
Int J Parallel Prog (2018) 46:4–22
https://doi.org/10.1007/s10766-017-0503-4

The Missing Link! A New Skeleton for Evolutionary
Multi-agent Systems in Erlang

Jan Stypka1 · Wojciech Turek1 · Aleksander Byrski1 ·
Marek Kisiel-Dorohinicki1 · Adam D. Barwell2 ·
Christopher Brown2 · Kevin Hammond2 · Vladimir Janjic2

Received: 4 October 2016 / Accepted: 11 April 2017 / Published online: 26 April 2017
© The Author(s) 2017. This article is an open access publication

Abstract Evolutionary multi-agent systems (EMAS) play a critical role in many
artificial intelligence applications that are in use today. In this paper, we present a new
generic skeleton in Erlang for parallel EMAS computations. The skeleton enables us
to capture a wide variety of concrete evolutionary computations that can exploit the
same underlying parallel implementation. We demonstrate the use of our skeleton on
two different evolutionary computing applications: (1) computing the minimum of the
Rastrigin function; and (2) solving an urban traffic optimisation problem. We show
that we can obtain very good speedups (up to 142.44× the sequential performance)

B Christopher Brown
cmb21@st-andrews.ac.uk

Jan Stypka
janstypka@gmail.com

Wojciech Turek
wojciech.turek@agh.edu.pl

Aleksander Byrski
olekb@agh.edu.pl

Marek Kisiel-Dorohinicki
doroh@agh.edu.pl

Adam D. Barwell
adb23@st-andrews.ac.uk

Kevin Hammond
kh8@st-andrews.ac.uk

Vladimir Janjic
vj32@st-andrews.ac.uk

1 AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland

2 School of Computer Science, The University of St Andrews, St Andrews, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-017-0503-4&domain=pdf
http://orcid.org/0000-0001-6030-2885


Int J Parallel Prog (2018) 46:4–22 5

on a variety of different parallel hardware, while requiring very little parallelisation
effort.

Keywords Multi-core programming · Erlang · Agent-based computing · Metaheuris-
tics · Many-core programming · Algorithmic skeletons

1 Introduction

Evolutionary Multi-Agent Systems [9] (EMAS) are a critical part of many modern
artificial intelligence systems. The computations that they perform are usually very
expensive and, since they involve individual autonomous entities (agents) with no
central authority involved in their operation, they should be highly amenable to paral-
lelisation.Desipite this, there has been relatively little effort spent to date on developing
parallel solutions for EMASs and the solutions that are available are usually tailored
to a specific instance of a more general problem. At the same time, we are witnessing
the emergence of many-core systems across various levels of the computing spectrum,
from low-power devices targeting data-centres on a chip/cyber-physical systems all
theway to high-performance supercomputers. These systems offer significant process-
ing potential and are ideally suited to improve the performance of EMAS. However,
harnessing that potential is still a huge issue, both for EMAS and for many other
applications. This is mainly due to the widespread use of low-level native parallel pro-
gramming models that are commonly used to program these systems (e.g. pThreads
and OpenMP).

In this paper, we present a new implementation of an algorithmic skeleton for evo-
lutionarymulti-agent systems. Algorithmic skeletons are implementations of common
parallel patterns, parameterised over worker functions and other implementation-
specific information. A skeleton can be specialised to a specific problem by providing
concrete instantiations ofworker functions and other required information. Our EMAS
skeleton is implemented in the functional programming language Erlang. Erlang is
widely used in the telecommunications industry, but is also beginning to be used more
widely for high-reliability/ highly-concurrent systems, e.g. databases [27], AOL’s
Marketplace by Adtech [31] and WhatsApp [28]. It has excellent support for con-
currency and distribution, including built-in fault tolerance. The latter is critical for
long-running computations such as evolutionary computations. Functional program-
ming approaches naturally provide high-level abstractions through e.g. higher-order
functions and Erlang was therefore an ideal choice for developing a new generic par-
allel skeleton.

The specific research contributions of this paper are:

1. We design and implement three versions of a new domain-specific parallel skeleton
for Evolutionary Multi-Agent Systems (EMAS) using Erlang;

2. We implement two realistic evolutionary computing use cases that use our skeleton;
and,

3. We evaluate these use cases on a number of different parallel architectures, ranging
from small-scale low-power systems to large-scale high-performance multicore

123



6 Int J Parallel Prog (2018) 46:4–22

Fig. 1 The general structure of an evolutionary multi-agent system

machines, demonstrating that we can obtain very good performance improvements
of up to a factor of 142 over the sequential implementations.

2 Evolutionary Multi-agent Systems and Parallel Skeletons

In Agent-oriented programming (AOP), the construction of the software is based on
the concept of specialised, independent, autonomous software agents. There are many
different agent-based programming frameworks, ranging from general-purpose ones,
like RePast [25], MASON [23], MadKit [19], JADE [6] to more specialised ones, like
ParadisEO [10] or AgE [26]. Some of these frameworks leverage existing multi-core
architectures (e.g. ParadisEO). However, their scalability to larger systems has not
been explored. In this paper, we focus on applications where agents use evolutionary
algorithms in their operation, most frequently for learning/reasoning or coordination
of some group activity.

Evolutionary computations [5,17] use the idea ofmimicking themechanismsunder-
lying biological evolution to solve complex adaptation and optimisation problems.
They work on a population of individuals, each of which represents a point in the
search space of potential solutions to a given problem. The population undergoes sub-
sequent modification steps by means of randomised genetic operations that model
recombination, mutation and selection. Following initialisation, the algorithms loop
through these operators until some termination criterion is satisfied. Each of these
cycles is called a generation. EvolutionaryMulti-Agent Systems (EMASs) are a hybrid
meta-heuristic that combines multi-agent systems with evolutionary algorithms [8,9]
(see Fig. 1). In a multi-agent system, no global knowledge is available to individual
agents; agents remain autonomous and no central authority is involved in making
their decisions. Therefore, in contrast to traditional evolutionary algorithms, in an
evolutionary computing system, selective pressure (essentially, a method for selecting
which members of the population survive and move to the next generation) needs

123



Int J Parallel Prog (2018) 46:4–22 7

to be decentralised. Using agent terminology, we can say that selective pressure is
required to emerge from peer-to-peer interactions between agents instead of being
globally-driven. In EMAS, emergent selective pressure is achieved by giving agents a
single non-renewable resource called energy. Agents with high energy are more likely
to reproduce whereas agents with low energy are more likely to die. The algorithm is
designed to transfer energy from better to worse agents without central control.

In a basic EMAS implementation, every agent is provided with a real-valued vector
representing a potential solution to the optimisation problem, along with the cor-
responding fitness metric. Agents start with an initial amount of energy and meet
randomly. If their energy is below a death threshold, they die. If it is above some
reproduction threshold, they reproduce and yield new agents—the genotype of the
children is derived from their parents using variation operators and some amount
of energy is also inherited. If neither of these two conditions is met, agents fight in
tournaments by comparing their fitness values. The better (winning) agents then sap
energy from the worse (losing) ones [9]. The system as a whole is stable, since the
total energy remains constant. However, the number of agents may vary in order to
adapt to the difficulty of the problem—small numbers of agents with high energy or
large numbers of agents with low energy, for example. The number of agents can also
be altered dynamically by varying the total energy of the system. As in other evo-
lutionary algorithms, agents can be split into separate populations, or islands. Such
islands help preserve diversity by introducing allopatric speciation and can also exe-
cute in parallel. Information is exchanged between islands through agent migrations.
Evolutionary multi-agent systems have been formally shown to be a general opti-
misation tool by constructing a detailed Markov-chain based model and proving its
ergodicity [8].

2.1 Parallel Programming in Erlang

Erlang [3] is a strict, impure, functional programming language with built-in support
for concurrency. It supports a lightweight threading model, where processes model
small units of computation. The scheduling of processes is handled automatically by
the Erlang Virtual Machine, which also provides basic load balancing mechanisms. A
key aspect of theErlang design is a shared-nothing approach, inwhich processes do not
implicitly share state—all data is communicated via channels, using explicit send and
receive primitives. It has proven to be an efficient tool for building large-scale systems
for multi-core processors. Erlang is widely used in the telecommunications industry,
but is also beginning to be used more widely for high-reliability/highly-concurrent
systems, e.g. databases [27], AOLs Market-place by Adtech [31], and WhatsApp
[28]. Most of the industrial applications written in Erlang are deployed on systems
with up to 24 CPU cores. Scalability of solutions is usually provided by using clusters
of multicores and running Erlang in distributed configuration.

There are few reports on using a single Erlang Virtual Machine on architectures
exceeding 32 physical cores. In [4] the authors present a test suite for measuring
different aspects of Erlang applications performance. The exemplary test running on a
64-core machine shows that in most cases the speedup is non-linear and it degrades for

123



8 Int J Parallel Prog (2018) 46:4–22

high number of cores and schedulers. The problem of Erlang Term Storage scalability
on a computer with 32 physical cores have been considered in [29]. Promising results
of using Erlang on a Intel Xeon Phi co-processor have been shown in [32]. Basic
benchmarks show good scalability up to 60 cores, which is the number of physical
cores of the co-processor. However, there are hardly any reports on scaling complex,
computationally intensive Erlang applications on many-core architectures.

Our main motivation for using Erlang for evolutionary computations is to achieve
scalability. While the performance on single-core machines of Erlang is still behind
more mature and established languages, like C and C++, it is designed to be easily and
transparently scalable across distributed systems. In the era ofmany-core architectures,
the ability of scaling the performance with the growing number of cores/nodes will
become far more important than the effectiveness of single core utilisation.

2.2 Algorithmic Skeletons

Algorithmic skeletons abstract commonly-used patterns of parallel computation, com-
munication, and interaction [13] into parameterised templates. For example, we might
define a parallel map skeleton, whose functionality is identical to a standard map
function, but which creates a number of Erlang worker processes to execute each
element of the map in parallel. Using a skeleton approach allows the programmer
to adopt a top-down structured approach to parallel programming, where skeletons
are composed to give the overall parallel structure of the program. Details such as
communication, task creation, task or data migration and scheduling are embedded
within the skeleton implementation, which may be tailored to a specific architecture
or class of architectures. This offers an improved level of portability over typical low-
level approaches. A recent survey of algorithmic skeleton approaches can be found
in [18].

2.3 The Skel Library for Erlang

In our previous work, we have developed the Skel [7,20] library, which defines a
small set of classical skeletons for Erlang. Each skeleton operates over a stream of
input values, producing a corresponding stream of results. Skel also allows simple
composition of skeletons. Skel supports the following skeletons:

– func is a simple wrapper skeleton that encapsulates a sequential function as a
streaming skeleton.

– pipe models a composition of skeletons s1, s2, . . . , sn over a stream of inputs.
Within the pipeline, each of the si is applied in parallel to the result of the si−1.

– farm models the application of the same operation over a stream of inputs. Each
of the n farmworkers is a skeleton that operates in parallel over independent values
of the input stream.

– cluster is a data parallel skeleton, where each independent input, xi can be
partitioned into a number of sub parts, x1, x2, . . . , xn , that can be worked upon in
parallel. A skeleton, s, is then applied to each element of the sub-stream in parallel.

123



Int J Parallel Prog (2018) 46:4–22 9

– feedback wraps a skeleton s, feeding the results of applying s back as new
inputs to s, provided they match a filter function, f .

3 A New Skeleton for Evolutionary Multi-agent Systems

At the base of our skeleton for Evolutionary Multi-Agent Systems is a skeleton for
Multi-Agent Systems (MAS). Pseudocode for sequential implementation of the MAS
system is given in Algorithm 1, where function with names prepended by Env are
specific for each instance of the skeleton.

Algorithm 1 Pseudocode for Multi Agent System (MAS) skeleton
for i in [1..nr_islands] do

for j in [1..nr_agents_per_island] do
new agent[j] = Env:initialise_agent()
add agent[j] to island[i]

end for
end for
while not finished() do

for all I ∈ Islands do
for all agent ∈ I do

if rand() < migration_probability then
agent.behaviour = migration

else
agent.behaviour = Env:behaviour_function(agent, Env)

end if
end for
Emigrants = collect_emigrants(I)
Env:migration_function(I, Env)
I = I ∪ Emigrants

end for
end while

In this skeleton, a number of agents is created and divided into islands. In each
iteration of the algorithm, each agent either migrates to another island or performs
a behaviour function. This decision is based on some predefined probability (migra-
tion_probability). After all the agents decide which of these two functions to perform,
a migration function is performed on groups of agents that end up in the same island.

EMAS skeleton is a specialisation of the MAS skeleton, with particular versions of
initialisation, behaviour and migration functions. The behaviour of this skeleton was
explained in Sect. 2. The pseudocode for the sequential EMAS skeleton is given in
Algorithm 2. Functions with names prependedwith Prob are specific to each problem
that is solved using the skeleton. Therefore, the EMAS skeleton accepts two types of
input:

– a set of parameters for the computation, including the number of agents, initial
energy and details about reproduction (e.g. the maximum energy given by a par-
ent to a child), mutation (e.g. the chance of mutation during reproduction) and
recombination (e.g. the probability of recombining parent solutions during repro-
duction);

123



10 Int J Parallel Prog (2018) 46:4–22

Fig. 2 Three versions of EMAS in Erlang: a the concurrent version with each solution represented by
autonomous process; b the skel version with configurable number of concurrent workers; c the hybrid
version with sequential islands computed concurrently

– problem-specific solution, evaluation, mutation and
recombination functions.

We have implemented three different versions of the skeleton, which differ in the
precise way in which agents are captured by Erlang processes:

a. The Concurrent version (Fig. 2a), where each agent is represented by a separate
Erlang process. The agents use dedicated arena processes to trigger the behaviour,
mutation and recombination functions. This is a fine-grained implementation of
the EMAS computation, where we potentially have a very large number of very
small Erlang processes;

b. The Skel version (Fig. 2b), which uses the feedback parallel pattern from the Skel
pattern library (described in Sect. 2.3). Here, we set a fixed number of Erlang
processes that will be created (usually matching the number of OS threads that
we want to use) and then distribute agents from a population to these worker
processes. When one generation finishes computing, the resulting new population
is merged by the feedback process. Separate Erlang processes are created to handle
the fighting, migration, reproduction and dying parts of the computation.

c. The Hybrid version (Fig. 2c), which represents an optimised version of the Skel
version (described below). The population of agents is split into islands and every
island is contained in a separate Erlang process. Within the process, the fight,
reproduce and die functions are done sequentially, and a separate dedicated
Erlang process handlesmigration of agents. This version represents coarse-grained
implementation of the EMAS computation, with a small number of potentially
expensive Erlang processes than in the previous two versions;

123



Int J Parallel Prog (2018) 46:4–22 11

Algorithm 2 Pseudocode for specialisation of MAS skeleton into EMAS skeleton

function initialise_agent
Prob:solve()

end function

function behaviour_function(ReprodThr,Energy)
if Energy == 0 then return death
else if Energy > ReprodThr then return reproduction
else return fight
end if

end function

function meeting_function(Agents, Behaviour, Env)
if Behaviour == death then return []
else if Behaviour == reproduction then do_reproduction(Agents, Env)
else if Behaviour == fight then do_fight(Agents, Env)
end if

end function

function do_fight(Agents) Agents={{Agent1, Ev1, En1},{Agent2, Ev2, En2}}
if Ev1>Ev2 then TransferEng = En2
else TransferEng = En1
end if
return {{Agent1, Ev1, En1 + TransferEng}, {Agent2, Ev2, En2 - TransferEnf}}

end function

function do_reproduction(Agents)
if Agents={{Agent1, Ev1, En1}} then

NewAgent = reproduction(Agent1)
NewEval = Prob:evaluation(Agent1)
TransEng = min(reproduction_transfer, En1)
return [{Agent1, Ev1, En1 - TransEn},{NewAgent, NewEval, TransEn}]

else if Agents={Agent1, Agent2} then
[NewAg1, NewAg2] = reproduction(Agent1,Agent2)
[NewEv1, NewEv2] = Prob:evaluation(Agent1, Agent2)
Transfer energy from old to new agents
return [Agent1, Agent2, NewAg1, NewAg2]

end if
end function

function reproduction(Agents)
if Agents={Agent} then

if rand() < mutation_chance then Prob:mutation(Agent)
else return Agent
end if

else if Agents={ {Agent1, Agent2} } then
if rand() < recombination_chance then

[R1,R2] = Prob:recombination(Agent1, Agent2)
else [R1,R2] = [Agent1, Agent2]
end if
...Probabilistic mutation of Agent1 and Agent2, similarly to above...

end if
end function

123



12 Int J Parallel Prog (2018) 46:4–22

Fig. 3 Example of the use of the EMAS skeleton (traffic)

Since it is most coarse-grained and has the least synchronisation between processes,
we expect Hybrid to give the best performance of these three versions.

3.1 Use of the EMAS Skeleton

As we have mentioned in the previous section, in order to use the EMAS skeleton on
a particular problem, the programmer needs to supply problem-specific versions of
the solution, recombination, evaluation andmutation functions, together possibly with
simulation parameters, if default values are not acceptable. Everything else, including
the main function (start()) is provided by the skeleton. Figure 3 shows an example
of an input file with these functions, with some auxiliary functions missing. This
example (Traffic optimisation) was used in the Sect. 4 to evaluate the EMAS skeleton.

123



Int J Parallel Prog (2018) 46:4–22 13

Table 1 Experimental platforms

pi titanic zeus power phi

Arch Arm AMD AMD IBM Intel

Proc Cortex-A7 Opteron 6176 Opteron 6276 Power8 Xeon Phi 7120

Cores 4 24 64 20 61

Threads 4 24 64 160 244

Freq. 900MHz 2.3GHz 2.3GHz 3.69GHz 1.2GHz

L2 Cache 256KB 24×512 KB 32×2 MB 20×512 KB 61×512KB

L3 Cache – 4×6 MB 4×8 MB 20×8 MB –

RAM (GB) 1 32 256 256 16

4 Evaluation

We have evaluated the performance of our EMAS skeleton on two different optimisa-
tion examples that typify agent-based evolutionary computations:

1. Finding the minimum of the Rastrigin function, a popular global optimisation
benchmark [15];

2. A complex problem of urban traffic optimisation, a multi-variant simulation [21]
that is applied to the mobile robotics domain. Our model anticipates possible
situations on the road, preparing plans to deal with certain situations and apply
these plans when certain traffic conditions arise.

Since the algorithms are bounded by time, we measure the average rate of repro-
ductions that the algorithm achieves per second, representing its throughput. We also
measure the increase in throughput as the number of cores increases. This corresponds
to an increase in the application’s performance (speedup). We ran each experiment a
total of 10 times, with each experiment set to take 5min. The number of islands that the
algorithm is able to use is set to be the number of cores. We prioritised the evaluation
of the hybrid configuration, since it has proven itself to be the best of the three parallel
configurations, but have included other configurations in our results where available.
For all experiments, we have used version 18 of the Erlang system, except where oth-
erwise highlighted. In order to evaluate the EMAS skeleton on a number of different
architectures and in different settings, our experiments have been conducted on five
different systems, ranging from low-power small-scale ARM systems (pi) through
more powerful×86 (titanic, zeus) and (power) OpenPower multicores to a standalone
Intel Xeon Phi many-core accelerator. Full details of the systems that we have used
are given in Table 1. We focus on measuring the scalability of the system instead of
the sequential performance. We have carried out preliminary tests comparing exist-
ing models to a purely sequential version, however the performance differences were
insignificant in comparison to benefits introduced by parallelism.

123



14 Int J Parallel Prog (2018) 46:4–22

Fig. 4 Reproductions per second (rps, above) and throughput increase (below) for traffic and rastrigin on
titanic

4.1 titanic Results

The titanic system is an example of a medium-scale parallel server, with 24 cores
and 32GB of RAM. Figure 4 shows the number of reproductions per second (rps)
and the increases in throughput for Traffic and Rastrigin on this machine. For both
applications, we observe that the Hybrid version achieves almost linear increases in
throughput (and, therefore, performance). For Rastrigin, the Hybrid version achieves
236,140 rps on 24 cores versus 10,038 rps on one core, yielding 23.52× the throughput
(or 23.64× the base sequential throughput). For Traffic, the Hybrid version on titanic
achieves 227,509 rps on 24 cores versus 10,059 rps on one core, yielding 22.62×

123



Int J Parallel Prog (2018) 46:4–22 15

the throughput (or 22.76× the base sequential throughput of 9996 rps). The Skel
and Concurrent versions initially also perform well, but start to tail off after about
16 cores (islands) for both applications. This is consistent with other applications
we have run on this machine, and is probably due to cache contention. Although
the Hybrid version is always best, the untuned Skel version always performs better
than the Concurrent version. This shows the benefit of reducing the number of Erlang
processes by grouping the computations that multiple agents perform into a single
process.

4.2 zeus Results

The zeus system is an example of a larger-scale multicore system, with 64 cores and
256 GB of RAM. Figure 5 shows the rps and corresponding throughput increase for
all the tested versions. Here, Rastrigin achieves 349,226 rps on 64 cores versus 5752
rps on one core, for a throughput increase of 60.71× the sequential version. Traffic
achieves 94,950 rps on 64 cores versus 1473 rps on one core, for a throughput increase
of 64× the sequential version. There is clearly a tail-off in throughput increase for
Traffic at 32 and 48 cores, but further experiments are required to explain the reasons
for this, given the clear improvement with 64 cores. A slight dip can also be observed
for Rastrigin at 32 cores (27.8× throughput increase), but this has recovered at 48 cores
(46.13× throughput increase). In comparison with titanic, the raw performance per
core is lower for both applications (despite a nominally similar processor architecture),
but zeus delivers higher total throughput.

4.3 phi Results

Our motivation for considering the phi system was to evaluate the performance of
our skeletons (and, generally, of the Erlang runtime system) on a many-core acceler-
ator. We have therefore focused on using just the accelerator, without also using the
multi-core host system. Figure 6 shows the reproductions per second and throughput
increase for the Hybrid version of the two use cases. We were unfortunately unable
to run experiments with the Concurrent and Skel versions on the Xeon Phi as detailed
adaptation of the Concurrent and Skel code for Xeon Phi was required, and we wanted
to retain code compatibility among the significant number of different processors we
used during the experiments. This is left as an area of future work. Note that the system
has 61 physical cores, but can run 244 simultaneous threads via 4way hyper-threading.
Due to the sharing of resources between multiple threads, we do not expect to see 244
times increase in throughput on this architecture. Indeed, we can clearly see that the
performance improvement decreases above 61 cores and tails off when more than 122
threads are used. Even so, we were able to achieve very good results, improving per-
formance more than 100 times (compared to the sequential version) when 244 threads
were used for both applications, and achieving excellent improvements up to 61 cores
for both applications. Here, Rastrigin achieves 188,240 rps on 244 cores versus 1681
rps on one core, for a throughput increase of 111.96× the sequential version. Traffic

123



16 Int J Parallel Prog (2018) 46:4–22

Fig. 5 Reproductions per second (rps, above) and throughput increase (below) for traffic and rastrigin on
zeus

achieves 42,902 rps on 244 cores versus 302 rps on one core, for a throughput increase
of 142.44× the sequential version.

The number of islands in the experiments on zeus and phi was fixed at the level
of the number of available logical cores. This approach lead to testing exactly the
same algorithm on different number of cores, which has been adjusted by setting the
number of schedulers of the Erlang VM. The side-effect of this approach was that
the initialisation of the islands took proportionally more time with the decrease of
the number of cores, influencing the measured throughput. This overhead caused the
super-linearity effect on phi—the initialisation time was shorter for greater number of
cores.

123



Int J Parallel Prog (2018) 46:4–22 17

Fig. 6 Reproductions per second (rps, above) and throughput increase (below) for traffic and rastrigin on
phi

4.4 Preliminary power Results

The power system represents the IBM Power8 architecture, which is designed to
allow a highly multi-threaded chip implementation. Each core is capable of handling 8
hardware threads,which gives a total of 160 threads on a systemwith 20 physical cores.
At 3.69Ghz, the clock frequency is also noticeably higher than for the other systems
that we have considered. However, as with the Xeon Phi, resources are shared between
multiple threads and we therefore do not see a linear increase in throughput with the
number of cores (islands). Due to problems with running Rastrigin, we only present
the results for the Traffic use case (Fig. 7). Since the latest version of Erlang (Erlang 18)

123



18 Int J Parallel Prog (2018) 46:4–22

Fig. 7 Reproductions per second (rps, above) and throughput increase (below) for traffic on power (Erlang
16)

is currently unsupported on the OpenPower architecture, our experiments use an older
version, Erlang 16. Our tests on other systems suggest that this dramatically lowers
the absolute throughput of the system (by about a factor of 3). Overall, we achieve
172,078 rps on 160 cores versus 1,681 rps on one core, for a throughput increase of
39.53× the sequential version. We observe very good scaling up to about 40 threads
(2 per physical core), achieving throughput improvement of 25.75 on 32 cores and
34.76 on 64 cores. Beyond that, as with the phi system, performance improvements
tail off rapidly, but smoothly. Currently we were only able to port the hybrid versions
of the EMAS skeleton to power, with other versions planned as future work.

123



Int J Parallel Prog (2018) 46:4–22 19

Fig. 8 Reproductions per second (rps, above) and throughput increase (below) for traffic and rastrigin on
pi

4.5 pi Results

The pi system is a quad-core Raspberry Pi 2, model B. We have chosen it as an exam-
ple of a low-power parallel architecture, that is intended to be used in e.g. high-end
embedded systems. While we expect the absolute performance of this system to be
significantly lower than the other, heavyweight, parallel systems we have studied, it
is still interesting to in evaluating how well our skeletons perform on such a system.
Figure 8 shows the results for pi. We have considered all three versions of the EMAS
skeleton. As for titanic, the Hybrid version gives the best performance, and the Skel
version outperforms the Concurrent version. For Traffic, the Hybrid version on titanic
achieves 5962 rps on 4 cores versus 1568 rps on one core, yielding 3.92× the through-

123



20 Int J Parallel Prog (2018) 46:4–22

put. For Rastrigin, the Hybrid version achieves almost identical results of 5954 rps on
4 cores versus 1556 rps on one core, also yielding 3.92× the throughput. We observe
similar results for the other two versions: with throughput improvements of 3.54/3.54
for the Skel version on Traffic/Rastrigin (5387/5401 rps), and 2.93 for the Concur-
rent version (4453/4447 rps). Although, as expected, the absolute peak performance
(about 6000 reproductions per second) was orders of magnitude weaker than on other
systems; however, it is worth noting that Pi power consumption is just a fraction of
these of heavyweight servers, so it gives the best performance-per-watt ratio of all
systems we tested.

5 Related Work

Algorithmic skeletons [13] have been the focus of much research since the 1980s, with
a number of skeleton libraries being produced in a range of languages [1,18]. These
include our own Skel library [7], which is currently the only available skeleton library
for Erlang.A recent alternative approach is to define an embedded domain-specific lan-
guage (EDSL) [12,22], This can provide a structured approach to parallelism, similar
to our approach using skeletons. Skeletons, however, have the advantage of represent-
ing language-independent patterns of parallelism, that can more easily be transferred
to other language settings. Other high-level approaches that hide the low-level parallel
mechanics from the programmer include: futures [16], evaluation strategies [30], and
parallel monads [24].

There have been a few attempts to parallelise agent systems. For example Al-
Jaroodi et al. have presented an implementation of a Java-based agent-oriented system,
achieving linear scalability up to 8 cores [2], and Cicirelli and Nigri have achieved
similar scale-up in a system that is aimed at simulation [11]. Cosenza et al. describe
an implementation of a C++/MPI scalable simulation platform for spatial simulations
of particle movement, achieving linear scalability up to 64 cores [14]. Finally, Cahon
et al. have achieved linear speedup on up to 10 cores for a C++ implementation
of ParadisEO [10]. All of these systems were tested on either small scale parallel
systems, or are tailored to a specific evolutionary computing application. In contrast,
our skeleton is sufficiently general to cover a wide class of evolutionary computing
applications, and we have also demonstrated its scalability on systems with up to 244
hardware threads, achieving maximum throughput improvements of up to 142.44×
the sequential version.

6 Conclusions and Future Work

Evolutionary multi-agent systems (EMAS) are a very important component of many
artificial intelligence systems. In this paper, we have described the design and imple-
mentation of a new domain-specific skeleton for evolutionary multi-agent systems
(EMAS) in Erlang. By implementing a skeleton for a widely used computational pat-
tern, we enable easy parallelisation of a large class of applications, where programmer
is required to supply only problem-specific sequential components, and all parallelism
is handled by the skeleton implementation. We also enable easy cross-platform porta-

123



Int J Parallel Prog (2018) 46:4–22 21

bility. We have developed three different versions of the skeleton—the Concurrent
version that is based on Erlang processes, the Skel version that is based on the Skel
library of parallel skeletons, and the Hybrid tuned version of the Skel version. We
evaluated these different versions of the skeleton on two different evolutionary com-
puting applications: (1) finding the minimum of the Rastrigin function; and (2) an
urban traffic optimisation. These applications come from different domains and were
adapted to use the same skeleton. We have achieved very good improvements in per-
formance on a number of different architectures, ranging from small-scale low-power
multi-core systems (a quad-core Raspberry Pi) to larger multi-core servers (a 64-core
AMD Opteron) and a many-core accelerator (Intel Xeon Phi) with very little coding
effort. This showed the scalability and adaptability of our skeleton implementation
in a number of different deployment settings. As expected, the best implementation
was consistently the Hybrid version. Our results show that we can achieve throughput
improvements for this version of up to a factor of 142.44 compared to the sequential
version (for the Xeon Phi), with near-linear improvements on the servers and Rasp-
berry Pi. Overall, the 64-coremulti-core system (zeus) gave the best result for Rastrigin
(349,226 rps). However, rather surprisingly, the 24-core server (titanic) achieves the
best result for Traffic (227,509 rps vs. 94,950 rps). Given their pricing relative to the
other architectures, the results for the Xeon Phi and Raspberry Pi are very creditable.
Although the OpenPower results are a little disappointing in absolute terms, this is
largely because an older version of Erlang was used. If the newest version of Erlang
was available, we would expect this architecture to deliver the best absolute results.
Finally, we had not expected the architectures to have such widely varying perfor-
mance. The fact that our skeletons (notably the Hybrid version) dealt well and, on the
whole, predictably with all of these architectures is a positive result.

Our main line of future work is to adapt our skeleton to distributed-memory sys-
tems, so allowing further scaling to supercomputers. This would, however, require
significant reengineering of the skeleton. We also plan to consider more complex real-
life applications that conform to the skeleton, to investigate the anomalies that we
have observed on e.g. the zeus and phi systems, and to retry the results for the power
system once Erlang 18 is available.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Aldinucci, M., Campa, S., Danelutto, M., Kilpatrick, P., Torquati, M.: Pool evolution: a parallel pattern
for evolutionary and symbolic computing. IJPP 44(3), 531–551 (2016)

2. Al-Jaroodi, J., Mohamed, N., Jiang, H., Swanson, D.: Agent-based parallel computing in java proof of
concept. Technical Report TR-UNL-CSE-2001-1004, University of Nebraska—Lincoln (2001)

3. Armstrong, J., Virding, S., Williams, M.: Concurrent Programming in Erlang. Prentice-Hall, Engle-
wood Cliffs (1993)

123

http://creativecommons.org/licenses/by/4.0/


22 Int J Parallel Prog (2018) 46:4–22

4. Aronis, S., Papaspyrou, N., Roukounaki, K., Sagonas, K., Tsiouris, Y., Venetis, I.E.: A scalability
benchmark suite for Erlang/OTP. In: Proceedings of the Erlang Workshop, ACM, Erlang ’12, pp.
33–42 (2012)

5. Back, T.: Selective pressure in evolutionary algorithms: a characterization of selection mechanisms.
In: Proceedings of the WCCI, IEEE, vol. 1, pp. 57–62 (1994)

6. Bellifemine, F., Poggi, A., Rimassa, G.: Jade: a FIPA2000 compliant agent development environment.
In: Proceedings of the Agents ’01, pp. 216–217 (2001)

7. Brown, C., Danelutto, M., Hammond, K., Kilpatrick, P., Elliott, A.: Cost-directed refactoring for
parallel Erlang programs. IJPP 42(4), 564–582 (2014)

8. Byrski, A., Schaefer, R., Smołka, M.: Asymptotic guarantee of success for multi-agent memetic sys-
tems. Bull. Polish Acad. Sci. Tech. Sci. 61(1), 257–278 (2013)

9. Byrski, A., Drezewski, R., Siwik, L., Kisiel-Dorohinicki, M.: Evolutionary multi-agent systems.
Knowl. Eng. Rev. 30, 171–186 (2015)

10. Cahon, S., Melab, N., Talbi, E.: Paradiseo: a framework for the reusable design of parallel and dis-
tributed metaheuristics. J. Heuristics 10(3), 357–380 (2004)

11. Cicirelli, F., Nigro, L.: An agent framework for high performance simulations over multi-core clusters.
In: Proceedings of the AsiaSim 2013, Springer, pp. 49–60 (2013)

12. Claessen, K., Sheeran, M., Svensson, B.J.: Expressive array constructs in an embedded GPU kernel
programming language. In: Proceedings of the DAMP, pp. 21–30 (2012)

13. Cole,M.: Bringing skeletons out of the closet: a pragmaticmanifesto for skeletal parallel programming.
Elsevier 30, 389–406 (2004)

14. Cosenza, B., Cordasco, G., De Chiara, R., Scarano, V.: Distributed load balancing for parallel agent-
based simulations. In: Proceedings of PDP 2011, pp. 62–69 (2011)

15. Digalakis, J., Margaritis, K.: An experimental study of benchmarking functions for evolutionary algo-
rithms. Int. J. Comput. Math. 79(4), 403–416 (2002)

16. Fluet, M., Rainey, M., Reppy, J., Shaw, A., Xiao, Y.: Manticore: a heterogeneous parallel language.
In: Proceedings of DAMP ’07, ACM, pp. 37–44 (2007)

17. Fogel, D.B.: What is evolutionary computation? IEEE Spectr. 37(2), 26, 28–32 (2000)
18. González-Vélez, H., Leyton, M.: A survey of algorithmic skeleton frameworks: high-level structured

parallel programming enablers. Softw. Pract. Exp. 40(12), 1135–1160 (2010)
19. Gutknecht, O., Ferber, J.: Madkit: a generic multi-agent platform. In: Proceedings of AGENTS ’00,

pp. 78–79 (2000)
20. Janjic, V., Brown, C., Hammond, K.: Lapedo: Hybrid skeletons for programming heterogeneous mul-

ticore machines in Erlang. In: Proceedings of ParCo 2015, IOS Press (2015)
21. Krzywicki, D., et al.: Massively concurrent agent-based evolutionary computing. J. Comput. Sci. 11,

153–162 (2015)
22. Lee, H.J., et al.: Implementing domain-specific languages for heterogeneous parallel computing.Micro

IEEE 31(5), 42–53 (2011)
23. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: a multiagent simulation

environment. Simulation 81(7), 517–527 (2005)
24. Marlow, S., Newton, R., Peyton Jones, S.: A monad for deterministic parallelism. In: Proceedings of

Haskell ’11, pp. 71–82 (2011)
25. North, M., Collier, N., Ozik, J., Tatara, E., Macal, C., Bragen, M., Sydelko, P.: Complex adaptive

systems modeling with repast simphony. Complex Adapt. Syst. Model. 1(1), 3 (2013)
26. Piętak, K., Kisiel-Dorohinicki, M.: Transactions on computational collective intelligence X, springer,

chap agent-based framework facilitating component-based implementation of distributed computa-
tional intelligence systems (2013)

27. Rashkovskii, Y.: Genomu: a concurrency-oriented database. In: Erlang Factory SF 2013 (2013)
28. Reed, R.: Scaling to millions of simultaneous connections. In: Erlang Factory SF (2012)
29. Sagonas, K., Winblad, K.: More scalable ordered set for ETS using adaptation. In: Proceedings of

Erlang Workshop, Erlang ’14 (2014)
30. Trinder, P.W., Hammond, K., Loidl, H.W., Peyton Jones, S.L.: Algorithm + strategy = parallelism. J.

Funct. Program. 8(1), 23–60 (1998)
31. Wilson, K.: Migrating a C++ team to using Erlang to deliver a real-time bidding ad system. In: Erlang

Factory SF (2012)
32. Zheng, S., Long, X., Yang, J.: Using many-core coprocessor to boost up Erlang VM. In: Proceedings

of Erlang Workshop, ACM, pp. 3–14 (2013)

123


	The Missing Link! A New Skeleton for Evolutionary Multi-agent Systems in Erlang
	Abstract
	1 Introduction
	2 Evolutionary Multi-agent Systems and Parallel Skeletons
	2.1 Parallel Programming in Erlang
	2.2 Algorithmic Skeletons
	2.3 The Skel Library for Erlang

	3 A New Skeleton for Evolutionary Multi-agent Systems
	3.1 Use of the EMAS Skeleton

	4 Evaluation
	4.1 titanic Results
	4.2 zeus Results
	4.3 phi Results
	4.4 Preliminary power Results
	4.5 pi Results

	5 Related Work
	6 Conclusions and Future Work
	References




