], we observe

a decrease in the relative error of 7.5% shallow FFNN. Such an estimation

improvement can be significant for both short-term power (density) management

and long-term thermal management. For example, an overestimation of the power

Table 6 FPGA resource usage,

latency and maximum inference

rates for an accelerator

implementation

Model LUTs Memory Latency Inference

in kBit in us Rate in kHz

Single-objective optimization

Shallow FFNN 15,763 88 6.3 158

Mid-sized FFNN 21,937 111 17.8 56

Deep FFNN 32,810 156 12.3 81

Multi-objective optimization

Multi-1 FFNN 18,622 69 1.3 769

Multi-2 FFNN 17,272 49 0.9 1,064

Multi-3 FFNN 17,148 49 0.7 1,389

Multi-4 FFNN 17,151 48 1.1 893
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consumption of 7.5% over a time range of ten milliseconds can lead to power-

inefficient mapping and scheduling of tasks or an early end to frequency boosting by

the power manager.

The best polynomial model had an RMSE of 0.01W on the validation data but an

RMSE of 0.60W on the holdout data which is not significantly better than the

performance of the linear model. Compared to the polynomial model, the relative

estimation error of the shallowFFNN power estimator still decreases by 5.5%. The result

of the best FFNNs having two or three layers as well as the best-suited polynomial order

being 2, we interpret as the underlying non-linear performance counter/power

relationship in itself being probably not overly complex. The comparatively bad

polynomial model performance reconfirms the findings of McCullough et al. [19] that

polynomial regression modeling very easily overfits the underlying performance/power

data and is not well-suited to capture the non-linear relationships.

The multi-x FFNN models perform between 0.8% to 3.4% worse concerning the

relative error compared to the shallow FFNN but all perform still significantly better

than the linear and polynomial models.

In addition to the RMSE values and relative error values compared to average

core power, we also provide the mean absolute percentage error (MAPE) values in

the final comparison shown in Table 7. Compared to the relative error, MAPE

penalizes underestimations of the core power consumption stronger than overes-

timations of core power which could be advantageous for conservative power

management algorithms. However, we do not observe significant qualitative

differences between the relative error values and the MAPE values and have

included MAPE for sake of completeness.

On the final choice of which power models to use in a multicore processor, all

presented power models come with a trade-off between modeling accuracy and run-

time overhead. If accuracy is the most important objective for the processor

designer, the shallow FFNN would be a natural choice. If a slight degradation of

0.8% in accuracy is acceptable, the multi-1 FFNN would allow for 61% lower run-

Table 7 Estimation accuracy of

FFNNs, linear model, and

polynomial model on the

holdout data set

Model RMSE Relative MAPE

Error

Single-objective optimization

Shallow FFNN 0.26 W 4.5% 5.4%

Mid-sized FFNN 0.50 W 8.4% 8.0%

Deep FFNN 0.40 W 6.8% 7.0%

Multi-objective optimization

Multi-1 FFNN 0.31 W 5.3% 5.9%

Multi-2 FFNN 0.43 W 7.2% 7.7%

Multi-3 FFNN 0.47 W 7.9% 8.2%

Multi-4 FFNN 0.36 W 6.1% 6.0%

Reference

Linear model [2] 0.75 W 12% 12%

Polynomial model 0.60 W 10% 11%
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time overhead compared to the shallow FFNN. If run-time overhead is the most

important objective, one would probably still use the linear model.

6 Conclusion

In this paper, we extended our previous work on the use of FFNNs for fine-grained run-

time power estimation on core-level with an estimation rate of 10 kHz. We proposed a

multi-objective metaheuristic approach that aims to minimize both the modeling error

as well as the run-time overhead. For this, we adapted NSGA-II for optimizing the

neural architecture hyperparameters, i.e. number of layers and number of neurons per

layer. Similar to our previous work, we used tenfold cross validations to avoid both an

underfitting of the non-linear relations between performance counters and dynamic

power as well as to avoid overfitting the training data while using holdout data to assess

the accuracy of the final Pareto optimal FFNNs.

Our results show that the best FFNN from our previous work occupies the same

Pareto front as the best FFNNs from our multi-objective optimization approach.

Thus, our multi-objective optimization approach offers additional neural architec-

tures with clear trade-offs between accuracy and run-time overhead for multicore

power modeling. The highest accuracy FFNN from our previous work has in

comparison to the newly generated FFNNs still a higher accuracy, however, the

additional FFNNs from this work offer on average 60% lower overhead while still

outperforming state-of-the-art linear and polynomial modeling approaches. Overall,

the optimized FFNNs have between 4.1% and 7.5% lower relative error compared

to a linear model and 2.1% and 5.5% lower relative error compared to a multivariate

polynomial regression model. These improvements in accuracy can translate to

improved multicore power and thermal management decisions, e.g. power-density

aware task mappings and frequency boosting, by avoiding unnecessarily inaccurate

power information input to these algorithms.

We show that a micro-controller-based implementation would allow the FFNN

inference/power estimation for all of our optimized FFNN architectures to be

executed at 10 kHz on each core with a maximum area overhead of 0.25% for large

out-of-order cores. The run-time overhead optimized FFNN architectures leave

more headroom for additional, e.g. power and thermal management, tasks on the

proposed micro-controller. Finally, we provide an accelerator-based implementation

which could further decrease area overhead by a factor of 5 for a many-core system

or allow for significantly higher estimation rates of up to 1.38 MHz.
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