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Abstract There is the significant interest nowadays in developing the frameworks of
parallelizing the processing for the large graphs such as social networks, Web graphs,
etc. Most parallel graph processing frameworks employ iterative processing model.
However, by benchmarking the state-of-art GPU-based graph processing frameworks,
we observed that the performance of iterative traversing-based graph algorithms (such
as Bread First Search, Single Source Shortest Path and so on) on GPU is limited by
the frequent data exchange between host and GPU. In order to tackle the problem, we
develop aGPU-based graph framework calledWolfPath to accelerate the processing of
iterative traversing-based graph processing algorithms. In WolfPath, the iterative pro-
cess is guided by the graph diameter to eliminate the frequent data exchange between
host andGPU. To accomplish this goal,WolfPath proposes a data structure called Lay-
ered Edge list to represent the graph, from which the graph diameter is known before
the start of graph processing. In order to enhance the applicability of our WolfPath
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framework, a graph preprocessing algorithm is also developed in this work to convert
any graph into the format of the Layered Edge list. We conducted extensive exper-
iments to verify the effectiveness of WolfPath. The experimental results show that
WolfPath achieves significant speedup over the state-of-art GPU-based in-memory
and out-of-memory graph processing frameworks.

Keywords Graph processing · GPGPU · Parallel computing

1 Introduction

The demand for efficiently processing large scale graphs has been growing fast nowa-
days. This is because graphs can be used to describe a wide range of objects and
computations and graph-based data structures are the basis of many applications
[19,22–24,26,30,36,46,48]. Traditionally, motivated by the need to process very
large graphs, many frameworks have been developed for processing large graphs on
distributed systems. Examples of such frameworks include Pregel [28], GraphLab
[25], PowerGraph [9] and GraphX [10]. However, since developing distributed graph
algorithm is challenging, some researchers divert their attention to design the graph
processing system that handle large scale graphs on a single PC. The research endeav-
ours in this direction have delivered the systems such as GraphChi [17], PathGraph
[45], GraphQ [39], LLAMA [27] and GridGraph [51]. However, these systems suffer
from the limited degree of parallelism in conventional processors.GPU is renowned for
its potential to offer themassive degree of parallelism inmany areas [3,4,11,21,32,42–
44,49,52]. Therefore, much research now resort to use GPU to accelerate the graph
processing process. The exemplar GPU-based graph processing systems include
Medusa [47], Gunrock [40], CuSha [16], Frog [35] and MapGraph [6].

Many of these graph processing frameworks employ iterative processing techniques
[38,41,50]. Namely, graph processing involves many iterations. Some iterative graph
processing algorithms use the threshold value (e.g., in the PageRank algorithm) or the
number of vertices/edges (e.g., in theMinimum-cut algorithm) to determine the termi-
nation of the algorithms. In these algorithms, the iteration count is known beforehand.

However, in iterative traversing-based graph processing, the algorithm is driven by
the graph structure and the termination of the algorithm is determined by the states of
vertices/edges. Therefore, these algorithms need to check the state of vertices/edges
at the end of every iteration to determine whether to run the next iteration. In each
iteration, either synchronous or asynchronous methods can be used to compute and
update the values of vertices or edges in the graph. The processing terminates when
all vertices meet the termination criteria.

The aforementioned termination criteria is application-specific (e.g, the newly com-
puted results of all vertices remain unchanged from the previous iteration). The number
of iterations is unknown before the algorithm starts. Such a termination method does
not cause any problem on CPU-based graph processing systems, because checking
the termination condition on CPU does not incur much overhead. On the other hand,
termination checking is a time consuming process in GPU-accelerated systems. This
is because all the threads in different thread blocks need to synchronize their decision
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at this point. However, current GPU devices and frameworks (CUDA [5] and OpenCL
[37]) do not support synchronization among different thread blocks during the exe-
cution of the kernel. Therefore, to synchronize between different thread blocks, the
program has to exit the kernel, and copy the data back to the host and use the CPU to
determine whether the computation process is complete. This frequent data exchange
between host and GPU introduces considerable overhead.

To address this problem, we present WolfPath, a framework that is designed to
improve the iterative traversing-based graph processing algorithms (such as BFS and
SSSP) on GPU. Our development is motived by the facts that: (1) the iterative graph
processing algorithm converges when the computations on all vertices have been com-
pleted; (2) the iterative traversing-based graph processing on GPU requires frequent
data exchange between GPU and host memory to determine the convergence point;
(3) the maximum number of iterations needed to complete a traversing-based graph
processing algorithm is determined by the graph’s diameter (longest shortest path).

WolfPath has following features. First, a graph in WolfPath is represented by a tree
structure. In doing so, we manage to obtain very useful information, such as the graph
diameter, the degree of each vertex and the traversal order of the graph, which will be
used byWolfPath in graph computations. Second, we design a layered graph structure,
which is used by WolfPath to optimize GPU computations. More concretely, for all
vertices in the same depth of the graph tree, we group all the edges that use these
vertices as source vertex into a layer. All the edges in the same layer can be processed
in parallel, and coalesced memory access can be guaranteed. Last but not least, based
on the information we gain from the graph model, we design a computation model
that does not require frequent data exchange between host and GPU.

The rest of the paper is organised as follows. Section 2 overviews the limitation of
iterative graph processing technique used by the state-of-art graph processing frame-
works. Section 3 presents the graph modelling and in-memory data structure proposed
in this paper. Section 4 presents the details of the WolfPath framework, including the
iterative processing model and the graph partition method when the graph can not fit
into GPU. Experimental evaluation is presented in Sect. 5. Section 6 discusses related
work. Finally, Sect. 7 concludes this paper.

2 Motivation: the Limitation of Current Approach

Many parallel graph processing frameworks are based on the iterative processing
model. In this model, the computation goes through many iterations. In each iter-
ation, either synchronous (such as Bulk Synchronous parallel used by Pregel) or
asynchronous (Parallel sliding window used by GraphChi) methods can be used to
compute and update the vertex or edge values. The computation terminates when
all vertices meet the application specific termination criterion (e.g, the results of all
vertices remain unchanged).

In order to determine if all processes/threads meet the termination condition, the
processes/threads need to communicate with each other. On CPU based parallel graph
processing systems, the processes/threads can communicate through messaging pass-
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ing or shared memory. On GPU, the threads are organised in thread blocks and the
communication can be divided into two types: intra- and inter-block communication.

Intra-communication refers to the communications between the threads within a
block, which is achieved via shared memory or global memory in GPU. On the con-
trary, the inter-block communication is the communications across different thread
blocks. However, there is no explicit support for data communication across different
thread blocks. Currently, inter-block data communication is realized through the GPU
global memory followed by a barrier synchronization in CPU [5,37]. The barrier is
implemented by terminating the execution of the current kernel and re-launching the
kernel.

The reason for the lack of support for inter-block communications on GPU is as
follows. On GPU, the number of thread blocks launched by an application is normally
much larger than the number of Streaming Multiprocessors (SM). However, When a
large number of threads try to communicate between different blocks, it can cause the
deadlock. An example is given as follows to illustrate the deadlock issue. Suppose
that there are 5 thread blocks and only 4 SMs and that each thread block will occupy
all resources on a SM. Assume blocks 1–4 execute on 4 SMs. When synchronization
occurs, blocks 1–4 will wait until block 5 finishes. However, block 5 will never be
executed on any SM since all SMs are busy and there are no resources available.
Consequently, the deadlock occurs.

Due to the lack of support for inter-block communications, implementing iterative
graph computation algorithm on GPU is much more challenging than on CPU. To
demonstrate this, let us first consider how the iterative computation is implemented
on CPU. Algorithm 1 shows the high level structure of the iterative computation
on CPU. The loop is controlled by the flag variable, which is set to be true at the
beginning. Next, all processes/threads execute a user-defined function, compute(), and
then invoke the update_condition function to check if the user-specified termination
condition is met. Each process/thread has its own f lag variable, which is updated by
update_condition function. The update_condition function returns false if the program
reaches the termination condition and returns true if otherwise. The f lag variable
is synchronised between all the processes/threads. If its value is f alse, the iteration
terminates.

Algorithm 1 Iterative Computation on CPU
f lag ← true
while f lag == true do

compute();
if update_condition() == f alse then

f lag ← f alse

When executing the above code in parallel on aCPU-based system, the synchroniza-
tion of the f lag variable can be easily achieved through shared memory or message
passing. However, due to the fact that the current GPUs do not support synchronisation
between different thread blocks, it takes more efforts to achieve the synchronization
on GPU. The only solution that can ensure that the shared variable is properly syn-
chronized across all thread blocks is to exit the kernel. To implement the iterative
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processing on GPU, many state-of-art graph processing frameworks use the following
approach. The f lag variable is stored in the global memory of GPU. Each thread also
has a local d_ f lag variable. If a thread meets the termination condition in the current
iteration, it sets its own d_ f lag to false. Then d_ f lag is synchronised between all
the threads within a thread block. One thread in each thread block updates the global
f lag variable if the value of d_ f lag in this thread block is f alse. Next, the program
exits the kernel and copies the value of f lag back to the host, which is used by the host
program to determine whether another kernel should be launched (i.e., continuing to
perform the computation). This technique is outlined Algorithms 2 and 3.

Algorithm 2 Iterative processing kernel
function update_kernel(bool f lag)

for all threads in parallel: do
if update_condition() == f alse then

f lag ← f alse

Algorithm 3 Iterative processing host
f lag ← true
while f lag == true do

function copy_flag_to_gpu
function update_kernel( f lag)
function copy_flag_to_cpu

Clearly, in order to decide whether to launch the next iteration, the value of f lag
needs to be exchanged between host and GPU frequently. These operations incur a
significant overhead. If the number of iterations needed to complete the graph com-
putation is known beforehand, the exchange of f lag between host and GPU can be
eliminated, which can potentially improve the performance.

We conduct the experiments to investigate the extra overhead caused by exchanging
the f lag variable. Four real world graphs, which are listed in Table 1, are used in
this experiment. We determine the diameter of the graph using the BFS algorithm
implementated on CuSha framework [5]. We record the computation time and the
number of iterations it takes to complete the algorithm. We can prove that the number
of iterations the iterative graph computation has to perform must be less than or equal
to the graph diameter. Instead of using the f lag value to determine the termination
condition of the graph computation, we terminate the computation when the number
of iterations equals to the graph diameter. We re-run the modified program and record
the computation time. The results are listed in Table 2.

As can be seen from Table 2, the computation time of modified program is much
faster than the original version. We also noticed that the original program takes a
fewer number of iterations than the modified version in some cases. This is because
the computation converges fast in those cases. Therefore, using the graph diameter
as the termination condition in those cases causes the extra overhead of performing
unnecessary computations. In order to compare these two types of overhead, we mea-
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Table 1 Real world graphs
used in the experiments

Graph Vertices Edges

GPU In memory Graph

RoadNet-CA [20] 1,965,206 5,533,214

amazon0601 [20] 403,394 3,387,388

Web-Google [20] 8,75,713 5,105,039

LiveJournal [20] 4,847,571 68,993,773

Table 2 The computation time comparison of Original CuSha and Modified CuSha

Graph Original Modified

Time (ms) Iteration Time (ms) Iteration

RoadNet-CA 195.97 551 1.98 554

amazon0601 22.3 35 0.15 35

web-Google 12.83 21 0.14 32

LiveJournal 70.96 9 0.076 14

Table 3 Memory copy and
computation time

Graph Memory copy (ms) Computation (ms)

RoadNet-CA 0.36 0.004

amazon0601 0.63 0.004

Web-Google 0.6 0.004

LiveJournal 7.9 0.005

sured the average time for performing data copying and the average computation time
per iteration in the experiments. The results are listed in Table 3:

The results fromTable 3 show that the data copy time is greater than the computation
time by 90–1500 times. These results indicate that it is worth performing the exces-
sive iterations, comparing with copying data. We observe another interesting point in
Table 3. No matter which graph the algorithm is processing, only one integer (i.e., the
value of the f lag variable) is copied between GPU and host. However, the average
memory copying time per iteration is different for different graphs. This is because
the synchronisation cost between thread blocks is different for different graphs. More
threads are involved in synchronisation, the longer the synchronization takes.

All these results support our proposed strategy. Namely, it can improve performance
to use themaximumnumber of iterations as the termination condition so as to eliminate
the need of data copying between GPU and CPU. However, a question arises from the
strategy: how to know the number of iterations needed for different graphs before the
graph processing algorithm starts? This question motivates us to design a new graph
representation that help determine the graph diameter and further develop the novel
and GPU-friendly graph processing methods.
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3 Graph Representation in WolfPath

In this section, we present the graph model to help determine the number of iterations
when processing a graph onGPU iteratively.We also present the detailed data structure
of our in-memory graph representation, which is designed in the way that can improve
the coalescence in-memory access so as to achieve the higher performance.

3.1 Graph Modelling in WolfPath

The experimental results shown in last section suggest that using the number of iter-
ations can improve the performance in graph processing. However, because graph
processing algorithms are data driven, it is difficult to determine the number of itera-
tions for different graph inputs before the program starts.Much research [14,15,18,28]
have been conducted to tackle this problem. The research shows that when processing
graph algorithms iteratively, the upper bound of the number of iterations is the diam-
eter of a graph, i.e., the number of the nodes on the path corresponding to the graph
diameter [31].

InWolfPath,wemodel the graph as a layered tree structure. That is,wefirst represent
the graph as a tree-like structure, then group the vertices that in the same depth into
one layer. By modelling the graph this way, the diameter of the graph is the distance
from the root vertex to the deepest leaf vertex.

If some vertices in the same layer are connected, we duplicate these vertices in the
next level. By duplicating these vertices, the vertex value updated in the current level
can be sent to the next level. The reason for this design is as follow. The vertices in
the current level and the next level form a group of edges. If a vertex is both source
and destination of different edges, the calculated values of their neighbouring vertices
may not settle (i.e., the calculated values are not final values of the vertices) after one
iteration. Therefore, by duplicating these vertices in the next level, the updated value
of their neighbouring vertices will be recomputed.

Based on the above description, given a graph G = (V, E), a layered tree T =
(Vt , Et ) is defined as follows. Vt ⊆ V and Et ⊆ E . The root vertex of the tree,
denoted by vr t ∈ Vt , is the vertex which does not have in-edges. degreein(v) denotes
the in-degree of vertex v. Then degreein(vr t ) = 0.

∀vt ∈ Vt , if degreein(vt ) is greater than 0, then ∃v ∈ Vt s.t. (v, vt ) ∈ Et . If the
out-degree of vertex vt , denoted by degreeout (vt ), is 0, then vt is called a leaf vertex
of T . Given a level Li , ∀vt ∈ Li , if ∃v ∈ Li s.t. et = (vt , v), then v is also in the level
Li+1. Figure 1b gives the tree structure of the graph shown in Fig. 1a.

3.2 Graph Data Structure in WolfPath

As shown in the previous research [16], one of the main factors that limits the per-
formance of graph processing on GPU is the non-coalesced memory access. This is
because most graphs have highly irregular structures. Hence, it is important to design
a data structure for the graph storing in the GPU global memory so as to achieve the
coalesced global memory access.

123



Int J Parallel Prog (2019) 47:644–667 651

(a) (b)

Fig. 1 An example graph and its layered tree representation. a Example graph and b Layered tree repre-
sentation

Based on the layered tree structure, we design a layered edge list structure to store
the graph in the memory. In this design, each level in the layered tree is represented by
two arrays, source array and destination array, which are used to store the source and
destination vertexes of each edge in that level respectively. The i-th entry in the source
array and the i-th entry in the destination array form an edge in the level. We also
create an array for each layer to store the updated values of the destination vertices in
that layer. An example is shown in Fig. 2.

It provides the following benefits to use this structure to store a graph in memory.
First, the consecutive threads can read/write the consecutive elements from/to the
source and destination arrays in the global memory. Therefore the coalesced global
memory access can be guaranteed. Second, because all the edges in each layer are
independent to each other, we can process them in parallel. In addition, if one layer is
too big to fit in the GPU global memory, we can split it into multiple smaller edge lists.
Third, multiple layers can be combined together to fully utilise the computation power
of GPU. We will discuss the last two advantages in more detail in a later section.

4 The WolfPath Framework

In this section, we first describe how WolfPath executes a traversing-based graph
processing algorithm in parallel. Then we present how WolfPath tackle the issue of
GPU under-utilisation and howWolfPath partition a large scale graph when it can not
be fit in the GPU global memory.

4.1 Preprocessing

In this work, a preprocessing program is developed to transform a general graph format
into a layered tree. This program first reads the general graph format into the CPU
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Fig. 2 An example of layered edge list structure for graph in Fig. 1a

memory and converts it into the CSR format. Next, it uses Algorithm 4 to build the
layered tree, and then writes the layered tree back to a file stored in the disk. It is
worth noting that this program is only run once for a graph. When processing a graph,
WolfPath will first check if there exists a corresponding layered tree file. If the file
exists, WolfPath will use it as the input. Otherwise, it will convert the graph into this
new format. Algorithm 4 is used to build the layered tree.

Algorithm 4 Building layered tree
1: function build_tree(graph G, vertex vr t )
2: Tree T ← null
3: Queue Q ← null
4: Q.enqueue(vr t )
5: node_level[V ] ← 0
6: while Q! = null do
7: v = Q.dequeue()
8: level = node_level[v]
9: for all neighbor u of v do
10: if u /∈ T then
11: T .add_edge(v, u)
12: Q.enqueue(u)
13: node_level[u]+ = 1
14: else if u ∈ T && u ∈ {w ∈ T |w.level = level} then
15: T .add_edge(v, u)
16: Q.enqueue(u)
17: node_level[u]+ = 1

Algorithm 4 is based on the breadth-first algorithm (BFS). The algorithm constructs
an layered tree T for graphG (Line 2). It also creates Queue Q (Line 3). The algorithm
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starts with adding the vertex vr t into Q (Line 4). In order to quickly retrieve the level
information of each node, the algorithm also maintains an array called node_level
(Line 5), which is used to store the level information of each node. The size of this
array is equal to the number of vertices (denoted by V ) in the graph G. This array is
indexed by vertex id. The algorithm initialises all vertices in this array to 0 (Line 5).
Then the algorithm performs the following steps iteratively (Line 6): it pops out the
first vertex v from the queue (Line 7), and reads its level information from node_level
(Line 8). ∀e : v → u ∈ E (Line 9), if u /∈ T (Line 10), or u has already been added
into T but is in the same level as v (Line 14), the algorithm adds edge 〈v, u〉 in T (Line
11, 15). Next, the algorithm puts u in the queue by performing enqueue(u) (Line 12,
16), sets the level of u to the current level plus 1 (Line 13 and 17). This process repeats
until Q becomes empty.

4.2 The Computation Model of WolfPath

The computation process ofWolfPath is as follows. InWolfPath, the graph is processed
layer by layer. For each layer, three operations are performed by GPU in parallel: the
read, compute and write operations. For i-th level in the graph, the read operation
reads the updated vertex value from the global vertex array. The compute operation
acts on each edge and uses the data gathered from the read operation to compute the
value for its edge/vertices. The write operation writes the updated value to the global
vertex value array. So the updated values can be used in next iteration by the read
operation. Hence, The computation model inWolfPath is synchronous and guarantees
that all updates from a previous compute phase are seen only after the write operation
is completed and before the next read operation starts. The whole process terminates
when all the levels have been processed, that is, the number of iterations is equal to
the number of levels of the graph. This process is outlined in Algorithm 5.

Algorithm 5 Computation process of WolfPath
1: function processing(Layered Tree T , root vertex vr t )
2: i ← 0
3: vr t = DEFAULT_V ALUE
4: while i < T .level do
5: if i ! = 0 then
6: for all vertexes in parallel in level i do
7: read vertex value from level i − 1
8: for all Edges in parallel in level i do
9: compute the update value
10: for all vertexes in parallel in level i do
11: write vertexes value to update value array

4.3 Combined Edge List

By representing the graph in the layered tree format, we can gain the knowledge
about how many layers there are in the graph and use it to determine the number of
iterations needed for most graph algorithms. However, because WolfPath processes
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the graph layer by layer and the graphs have the nature of irregular data structure, such
representation may cause the under-utilisation of GPU.

Each layer in the graph may have different numbers of edges. This number varies
dramatically between levels. For instance, consider the graph shown in Fig. 1. The
first layer has 2 edges only. on the other hand, the second and third layer have 4 and
6 edges respectively. Hence, the number of threads required to process the first level
is far less than the computing power (i.e., the number of processing cores) of GPU.

To overcome this problem, we propose the combined edge list, which is a large
edge list that is constructed from multiple layers of edge lists. The combined edge
list is constructed in the following way. We first define a number ME , which is the
minimum amount of edges to be processed by GPU. Then we add the number of edges
level by level starting from the first level of the layered tree. Once the total number of
edges is greater or equal to ME , we group these levels together and then re-count the
edges from the next level. This process repeats until all levels have been processed.

The way of building the combined edge list ensures that each combined edge list is
formed by consecutive edge lists from the layered tree. Hence, each combined edge list
can be treated as a sub-graph of the original graph. Therefore, the number of iterations
required to process a combined edge list is equal to the number of levels used to form
this tree. So Algorithm 5 is re-designed as Algorithm 6.

Algorithm 6 Processing the Combinaed Edge List
1: function processing(Layered Tree T , root vertex vr t )
2: CEL ← build_Combined_Edge_List (T )
3: i ← 0
4: vr t = DEFAULT_V ALUE
5: while i < CEL .count do
6: levels ← CES[i].level
7: while j < level do
8: parallel process all edges in CEL[i]

It is very important thatwe group the consecutive levels together to form a combined
edge list. Because the result of the vertices in level i depends on those in level i − 1,
the results from the previous iteration need to be passed to the next iteration, which
can be easily achieved by grouping the consecutive levels together. If we group the
non-consecutive levels into a list, passing results between different levels requires lot
of data transferring between host and GPUmemory, which will harm the performance.

There remains one question: how do we choose the value for ME? If the number of
ME is too small, the resulting edge list may not fully occupy theGPU.On the contrary,
if it is too large, the size of the edge list may exceed the size of the GPUmemory. Since
it is desired that the GPU is fully occupied, the maximum active threads can be used
to determine the minimum number of edges per combined edge list. The maximum
number of active threads is the number of threads that a GPU can run simultaneously
in theory, which can be found by Eq. 1, where Nsm is the number of multiprocessors
(SMs), MWpsm is the maximum number of resident warps per SM and the Tpw is the
threads per warp.

Nsm ∗ MWpsm ∗ Tpw (1)
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4.4 Out of GPU Memory Processing

Comparing with the host platform, the GPU has a limited memory space. The size
of real world graphs may be from few gigabytes to terabytes, which are too large to
fit in the GPU global memory. Therefore, in this section, we develop an out-of-GPU-
memory engine that can process such large scale graphs.

Thegeneral process of developing anout-of-GPU-memory engine is tofirst partition
the graph into sub-graphs that can fit into GPU memory, and then process these sub-
graphs in GPU one at a time. Therefore, our first objective in designing such an engine
is to achieve good performance in graph partitioning. Ideally, the performance of this
process should be as close as possible to the performance of loading the graph into
memory. The second objective is that after partitioning the graph, the graph framework
has to dealwith the frequent data exchange betweenGPUand hostmemory.Otherwise,
the performance will take hit.

Based on the design of Layered Edge List, these two goals can be achieved. The
process of partitioning the graph is similar to building the combined edge list. We
start with the first layer and accumulate the vertices in the layers until the size of
accumulated vertices becomes larger than the GPU globa memory. We group all the
accumulated vertices as a sub-graph and start the accumulating process again from the
current layer. The partitioning process is complete when we have processed all layers
in the graph.

The complexity of such partitioning method is O
(
N

)
, where N is the number of

layers in the graph. Given the fact that most real world graphs, especially the social
network graphs, do not have a big diameter, the number of N will not be very large.

After partitioning the graph, each sub-graph is processed in order based on their
positions in the graph. That is, the processing starts with the sub-graph that contains the
first layer. The next sub-graph to be processed is the one that follows the first sub-graph.
In addition, the updated values of the vertices in the last layer of the current sub-graph
need to be passed to the next sub-graph. This can be achieved by retaining the updated
vertex values in the global memory after the computation is finished. Therefore, when
next sub-graph is loaded into the GPU global memory, the data needed by the sub-
graph is in the global memory. To process each sub-graph, we use the same method
as that for in-GPU-memory processing. Combining multiple layers into a sub-graph
enables us to fully utilise the GPU.

It is possible that the size of one layer is larger than the GPU memory. in this case,
we can split this layer into multiple parts and compute one part at a time. This works
because all the edges in a layer are independent to each other and it is therefore safe
to partition a layer into multiple small chunks and process them separately.

4.5 Optimisation for GPU

When implementing WolfPath, we take advantage of the hardware architecture of
GPU to optimise the performance. Specifically, WolfPath uses the shared memory to
improve the performance of random access to the memory and performs computation
and communication asynchronously.
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4.5.1 Shared Memory

Writing the updated value into the updated value array will cause the random access
to the global memory. To address this issue, we use the shared memory in GPU to
store the vertex array, which can enhance the performance of random access, since the
access to the shared memory is much faster than global memory.

The following method is used in WolfPath to use the shared memory effectively.
The shared memory in GPU is shared between all the threads in a thread block.
Therefore, the input edge list is split into small blocks inWolfPath, and a vertex array is
constructed for each block. Each edge block is processed by one thread block.Multiple
thread blocks are processed in parallel. In each thread block, edges are processed in
parallel by the threads.

During the execution, the threads first fetch the updated vertex values into the shared
memory of the block. The consecutive threads of the block read consecutive elements
of the local vertex value array. Hence, reading requests are coalesced to the minimum
number of memory transactions. After the computation, the threads first write the
newly computed values into the shared memory, and then perform synchronisation
between different thread blocks by writing the data from the shared memory to the
global memory.

4.5.2 Asynchronous Execution

WolfPath asynchronously performs computation and communication. Specifically, it
leverages the CUDA Streams and the hardware support such as Hyper-Qs provided
by NVIDIAs Kepler to enable data streaming and computation in parallel. WolfPath
creates multiple CUDAStreams to launch multiple kernels and overlap memory copy-
ing and computation in order to transfer data asynchronously. This is motivated by
the fact that an edge list in WolfPath can be split into many sub-arrays. Each of these
sub-arrays is independent to each other. WolfPath exploits this fact and does not move
the entire edge list in a single copy performed by a CUDA stream. Instead, WolfPath
creates multiple CUDA Streams to move these sub-arrays to the GPU. As the result,
many hardware queues in GPU are used concurrently, which improves the overall
throughput.

5 Experimental Evaluation

In this section, we evaluate the performance of WolfPath using two types of graph
dataset: small sized graphs that can fit into the GPU global memory (called in-memory
graphs in the experiments) and large scale graphs that do not fit (out-of-memory
graphs). The size of a graph is defined as the amount of memory required to store the
edges, vertices, and edge/vertices values in user-defined datatypes.

Small graphs are used to evaluate WolfPath’s performance in in-memory graph
processing against other state-of-art in-memory graph processing systems (e.g., CuSha
[16] andVirtual-Warp-Centric [13], and the large graphs are used to compareWolfPath
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Table 4 Real world graphs
used in the experiments

Graph Vertices Edges

GPU Out-of-memory Graph

orkut [20] 3,072,441 117,185,083

hollywood2011 [2] 2,180,653 228,985,632

arabic2005 [1] 22,743,892 639,999,458

uk2002 [2] 18,520,486 298,113,762

with other out-of-core frameworks that can process large graphs on a single PC (e.g.,
GraphChi and X-Stream).

The eight graphs listed in Tables 1 and 4 are publicly available. They cover a broad
range of sizes and sparsity and come from different real-world origins. For example,
Live-Journal is directed social networks graph. RoadNetCA is the California road
network. orkut is an undirected social network graph. uk-2002 is a large crawl of the
.uk domains, in which vertices are the pages and edges are links.

We choose two widely used searching algorithms to evaluate the performance,
namely Breadth First Search (BFS) and Single Source Shortest Paths (SSSP).

The experiments were conducted on a system with a Nvidia GeForce GTX 780Ti
graphic card, which has 12 SMX multiprocessors and 3 GB GDDR5 RAM. On the
host side, we use the Intel Core i5-3570 CPU operating at 3.4 GHZ with 32 GB
DDR3 RAM. The benchmarks were evaluated using CUDA 6.5 on Fedora 21. All the
programs were compiled with the highest optimisation level (-O3).

5.1 Performance Evaluation

5.1.1 Comparison with Existing In-Memory Graph Processing Frameworks

In this section, we compareWolfPath with the state-of-art in-memory processing solu-
tions such as CuSha [16] and VirtualWarp Centric [13]. In the experiments, we use the
CuSha-CWmethod, because this strategy provides the best performance in all CuSha
strategies. Both CuSha and Virtual Warp Centric apply multi-level optimisations to
the in-memory workloads.

We first compare the computation times among WolfPath, CuSha and VWC. Fig-
ures 3 and 4 show the speedup of WolfPath over CuSha and VWC.

We also list the breakdown performances in Fig. 5. In these experiments, the Data
Transfer is time taken to move data from the host to GPU, the computation refers to
the time taken for actual execution of the algorithm. We also recorded the number
of iterations that each algorithm takes in different systems, these results are listed in
Table 5.

As can be seen from these results, WolfPath outperforms CuSha and Virtual Warp
Centric. Although WolfPath requires more iteration to complete the algorithm, the
average speedup of WolfPath over CuSha is more than 100×, and 400× over VWC.
This is due to the elimination of memory copy operations. Also, the performance
of VWC is the worst among 3 systems, because VWC does not guarantee the coa-
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Fig. 4 Speedup over VWC

lescedmemory access. On the other hand, with carefully designed data structures, both
WolfPath and CuSha can access graph edge in a sequential manner, hence memory
performance is much better. We also noticed that WolfPath takes more iterations than
other implementations. This is because in iterative computation model, the compu-
tation can be converged very fast, but WolfPath is bounded by the graph diameter,
which is the upper bound of the iteration count. However, as discussed in the previous
section, compare to memory copy operation, computation is much faster. Therefore,
WolfPath still outperforms other systems.

5.1.2 Comparison with GPU Out-of-Memory Frameworks

The results shown in the last section demonstrate WolfPath’s performance in process-
ing in-memory graphs. However, many real-world graphs are too large to fit in GPU
memory. In this section, we examine the WolfPath’s ability to process large graphs
which cannot fit into GPU memory. To the best of our knowledge, the state-of-art
GPU-based graph processing frameworks [6,16,47] assume that the input graphs can
fit in the GPU memory. Therefore, in this work, we compare WolfPath (WP) with two
CPU-based, out-of-memory graph processing framework: GraphChi (GC) [17] and
X-Stream (XS) [33]. To avoid disk I/O overhead in systems such as GraphChi and
X-Stream, the dataset selected in the experiments can fit in host memory but not in
GPU memory.

As shown in Figs. 6 and 7, WolfPath achieves an average speedup of 3000× and
4000× over GraphChi and X-Stream (running with 4 threads), respectively, despite
its need to move the data between GPU and CPU. We also list the computation time
and iteration counts of three systems in Table 6. Since X-Stream does not require any
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Fig. 5 Execution time breakdown of WolfPath, CuSha and VWC on different algorithms and graphs. The
time unit is milliseconds. a BFS and b SSSP

pre-processing and the computation is overlapped with I/O operations, we use the total
execution time of the system as the comparison.

As can be seen from the Table 6, although WolfPath performs more iterations than
GraphChi and X-stream, it still outperforms them. This performance improvement is
due to the massive parallel processing power provided by GPU, while GraphChi and
X-Stream are CPU-based and their degrees of parallelism are limited.
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Table 5 Number of iterations executed by different systems and total execution times (ms)

Iterations Total execution time

WolfPath CuSha VWC WolfPath CuSha V WC

BFS

RoadNet-CA 554 551 486 8.1 203.75 2489.28

amazon0601 35 35 18 2.21 26.68 28.7

web-Google 32 21 18 3.27 19.58 66.02

LiveJournal 14 9 8 48.22 159.82 216.28

SSSP

RoadNet-CA 554 550 465 8.71 278.78 3003.73

amazon0601 35 35 14 2.33 51.92 66.25

web-Google 32 20 17 3.84 24.93 94.4

LiveJournal 14 9 7 49.79 307.31 450.93
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Fig. 6 Speedup over GraphChi
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Fig. 7 Speedup over X-Stream

5.2 Memory Occupied by Different Graph Representation

From Fig. 5, we can see that VWC has the shortest data transfer time. This is because it
represents the graph in the CSR format, which is memory efficient. However, in order
to have sequential access to the edges, bothWolfPath and CuSha represent graphs with
edges, which consume more memory space than CSR. In this section, we evaluate the
cost of using the Layered Edge list representation in terms of required memory space
against CSR and CuSha’s CW representation.
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Table 6 Execution times of WolfPath, GraphChi and X-Stream on different algorithms and graphs. The
time is in seconds

Computation Iteration

WolfPath GraphChi X-Stream WolfPath GraphChi X-Stream

BFS

orkut 0.02 30.88 21.88 7 2 2

hollywood2011 0.09 209.86 282.17 16 8 13

arabic2005 0.2 164.92 166.18 51 3 3

uk2002 0.15 715.38 1323.59 49 28 48

SSSP

orkut 0.02 49.38 88.02 7 3 3

hollywood2011 0.1 362.56 432.24 16 9 16

arabic2005 0.23 160.56 340.94 51 3 7

uk2002 0.16 974.83 1170.32 49 31 42
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Fig. 8 Memory occupied by each graph using CSR, CuSha-CW, WolfPath

Figure 8 shows the memory consumed by WolfPath’s Layered Edge List, CuSha-
CW and CSR. The Layered Edge List and CuSha-CW need 1.37× and 2.81× more
space on average than CSR. CuSha uses 2.05× more memory thanWolfPath, because
it represents each edge with 4 arrays.

5.3 Preprocessing Time

Table 7 shows the preprocessing time of WolfPath, CuSha, and GraphChi. The pre-
processing time refers to the time taken to convert the graph from the raw data to
the framework specified format (e.g, layered tree in WolfPath or Shard in GraphChi).
It consists of the graph traversing time and the time to write the data into the stor-
age. Because CuSha is unable to process the graph larger than GPU memory, the
corresponding cells in the table are marked as NA.

The first observation from the table is that (1) for in-memory graphs, CuSha prepro-
cesses the data faster than other two systems, and (2) WolfPath is the slowest system.
This is because CuSha does not write the processed data back to the disk. GraphChi
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Table 7 Preprocessing time (s) WolfPath CuSha GraphChi

Amazon0601 0.79 0.24 0.58

LiverJournal 14.68 3.8 10.15

WebGoogle 1.46 0.44 0.79

orkut 21.4 NA 22.07

hollywood 38.6 NA 34

uk2002 59.78 NA 69

arabic2005 120.3 NA 151.5
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Fig. 9 Performance comparison with and without optimisation

will only write a copy of data into shard. In contrast, WolfPath traverses the data using
the BFS-based algorithm and then writes the data into a temporary buffer before it
writes the data to the hard disk. Therefore, the workload of WolfPath is heavier than
two other systems.

For graphs larger than GPU memory, WolfPath performs better than GraphChi
when processing uk2002 and arabic2005. This is because GraphChi generates many
shard files for these two graphs, and hence it takes longer to write to the disk.

From this experiment, we argue that in WolfPath, although the preprocessing is
time-consuming, the pre-processing is worthwhile because of the following reasons:
First, for each graph, WolfPath only needs to convert it once. Second, the resultant
format provides better locality and performance for iterative graph computations.

5.4 Effect of Optimisation Techniques

As shown in previous experimental results, the memory accessing operations are the
dominant factor that affect the performance, and therefore are our primary target of
optimization. Figure 9 shows that the performance improves significantly thanks to the
2 optimization techniques discussed in Sect. 4.5, including asynchronous execution
and shared memory synchronisation. For example, without these optimization tech-
niques, the execution time of the BFS algorithm is 71ms with the Livejournal graph.
With the optimisation the execution time drops to 48ms.
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6 Related Work

Using GPUs for graph processing was first introduced by Harish and Narayanan [12].
Since then, the CSR format has become the mainstream representation to store graphs
on GPU. Merrill et al. [29] present a work efficient BFS algorithm. They use different
approaches to minimize the workload imbalance. Virtual Warp Centric was proposed
in [13] to tackle theworkload imbalance problemand reduce the intra-warp divergence.

Medusa [47] is a GPU-based graph processing framework that focuses on
abstractions for easy programming.MapGraph [6] implements the runtime-based opti-
misation to deliver good performance. Based on the size of the frontier and the size of
the adjacency lists for the vertices in the frontier, MapGraph can choose from different
scheduling strategies.

The graph processing solutions described above use the CSR format to represent the
graph, hence suffering from the random access to the graph data. CuSha [16] addresses
the inefficientmemory access by introducing theG-Shard andConcatenatedWindows.
However, as shown in this paper, CuSha requires frequent data exchange between host
and GPU, which leads to long overall execution time.

All of the approaches abovemake the fundamental assumption that the input graphs
fit into GPU memory, which limits the usage of these solutions. However, WolfPath
does not suffer from such restriction.

Most existing Out-of-Memory graph processing frameworks are CPU based, these
frameworks are aiming to process graphs that do not fit into host memory. For instance,
GraphChi [17] is the first disk-based graph processing framework and designed to run
on a single machine with limited memory. X-Stream graph processing framework [33]
uses the edge-centric processingmodel that takes as input a binary formatted edge-list.
It does not require preprocessing, but requires frequent disk I/O to fetch data.

Totem [7,8] is a hybrid platform that uses bothGPU andCPU. It statically partitions
a graph into the parts of residing in GPU and host memories based on the degree of
vertices. However, as the size of the graph increases, only a fixed portion of the graph
is able to fit in the GPUmemory, resulting in GPU underutilization. GraphReduce [34]
aims to process the graphs that exceed the capacity of the GPU memory. It partitions
the graph into shards and loads one or more shards into the GPU memory at a time.
In GraphReduce, each shard contains a disjoint subset of vertices. The edges in each
shard are sorted in a specific order.

7 Conclusion

In this paper, we develop WolfPath: a GPU-based graph processing framework for
processing iterative traversing-based graph processing algorithms efficiently. A new
data structure called Layered Edge List is introduced to represent the graph. This
structure helps eliminate the frequent data exchange between host and GPU. We also
propose a graph preprocessing algorithm that can convert an arbitrary graph into the
layered structure. The experimental results show thatWolfPath achieves the significant
speedup over the state-of-art in-GPU-memory and out-of-memory graph processing
frameworks.
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