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Abstract
Brown’s characteristic curves of polar fluids were studied using molecular simula-
tion and molecular-based equation of state. The focus was on elucidating the influ-
ence of dipole interactions and the molecule elongation on the characteristic curves. 
This was studied using the symmetric two-center Lennard–Jones plus point dipole 
(2CLJD) model fluid class. This model class has two parameters (using Lennard–
Jones reduced units), namely the elongation and the dipole moment. These param-
eters were varied in the range relevant for real substance models that are based on 
the 2CLJD model class. In total, 43 model fluids were studied. Interestingly, the 
elongation is found to have a stronger influence on the characteristic curves com-
pared to the dipole moment. Most importantly, the characteristic curve results for 
the 2CLJD fluid are fully conform with Brown’s postulates (which were originally 
derived for simple spherical dispersive fluids). The independent predictions from 
the computer experiments and the theory are found to be in reasonable agreement. 
From the molecular simulation results, an empirical correlation for the character-
istic curves of the 2CLJD model as a function of the model parameters was devel-
oped and also applied for modeling real substances. Additionally, the intersection 
points of the Charles and Boyle curve with the vapor-liquid equilibrium binodal and 
spinodal, respectively, were studied.
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1 Introduction

Permanent charge distributions in molecules induce polar interactions, which 
have an important effect on macroscopic properties. Charge distributions and 
the induced polar interactions are usually described in molecular models using 
multipole expansions [1, 2], i.e. point charges, point dipoles, point quadrupoles, 
point octupoles, etc. Especially point dipoles and point quadrupoles are fre-
quently used since they are computationally significantly cheaper than the cor-
responding arrangement of point charges [3]. Moreover, it has been pointed out 
that higher-order multipoles yield a better physical description of electrostatic 
interactions than a corresponding arrangement of multiple point charges [4]. 
Polar interactions are relevant for many real substances [5–12]. Hence, modeling 
thermophysical properties of polar substances is important for many applications. 
For example, many refrigerant components and simple gases such as carbon mon-
oxide and oxygen have important polar interactions [13–16]. Most importantly, 
higher order point multipoles, e.g. point dipoles and point quadrupoles, yield a 
strongly anisotropic interaction potential.

For the development and parametrization of fluid theories as well as for testing 
new simulation methods, model fluids play an important role [16–23]. Further-
more, model fluids enable systematic studies on the relation of specific molecular 
interactions and macroscopic properties [24–26], [27], [28–31]. Important model 
classes for small polar molecules are the two-center Lennard–Jones plus dipole 
(2CLJD) and the two-center Lennard–Jones plus quadrupole (2CLJQ) class. 
Models from these two classes comprise two Lennard–Jones interaction sites and 
a point dipole or point quadrupole. The two Lennard–Jones sites are at a given 
distance, named elongation L, which characterizes the shape of the molecule. The 
two Lennard–Jones interaction sites are identical regarding the dispersion energy 
� , the size parameter � , and the mass M. The point multipole interaction site is 
positioned at the center of mass of the model and has no mass itself. Accord-
ingly, the 2CLJD or 2CLJQ model classes have four parameters: The dispersion 
energy � , the size parameter � , the elongation L, and the magnitude of the dipole 
� or quadrupole Q, respectively. Using the classical Lennard–Jones reduced units 
system [32], the number of parameters can be reduced to two [33, 34], i.e. the 
elongation and the multipole moment. These two polar fluid model classes can be 
used for modeling a large number of small polar molecules [8, 35]. These model 
classes have been used for systematically studying the influence of the elongation 
and the influence of the multipole moment magnitude on different thermophysical 
properties, e.g. phase equilibria [33, 34, 36–38], interfacial properties [39–44], 
transport properties [45–48], and virial coefficients [49, 50]. Thereby, high accu-
rate global correlations for the vapor-liquid equilibrium and the surface tension 
are available today for the 2CLJD fluid class [34, 40]. Also, several perturbation 
theory models have been developed for polar model fluids [17, 51–55].

For many applications, thermophysical properties have to be modeled at 
extreme conditions regarding temperature and pressure, e.g. propulsion sys-
tems [56], geology [57, 58], and tribology [59–61]. Models from molecular 
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thermodynamics can be often used for predicting thermophysical properties at 
conditions that were not considered for the model development. Yet, their ther-
modynamic consistency can not be taken for granted. For the assessment of the 
thermodynamic consistency of models at extreme conditions, Brown’s character-
istic curves can be used [62]. In this sequel of two papers, we study Brown’s char-
acteristic curves for the 2CLJD and 2CLJQ fluid. In this first part, we study the 
2CLJD model class; the second part focuses on the 2CLJQ model class. In this 
work, we study Brown’s characteristic curves of the 2CLJD model class.

The characteristic curves were postulated by Brown [62] and represent the loci 
of state points at which a specific thermodynamic property of the fluid matches 
that of an ideal gas (details below). Based on rational thermodynamic arguments, 
Brown postulated that these curves have certain features for simple dispersive fluids. 
Brown introduced the characteristic curves also as a method for the assessment of 
thermodynamic models. The testing of these characteristic curves has been incorpo-
rated into the guidelines established by the International Union of Pure and Applied 
Chemistry (IUPAC) for publishing equations of state (EOS) [63] and is widely used 
today in that context [64–75]. Despite the fact that Brown derived the conditions for 
the characteristic curves for simple fluids, i.e. spherical particles with simple repul-
sive and dispersive interactions, the test procedure is also applied to complex mol-
ecules that comprise an elongation, polar interactions or association [65, 66, 69, 70, 
75]. Interestingly, the applicability and transferability of Brown’s arguments to mol-
ecules comprising complex interactions such as polar interactions induced by point 
multipoles has not been studied yet. In this work, we study Brown’s characteristic 
curves for the 2CLJD model class to assess the validity of his arguments for polar 
fluids.

There is practically no experimental data for Brown’s characteristic curves avail-
able today. Yet, Brown’s characteristic curves can be obtained from molecular simu-
lations [76, 77]. While some data are available for the Charles curve (a.k.a. Joule-
Thomson inversion curve) [78–87], information for the other characteristic curves 
is still scarce. Systematic studies for Brown’s characteristic curves have been carried 
out for simple fluids such as the Lennard–Jones and the Mie model fluids [73, 77].

In this work, we use molecular simulation and a molecular-based EOS model for 
determining Brown’s characteristic curves for a large range of 2CLJD models. In 
total, 43 2CLJD fluids were studied for elucidating the influence of the elongation 
L and the dipole moment � on the characteristic curves. For the molecular simula-
tions, the method proposed in an earlier work of our group [77] was used. For the 
molecular-based EOS, the 2CLJ model proposed by Lísal et  al. [88] was used in 
combination with the dipole term proposed by Gross and Vrabec [17]. Addition-
ally, accurate empirical correlations of the molecular simulation characteristic curve 
results were developed as global functions of the model parameters. Moreover, the 
empirical model is exemplarily applied to describe real substances. As an additional 
focus of this paper, the intersection points of the Boyle and Charles curve with the 
VLE binodal and spinodal were studied.

This work is outlined as follows: First, a brief introduction to Brown’s character-
istic curves and their conditions for a thermodynamically consistent model are sum-
marized; then, the 2CLJD molecular model class and the simulation method and the 
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equation of state model are introduced. Then, the results of the characteristic curves 
of the 2CLJD fluids are presented and discussed. Based on these results, the appli-
cability of the classical corresponding states principle is evaluated. Then, the results 
for the empirical correlation of the computer experiment characteristic curve data 
are presented. The results for the intersection points of the Boyle and Charles curve 
with the binodal and spinodal, respectively, are presented and discussed. Finally, 
conclusions are drawn.

2  Brown’s Characteristic Curves

Figure  1 shows a schematic representation of the four characteristic curves in 
the double logarithmic pressure-temperature (p − T) projection with the zero-
order curve (Zeno) and the three first-order curves (Amagat, Boyle, and Charles). 
Brown’s characteristic curves span several orders of magnitude in temperature 
and pressure. Based on thermodynamic reasoning, Brown postulated several 
essential conditions for characteristic curves to be thermodynamically consistent 
[62]: Each characteristic curve has a single maximum and a negative curvature 
throughout the whole temperature range, cf. Figure  1. In a double-logarithmic 
p − T  diagram, the characteristic curves have an infinite slope in the zero-density 

Fig. 1  Schematic representation of Brown’s characteristic curves and the vapor-liquid equilibrium 
binodal and spinodal. Colored solid lines indicate the Zeno curve (red), Amagat curve (orange), Boyle 
curve (blue), and Charles curve (pink). Black lines represent the vapor-liquid equilibrium: Solid line 
indicate the binodal; dashed lines the spinodals; the star indicates the critical point. Intersection points 
are marked as bullets; the zero-density limit of each characteristic curve is marked as a triangle (Color 
figure online)
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limit � → 0 . The Zeno curve intersects the three first-order curves in a single 
point. For many substances, the intersection point of the Zeno and Amagat curve 
lies in the solid region. The intersection point of the Zeno and Boyle curve is 
the common zero-density limit. The three first-order curves, on the other hand, 
must not intersect each other, but enclose each other in a p − T  projection. The 
Charles and Boyle curve intersect the vapor-liquid equilibrium (VLE) binodal 
and spinodal, respectively, cf. Figure 1. The zero-density limit of the character-
istic curves are related to specific conditions of the virial coefficients. The corre-
sponding characteristic zero-density temperature values are denoted as Tchar . The 
common zero-density limit characteristic point of the Boyle and Zeno curve is 
located at Tchar,Boyle = Tchar,Zeno , often referred to as the Boyle temperature, where 
the second virial coefficient is zero

For the Amagat curve, the zero-density limit is located at the temperature Tchar,Amagat , 
where the second virial coefficient B reaches its maximum value, i.e.

The zero-density characteristic point of the Charles curve is located at the tempera-
ture Tchar,Charles , where the condition

holds.
State points on the characteristic curves exhibit specific values regarding the 

compressibility factor Z and its derivatives with respect to the  temperature T, 
pressure p, and density � . Along the Zeno curve, state points satisfy the condition

For the first-order characteristic curves, the derivative of the compressibility factor Z 
with respect to temperature, pressure, and specific volume are zero, i.e.

for the Amagat curve,

for the Boyle curve, and

(1)B(Tchar,Boyle) = 0 .

(2)Tchar,Amagat = T(Bmax) .

(3)�B∕�T = B(Tchar,Charles)∕Tchar,Charles

(4)Z =
p

�TR
= 1 .

(5)
(
�Z

�T

)

v
= 0 ,

(6)
(
�Z

�p

)

T

= 0 ,

(7)
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�Z

�v
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p
= 0 ,
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for the Charles curve. The four criteria (4)–(7) can be transferred to different ther-
modynamic properties using classical thermodynamic relations, cf. Refs. [72, 
74–76] for details.

3  Investigated 2CLJD Fluids

The potential model of the 2CLJD fluid is defined as

with u2CLJ being the potential of the two-center Lennard–Jones model and uD being 
the point dipole potential. The interaction potential of the 2CLJ model can be writ-
ten as

where � and � are the size and the energy parameter of the Lennard–Jones potential, 
respectively, and r is the distance between interaction sites of two molecules i and j. 
The distance between the four distinct site-site possibilities is represented by rab : a 
represents the two sites of molecule i, b the two sites of molecule j. The point dipole 
interactions can be written as

where the orientations of the two molecules i and j are represented by �i and �j . The 
angles between the dipole moments �i and �j and their corresponding distance vec-
tor rij are represented by �i and �j.

In this work, only symmetric 2CLJD fluids were studied, i.e. the two Lennard–Jones 
sites have identical � , � , and mass M. Moreover, the direction of the point dipole was 
in all cases along the axis of the two Lennard–Jones sites. Hence, the 2CLJD model 
has four parameters, namely the size parameter � , the energy parameter � , the site-site 
distance of the two Lennard–Jones sites, i.e. the elongation L, and the dipole moment 
� . By using the Lennard–Jones units system, all results are represented with respect 
to the Lennard–Jones parameters � and � . Therefore, the 2CLJD model system can 
be reduced to a two-parameter model, namely, the dimensionless elongation L∕� and 
the dimensionless (squared) dipole moment �2∕(4��0��

3) . Moreover, the convention 
4��0 = 1 [40] is adopted for simplification of the notation.

In total, 43 2CLJD model fluids were studied, covering a wide range of L and � . Fig-
ure 2 shows the parameter space covered in this work in comparison to real substance 
model parameters for various substances available in the literature [5–8, 14–16]. The 
reduced elongation was studied in the range L∕� = 0, 0.2, 0.4, 0.505, 0.6, 0.8, 1. The 
reduced squared dipole moment was studied in the range �2∕��3 = 0, 3, 6, 9, 12, 16, 
20.

(8)u2CLJD(rij,�i,�j, L,�
2) = u2CLJ(rij,�i,�j, L) + uD(rij,�i,�j,�

2),

(9)u2CLJ(rij,�i,�j, L) =

2∑

a=1

2∑

b=1

4�

[(
�

rab

)12

−

(
�

rab

)6
]
,

(10)uD(rij,�i,�j,�
2) =

1

4��0

�2

|rij|3
(cos �ij − 3 cos �i cos �j) ,
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4  Methods

4.1  Molecular Simulations

In this work, Brown’s characteristic curves were determined using the simulation 
approach proposed by Urschel and Stephan [77]. This method consists of three 
steps: (i) calculating the zero-density limit � → 0 characteristic temperatures and 
determining initial guess values from a molecular-based EOS; (ii) performing MD 
simulations in the vicinity of the initial guess values for determining the charac-
teristic curve state points, and (iii) assessing the thermodynamic consistency of the 
results. All molecular simulations in this work were carried out with the simulation 
engine ms2 [89, 90].

The initial guess characteristic curves (i) were computed using a molecular-based 
EOS (details given below) corrected with the virial coefficient from the force field 
[77]. The second virial coefficient of a given molecular force field model was sam-
pled using Monte Carlo (MC) simulations and the results were used for fine-tuning 
the initial guess characteristic curves obtained from the EOS – as proposed in Ref. 
[77]. The second virial coefficient B(T) was sampled using MC simulations from the 
intermolecular potential u2CLJD , cf. Equation 8 with

(11)B(T) = −2� ∫
∞

0

⟨
exp

(
−
u2CLJD(rij,�i,�j, L,�

2)

kBT

)
− 1

⟩

�i,�j

r2
ij
drij.

Fig. 2  Parameters for 2CLJD model fluids: The model fluids investigated in this work are represented 
by circles. Filled circles indicate fluids focused on in the results section of this work. Crosses indicate 
model parameters of real substance models from the literature [5–7, 14–16]. Thick crosses indicate real 
substance models discussed below
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where T is the temperature. Equation 11 was evaluated for a wide temperature range. 
For each temperature, Eq. 11 was evaluated at 200 distances rij between the center of 
mass of two molecules in the range rij,min = 0.2 and rij,max = 20 . For each distance, 
1,000 random orientations were evaluated. For each temperature, 10 replica simula-
tions were carried out using different random seeds for the MC simulations. From 
the results, the average was computed. The results for B(T) were fitted to the empiri-
cal correlation proposed by Xu et  al. [91] and evaluated at the conditions for the 
zero-density characteristic points, cf. Equations 1–3.

For determining characteristic curve state points, in step (ii), sets of simula-
tions at given temperatures were carried out in the vicinity of the initial guess 
values. For determining characteristic curve state points, different simulation 
routes (ensembles, thermodynamic definitions etc.) are in general feasible that 
were systematically compared in Ref. [77]. We followed the suggestion from 
Ref. [77] and used NVT simulation sets for determining Zeno, Boyle, and 
Charles curve state points and NpT simulations for determining Amagat curve 
state points. The simulation sets were evaluated based on the following criteria: 
Z = 1 for the Zeno curve, (�U∕�V)T = 0 for the Amagat curve, (�Z∕�V)T = 0 for 
the Boyle curve, and (�H∕�p)T = 0 for the Charles curve. For each 2CLJD model 
fluid, at least nine characteristic curve state points were determined for a given 
characteristic curve. The statistical uncertainties of a characteristic curve state 
point were determined using an error propagation technique [77].

An additional NVT simulation was performed in step (iii) for each character-
istic curve state point obtained in step (ii) to calculate additional thermodynamic 
properties and carry out a consistency test. For these simulations, the Lustig for-
malism [90, 92, 93] was applied in the simulations, which yields the deriva-
tives of the reduced Helmholtz energy per particle ãkl with ã = A∕(NkBT) . For 
the Helmholtz energy derivatives, a short hand notation is used:

From the sampled Helmholtz energy derivative values, the thermodynamic consist-
ency of the characteristic curve state points can be assessed [77]. The Zeno curve 
is evaluated from the condition ã01 = 0 , the Amagat curve from ã11 = 0 , the Boyle 
curve from ã01 + ã02 = 0 , and the Charles curve from ã01 + ã02 + ã11 = 0.

The MD simulations were carried out with 2,000 particles in a cubic box 
using periodic boundary conditions. The equilibration was performed with 
100,000 time steps for NVT and an additional 100,000 time steps for NpT equi-
libration. The production run consisted of 750,000 time steps. The cut-off radius 
was 5� . For the cut-off, the center of mass method was used. The time step was 
set to Δ� = 0.0005�

√
M∕� . Classical long-range corrections were employed. For 

the thermostat, classical velocity scaling was used. For prescribing the pressure, 
Andersen’s barostat was applied. The barostat piston mass was specified by the 
heuristic approach proposed in Ref. [77].

(12)ãkl = (1∕T)k𝜌l
𝜕k+lã

𝜕(1∕T)k𝜕𝜌l
.
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4.2  Molecular‑Based Equation of State

For modeling thermodynamic properties of the 2CLJD fluids, a molecular-based EOS 
model built from the Helmholtz energy terms proposed by Lísal et al. [88] and Gross 
and Vrabec [17] was used. In the EOS model, the configurational Helmholtz energy 
per particle aconfig = Aconfig∕N is written as

where ã2CLJ represents the Helmholtz energy contribution of the 2CLJ reference 
fluid and ãD the contribution for dipole interactions. For ã2CLJ , the model proposed 
by Lísal et al. [88] was used. For ãD , the model proposed by Gross and Vrabec [17] 
was used. The 2CLJ term of Lísal et al. [88] consists of a hard sphere term and a 
semi-empirical perturbation dispersion term. For the hard sphere term, the model 
from Boublík and Nezbeda [94] is used. The parameters of the 2CLJ term were 
determined from a fit to both homogeneous state property data at moderate condi-
tions and VLE data [88]. The dipole term of Gross and Vrabec [17] is formulated as 
a third-order perturbation theory Padé approximation. The parameters of the dipole 
term were fitted to VLE data for 2CLJD fluids [17]. The EOS model defined by 
Eq. 13 was used in this work for computing the characteristic curves as well as the 
VLE binodal and spinodal of all studied fluids.

4.3  Empirical Correlation for Characteristic curves

Based on the computer experiment results for the characteristic curves of the 2CLJD 
fluid class, a global empirical correlation was developed. Empirical correlations for the 
Zeno, Amagat, Boyle, and Charles curve were developed individually. The empirical 
correlation describes the pressure of the characteristic curve as a function of the tem-
perature using reduced variables with respect to the critical point, i.e. p∗ = p∕pc and 
T∗ = T∕Tc . The empirical model is written as

where a,  b,  c,  d,  e indicate fitting parameters and T∗
char,i

 is the reduced zero-den-
sity limit characteristic temperature for each curve i = Zeno, Amagat, Boyle, and 
Charles. All properties are reduced with respect to the critical point data, which 
is obtained from the correlation of Stoll et al. [34] that describes the critical pres-
sure and critical temperature as global functions of the model class parameters, i.e. 
Tc = Tc(L,�) and pc = pc(L,�).

(13)
a2CLJD
config

kBT
= ã2CLJD

config
(T , 𝜌, L,𝜇) = ã2CLJ(T , 𝜌, L) + ãD(T , 𝜌,𝜇) ,

(14)

p∗
i
= a (T∗ − T∗

char,i
)

+ bi (T
∗ − T∗

char,i
)2

+ ci (T
∗ − T∗

char,i
)3

+ di tanh(0.1(T
∗ − T∗

char,i
))

+ ei (exp(0.1(T
∗ − T∗

char,i
)) − 1),
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The empirical ansatz function used for describing the characteristic curves, cf. 
Equation 14, comprises the zero-density limit T∗

char,i
= Tchar,i∕Tc . Also the zero-den-

sity limit Tchar,i was modeled here as a global function of the model class parameters, 
i.e. Tchar,i = Tchar,i(L,�) . We use the empirical ansatz function proposed by Vega 
et al. [50]:

 where di and fi indicate fitting parameters. The obtained parameters of the empirical 
model are given in Table 2 and 3.

Equations 14 and 15 were used for modeling the characteristic curves in the pres-
sure-temperature projection, i.e. p∗ = p∗(T∗) . In the Supplementary Material, addi-
tional empirical correlations are presented for the density-temperature projection, 
i.e. for describing �∗ = �∗(T∗) for the Amagat, Charles, and Boyle curve. For the 
Zeno curve, the density can be obtained directly by evaluating the thermodynamic 
condition Z = 1 in combination with the pressure model p∗ = p∗(T∗) . An implemen-
tation of the empirical correlation is given in the electronic Supplementary Material.

4.4  Intersection of Boyle and Charles Curve with the Vapor–Liquid Equilibrium

The zero-density limit constitutes the endpoint of the characteristic curves at high 
temperatures and can be obtained straightforwardly from the virial route. The Ama-
gat and Zeno curve have their starting point in the solid phase region. The Boyle 
and Charles curve, on the other hand, start on the vapor-liquid binodal and spinodal, 
respectively (cf. Figure 1).

From the characteristic curve results and the results for the vapor-liquid equi-
librium of the 2CLJD fluid, the intersection point of the Boyle curve with the 
spinodal as well as the intersection point of the Charles curve with the binodal were 
determined. As an example, this evaluation was applied for the 2CLJD fluid with 
L∕� = 0.505 and �2∕��3 = 6 . For both the Boyle and the Charles curve of that 
2CLJD fluid, five characteristic curve state points were determined with the molecu-
lar simulation method (see above) in the range 0.6 Tc to 0.9 Tc , where Tc is the criti-
cal temperature. The critical point was determined from the empirical correlation 
of Stoll et  al. [34]. For the Charles curve, the intersection point of the empirical 
correlation (describing the computer experiment data) and the binodal was com-
puted, where the binodal was taken from the empirical correlation proposed by Stoll 
et al. [34]. For the Boyle curve, the intersection point of the empirical correlation 
and the spinodal was computed, where the spinodal was taken from the EOS model 
described by Eq. 13.

(15)

Tchar,i(L,�) = (d1 + d2L + d3L
2 + d4L

3 + d5L
4)

+ �((f1 + f2L + f3L
2)

+ (f4 + f5L + f6L
2)�

+ (f7 + f8L + f9L
2)�2

+ (f10 + f11L + f12L
2)�3) ,
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Performing MD simulations near the critical point and in the metastable region is 
challenging, e.g. phase separation is encountered regularly. This was monitored by 
checking the structure in the simulations and only simulations comprising homoge-
neous phases were used for the evaluation of the characteristic curve state points in 
step (ii).

5  Results

The results section is outlined as follows: First, the results for the zero-density limit 
characteristic points are presented and discussed. Then, the results for the character-
istic curves of a representative part of the 2CLJD fluids (cf. grey filled symbols in 
Fig. 2) as well as the application to real substances are presented and discussed. The 
numerical data for the molecular simulation results for all studied 2CLJD fluids are 
reported in the Supplementary Material.

5.1  Zero‑Density Limit Characteristic Points

Figure 3 shows the results for zero-density limit characteristic points of the Zeno, 
Amagat, Charles, and Boyle curve obtained from the virial route for the studied 
2CLJD fluids. For the vast majority of points, the error bars are within the sym-
bol size. Data for the Boyle temperature for different 2CLJD fluids have also been 
reported by Vega et al. [50]. Our results are in good agreement with their results.

An interesting observation arises when considering a given elongation for a 
given characteristic curve: The zero-density limit characteristic points increase 
with the strength of the dipole moment � . For the Boyle temperature, this effect 
was reported previously by Vega et al. [50]. As the strength of the dipole moment 
increases, attractive forces between molecules become stronger, eventually reaching 

Fig. 3  Temperature of the zero-density limit characteristic points of the 2CLJD fluids. Diamonds indicate 
the zero-density limit characteristic point for the Amagat curve, bullets for the Charles curve, and squares 
for the Boyle curve. Error bars are only given if they exceed the symbol size
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a point, where attractive and repulsive forces cancel out at the Boyle temperature. 
On the other hand, for a constant dipole moment, an increasing elongation L leads 
to a noticeable decrease of the temperature of the zero-density characteristic point, 
resulting in a shift towards lower temperatures.

Overall, the elongation has a stronger influence than the dipole moment – in the 
studied ranges. For the studied elongation range, the temperature of the zero-den-
sity limit characteristic points varies in the range T∗

char,i
= 2.. 3 �k−1

B
 ; for the studied 

dipole moment range, the temperature of the zero-density limit characteristic points 
lies in the range T∗

char,i
= 1.2.. 1.5 �k−1

B
.

5.2  Brown’s Characteristic Curves

Figure 4 shows the characteristic curve results for a selection of 2CLJD fluids in the 
classical double-logarithmic p − T  projection. Results from both computer experi-
ment and the EOS are shown. The results for the 2CLJD fluids are fully conform 
with Brown’s postulates for the topology of the characteristic curves (originally 
derived for simple fluids). The same holds for all other studied 2CLJD fluids, see 
Supplementary Material. The 2CLJD characteristic curves exhibit infinite slope in 
the zero-density limit, no intersection for the Amagat, Charles, and Boyle curve, a 
single intersection of the Zeno curve with the Amagat, Charles, and Boyle curve 
etc. Hence, the elongation and the dipole moment of the 2CLJD model class do 
not perturb the principle topology of the fluid behavior at extreme conditions such 
that Brown’s postulates for the characteristic curves are found to also apply to fluids 
with an elongation and polar interactions – even with large dipole moments. This 
holds for the independent predictions from both the computer experiment and the 
EOS results. Yet, there are some quantitative deviations (discussed in more detail 
below) between the results from the two methods. The fact that Brown’s criteria 

Fig. 4  Characteristic curves of 2CLJD fluids with L∕� = 0.505 and different �2∕��3 in the double-
logarithmic p − T-projection. Results from computer experiments are represented by circles. Statistical 
uncertainties are within the symbol size. Lines represent the results from the EOS. Lines with 50% trans-
parency indicate the vapor-liquid binodal (solid line) and spinodal (dashed line)
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(intersection points, curvature etc. of characteristic curves) are applicable for mol-
ecules with significantly more complex interactions than simple dispersively inter-
acting spherical molecules is probably due to the fact that the complex dipolar 
interactions have on average attractive and repulsive interaction effects. Hence, the 
applicability of Brown’s criteria is likely related to the applicability of a mean field 
interaction picture. Hence, the directional orientation distribution present in polar 
fluids (as the 2CLJD fluid class) has no influence on the overall topology of Brown’s 
characteristic curves.

Figures 5 and 6 show the results for the characteristic curves of the 2CLJD fluid 
for different elongations and dipole moments (cf. grey filled symbols in Fig.  2). 
Figure  5 shows the results for different elongations L at zero dipole moment 
�2∕��3 = 0 . Figure 6 shows the results for different dipole moments �2 at constant 
elongation L∕� = 0.505 . The results are presented in the p − T  and the � − T  pro-
jection for each characteristic curve. The molecular simulation results are shown in 
comparison to the EOS results.

Considering the fact that the results from computer experiments and those from 
the EOS are independent predictions, they agree overall reasonably well. For the 
2CLJD fluid with zero dipole moment, cf. Figure 5, the agreement of the results from 
the two methods is very good. For that case, the EOS (cf. Equation 13) comprises 
only the Lísal et al. [88] model. For these fluids, only some deviations between the 
results from the two methods are observed at high temperatures, e.g. for the Amagat 
curve, cf. Figure 5 c). Interestingly, these deviations are mostly observed for small 
L. The largest deviations between the EOS and the computer experiment results are 
observed for L = 0 , which corresponds to the simple Lennard–Jones fluid. The Lísal 
et al. [88] EOS is a modification/ re-parametrization of the EOS proposed by Mecke 
et al. [95]. The latter, on the other hand, is known to yield some deviations at high 
temperatures [96], which are seemingly also present for the Lísal EOS for the sim-
ple Lennard–Jones fluid. For the 2CLJD fluids with (non-zero) dipole moment (cf. 
Figure  6), the EOS results show significant deviations from the computer experi-
ment results. These deviations increase with increasing dipole moment. Since the 
2CLJ results (no dipole moment) from the EOS agree very well with the computer 
experiment results, the deviations observed for the 2CLJD fluids (cf. Figure 6) can 
be attributed to the dipole EOS term. Yet, the qualitative effect of the dipole moment 
on the characteristic curves is correctly captured by the dipole EOS term.

The results provide interesting insights in the relation of the molecular interaction 
and molecular architecture parameters � and L, respectively, on the characteristic 
curves, cf. Figures 5 and 6. The two molecular parameters � and L have opposite 
effects on the characteristic curves. An increasing elongation L yields a monotonous 
decrease of both the characteristic curve pressure and density. An increasing dipole 
moment � , on the other hand, yields a monotonous increase of both the character-
istic curve pressure and density. This is consistent to what was reported before for 
the vapor-liquid equilibrium coexisting density curves, vapor pressure curves [34], 
and surface tension [40] of the 2CLJD model class. The effect of L and � can be 
well understood from the microscopic level, i.e. with increasing L, the density of the 
mean dispersive interactions per unit volume decreases, which results for example 
in a decreasing critical temperature and Boyle temperature. For the dipole moment, 
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on the other hand, increasing � yields increasing mean attractive interactions due to 
the preferential orientation of the molecules caused by the anisotropy of the polar 
interactions.

In the studied L and � range, the elongation has a stronger influence on the char-
acteristic curves compared to the dipole moment, cf. Figures 5 and 6. As expected, 
the elongation has in particular a more pronounced influence on the density of the 
characteristic curves (cf. Figure  5 b), d), f), h)) compared to the influence of  the 
dipole moment (cf. Figure 6 b), d), f), h)). The differences of the influence of L and � 
on the characteristic curves can be seen well in the change of the pressure maximum 

Fig. 5  Characteristic curves of 2CLJ fluids with �2∕��3 = 0 and different L∕� : a) and b) Zeno curve; c) 
and d) Amagat curve; e) and f) Boyle curve; g) and h) Charles curve. For all curves: Top plot is p − T  
projection and bottom plot is � − T  projection. Results from MD simulations are represented by circles. 
Statistical uncertainties lie within the symbol size. Lines represent the EOS results. The 50% transparent 
lines and symbols indicate the vapor-liquid equilibrium (solid lines indicate binodal, dashed lines indi-
cate spinodal, star indicates the critical point)
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pmax . In the considered L range, pmax undergoes four to eight fold changes. In con-
trast, pmax changes only by a factor of about 1.5 in the studied dipole moment range.

For both molecular properties L and � , interesting differences are observed for the 
Zeno and Amagat curve on one hand and the Boyle and Charles curve on the other 
hand, cf. Figures 5 and 6. Considering the Zeno curve for the 2CLJD fluid with dif-
ferent � , cf. Figure 5 a). The pressure, temperature, and density are affected on the 
same order of magnitude, which holds for both the Zeno and the Amagat curve. 
Therefore, e.g. the Zeno curves do not intersect for different � . The same holds for 
the Amagat curves – for both the influence of L and � . For the Boyle and Charles 

Fig. 6  Characteristic curves of 2CLJD fluids with L∕� = 0.505 and different �2∕��3 : a) and b) Zeno 
curve; c) and d) Amagat curve; e) and f) Boyle curve; g) and h) Charles curve. For all curves: Top plot 
is p − T  projection and bottom plot is � − T  projection. Results from MD simulations are represented 
by circles. Statistical uncertainties lie within the symbol size. Lines represent the EOS results. The 50% 
transparent lines and symbols indicate the vapor-liquid equilibrium (solid lines indicate binodal, dashed 
lines indicate spinodal, star indicates the critical point)
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curve, on the other hand, the pressure, temperature, and density are affected differ-
ently by the dipole moment � , cf. Figure 5 e) for the Boyle curve. The same holds 
for the elongation L. The pressure of the Boyle curve is significantly less affected by 
the dipole moment than the temperature. The Boyle curves are mostly only shifted to 
higher temperatures with increasing � , which yields intersection points of the Boyle 
curves from different 2CLJD fluids in the vicinity of the pressure maximum. Similar 
findings are observed for the Charles curve, cf. Figure 5 g). Hence, the molecular 
interaction and architecture features have different effects for the different character-
istic curves.

The � − T  projection reveals an approximately linear trend for the Zeno curve, 
which has been extensively investigated by Apfelbaum et al. [97, 98]. The computer 
experiment results show an approximately linear shape for all studied 2CLJD fluids, 
cf. Figures 5 b) and 6 b) and the Supplementary Material. For the EOS results, some 
deviations from this linear behavior are observed with increasing dipole moment, cf. 
Figure 6 b), which can be attributed to the dipole term. Also the Amagat, Charles, 
and Boyle curve show in parts an approximately linear shape. 

The quality of the molecular simulation results can be assessed by different meas-
ures. For all four characteristic curves, the MD simulation data (obtained in step (ii)) 
is in excellent agreement with the zero-density limit obtained from the virial route 
by MC simulations (obtained in step (i)). The zero-density limit data is overall more 
precise compared to the results obtained in step (ii), where a more complex evalua-
tion has to be carried out [77]. Moreover, the simulation results for a given charac-
teristic curve shows a smooth trend in all cases, cf. Figures 5 and 6.

Figure  7 shows the results for the Helmholtz energy consistency test  [77] of 
the characteristic curve simulation results. The data used for evaluating the Helm-
holtz  energy criteria are the results of the final MD simulation (step (iii)). Over-
all, the consistency test is satisfied for most data points – yet, some scattering is 
observed. The Helmholtz  energy criteria is satisfied by 49% of the data points of 
the Zeno curve, 54% of the Amagat curve, 69% of the Boyle curve, and 63% of the 
Charles curve. Only very few data points are large outliers, cf. Figure 7. Systematic 
deviations are only observed for very low temperatures for the Amagat curve, where 
the state points possibly lie in the solid–fluid metastable region.

5.3  Corresponding States Principle

The principle of corresponding states formulates that substances share identical 
reduced states with respect to their critical properties [99, 100]. The principle of 
corresponding states was applied to thermophysical properties of the 2CLJD fluid 
previously in the literature. Vega et al. [50] studied the influence of the elongation 
and dipole moment on the second virial coefficient, Lupkowski and Monson [38], 
Lísal et al. [37], and Stoll et al. [34] applied this principle to vapor-liquid equilib-
rium properties.

According to the principle of corresponding states, for all 2CLJD fluids, each 
characteristic curve type – Zeno, Amagat, Boyle, and Charles – should fall on a 
single curve in a reduced projection. Figure  8 shows the molecular simulation 
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characteristic curve results in reduced units with respect to the critical point values 
for the respective 2CLJD fluid. The critical point properties were computed from the 
empirical correlation proposed by Stoll et al. [34].

Fig. 7  Results of thermodynamic consistency test of the Helmholtz energy criteria for the step (iii) simu-
lation results. Results for all 43 studied 2CLJD fluids

Fig. 8  Characteristic curves of the 2CLJD fluids reduced by their corresponding critical properties. Criti-
cal point data is computed by the correlation of Stoll et al. [34]. Results for all studied 43 2CLJD fluids. 
The color code indicates the dipole moment
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Some deviations from the corresponding states principle are observed. For 
increasing dipole moment, the Boyle, Charles, and Zeno curve are shifted to higher 
pressures. For the Amagat curve, low temperature characteristic curve state points 
are also shifted to higher pressures, whereas for higher temperatures near the zero-
density limit, the curve is shifted to lower pressures. With increasing elongation L, 
deviations from the principle of corresponding states are less pronounced compared 
to the influence of the dipole strength (see Supplementary Material).

5.4  Intersection of Characteristic Curves and VLE

Figure  9 shows the results for the intersection points of the Charles and Boyle 
curves with the vapor-liquid equilibrium binodal and spinodal, respectively. 
Results are shown for the 2CLJD fluid with L∕� = 0.505 and �2∕��3 = 6 . Results 

Fig. 9  Characteristic curve intersection points: a) Charles curve with the binodal and b) Boyle curve with 
the spinodal. The results for the 2CLJD fluid with L∕� = 0.505 and �2∕��3 = 6 in the p − T  projection. 
Results from the EOS, empirical correlations, and computer experiment – see legend. The binodal cor-
relation model was taken from Stoll et al. [34]
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are shown for both MD and EOS. For the EOS, the intersection points were deter-
mined solely from EOS results, i.e. both the characteristic curves and the binodal 
and spinodal were taken as predicted from the EOS defined by Eq.  13. For the 
MD results, an empirical fit of the characteristic curve data in the vicinity of the 
vapor-liquid equilibrium was used. In the case of the Charles curve, the empirical 
high accurate correlation of molecular simulation binodal data from Ref. [34] was 
used in conjunction with the MD characteristic curve results.

For both the Charles and the Boyle curve, cf. Figure 9 a) and b), respectively, 
significant deviations between the molecular simulation results and the EOS 
results are observed, which is mostly due to the fact that the critical point is over-
estimated by the EOS.

For the Boyle curve, characteristic curve state points were also determined in 
the metastable region, cf. Figure 9 b). Since the location of the spinodal has not 
yet been determined for the 2CLJD fluid, no intersection point was estimated for 
that case. In the case of the EOS results, the intersection point of the Boyle curve 
and the spinodal is interestingly located at approximately p = 0.

5.5  Application to Real Substances

The molecular simulation results were used to determine the parameters of the 
global empirical model for the four characteristic curves, cf. Equations  14–15. 
The obtained parameters are reported in the Appendix. For testing the applicabil-
ity of the empirical characteristic curve model for the 2CLJD model class, the 
characteristic curves were evaluated for three real substance models, namely car-
bon monoxide (CO) and the refrigerants R152a (C2H4F2) and R134a (C2H2F4) . 
The model parameters were taken from the MolMod database [8]. The models 
were originally developed for describing the vapor-liquid equilibrium of the flu-
ids [15, 34]. The model parameters are given in Table 1.

The results are shown in Fig. 10. The characteristic curves obtained from the 
global empirical model are conform with Brown’s criteria, e.g. no intersection of 
Amagat, Boyle, and Charles curve, negative curvature etc. Only for the CO Ama-
gat curve result, a faint kink is observed.

Table 1  Substance parameters of carbon monoxide (CO), R152a (C2H4F2) , and R134a (C2H2F4)

�∕Å �/kB∕K L/Å �∕D L∕� �2∕��3 Ref.

CO 3.3009 36.897 1.1405 0.7378 0.345512 2.971017 [34]
R152a 3.5168 182.010 3.3125 2.7354 0.941907 6.845726 [34]
R134a 3.819 140.4 2.5587 2.7491 0.670000 6.99993 [15]
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6  Conclusion

In this work, a systematic study on Brown’s characteristic curves of the 2CLJD 
model fluid class was carried out for elucidating the influence of dipole interac-
tions and the molecule elongation on the fluid behavior at extreme conditions. 
In total, 43 2CLJD model fluids were studied using molecular simulation and 
a molecular-based equation of state. Moreover, an empirical correlation for the 
characteristic curves was developed based on the molecular simulation results.

The topology of Brown’s characteristic curves of a molecular fluid was origi-
nally derived for simple spherical molecules with repulsive and dispersive inter-
actions. In this work, the topology of the characteristic curves of polar fluids was 
studied for the first time using first principle molecular simulations. It is thus 
shown that Brown’s criteria for the topology of the characteristic curves apply 
not only for simple fluids, but can be transferred to molecules with more com-
plex interactions. This indicates that a mean field picture is well applicable for 
the 2CLJD fluid, where the complex polar interactions can be considered as net 
attractive and repulsive interactions.

Interesting insights are obtained for the influence of the molecular parameters, 
i.e. the dipole moment � and the molecule elongation L, on  the fluid behavior at 
extreme conditions. The characteristic curves become wider with increasing dipole 
moment and more narrow with increasing elongation. The influences on the charac-
teristic curves can be well understood from the molecular interactions. Overall, the 
elongation has a surprisingly strong influence. The elongation has a more significant 
influence on the characteristic curves compared to the dipole moment. This is prob-
ably due to the fact that the fluid structure at extreme conditions is dominated by the 
shape of the molecule. Moreover, significant differences are observed for the behav-
ior of the different characteristic curves of the 2CLJD model fluid class.

Additionally, the intersection points of the Charles and Boyle curve with the 
vapor-liquid equilibrium binodal and spinodal, respectively, were investigated. Espe-
cially for the Boyle curve, these simulations are challenging as the characteristic 
curve state points lie in the metastable region. Nevertheless, the simulation method 
proposed in Ref. [77] yields reliable results throughout.

Fig. 10  Characteristic curves in the p − T  projection of CO (left), R152a (middle), and R134a (right). 
Results from the empirical correlation evaluated for the molecular models given in Table 1. Results for 
the Zeno (red), Amagat (orange), Boyle (blue), and Charles  (pink) curve. Binodal (black) and critical 
point (star) were computed from the empirical correlation of Stoll et al. [34]
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New insights are also obtained on the performance of the employed molecular-
based equation of state model. The EOS model for the 2CLJ fluid ( � = 0 ), i.e. the 
Helmholtz energy term proposed by Lísal et al. [88], describes the molecular simu-
lation results very well. For the 2CLJD fluids ( 𝜇 > 0 ), on the other hand, the EOS 
model yields systematic deviations to the molecular simulation results. Hence, these 
deviations are attributed to the dipole Helmholtz energy term (which was originally 
developed for describing VLE data). Nevertheless, the qualitative trends are accu-
rately described by the 2CLJD EOS used in this work and, accordingly, capture the 
effect of L and � on the fluid behavior at extreme conditions.

7  Supplementary information

The molecular simulation data are provided in the electronic Supplementary Infor-
mation in a spreadsheet file.

Parameters of Empirical Correlation

The model parameters di and fi for the empirical characteristic curve models for the 
2CLJD fluids, cf. Equations 14 and 15 are given in Tables 2 and 3. Table 2 reports 
the parameter values for the zero-density limit characteristic point function. Table 3 

Table 2  Parameters di and fi for the empirical correlation (15) for the temperature Tchar,i of the zero-den-
sity characteristic points of the 2CLJD fluid class

Tchar,Amagat∕�k
−1
B

Tchar,Boyle∕�k
−1
B

Tchar,Charles∕�k
−1
B

d
1

1.0216399735 ⋅  102 1.3387256938 ⋅  101 2.4850772265 ⋅  101

d
2

−1.4491443421 ⋅  102 −4.9446410831 −7.8995977905
d
3

1.6020912352 ⋅  102 −4.7018819823 ⋅  101 −9.0018256784 ⋅  101

d
4

−1.4113695816 ⋅  102 7.8305962800 ⋅  101 1.4713716011 ⋅  102

d
5

5.7656349728 ⋅  101 −3.5780808747 ⋅  101 −6.6620269050 ⋅  101

f
1

2.9348000318 ⋅  10-2 3.3639976641 ⋅  10-3 2.9719945706 ⋅  10-3

f
2

−3.7093316614 ⋅  10-1 −1.7900152118 ⋅  10-1 −2.0453238321 ⋅  10-1

f
3

−2.4288631166 ⋅  10-1 1.5063522747 ⋅  10-1 1.7289622439 ⋅  10-1

f
4

1.2081427572 ⋅  10-1 4.2617299813 ⋅  10-2 6.7983482295 ⋅  10-2

f
5

−1.1255598782 ⋅  10-1 2.3421359861 ⋅  10-3 −1.9887545552 ⋅  10-2

f
6

2.9400091183 ⋅  10-1 −1.3496460934 ⋅  10-2 −6.2019144729 ⋅  10-3

f
7

−2.2261306434 ⋅  10-3 −8.7161786706 ⋅  10-4 −1.4612528486 ⋅  10-3

f
8

6.2713071723 ⋅  10-4 −2.6645218072 ⋅  10-3 −2.2334861947 ⋅  10-3

f
9

−2.8248741543 ⋅  10-2 1.2098826769 ⋅  10-3 1.0547108535 ⋅  10-3

f
10

4.1981844512 ⋅  10-5 4.0549307175 ⋅  10-6 1.3308568735 ⋅  10-5

f
11

−5.7533844690 ⋅  10-5 7.3077386679 ⋅  10-5 5.7615748071 ⋅  10-5

f
12

9.6734591063 ⋅  10-4 −5.8809378238 ⋅  10-6 5.1596632402 ⋅  10-6
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Table 3  Parameter values for di and fi for the parameters a–e of the correlation for the reduced character-
istic curves for the 2CLJD fluid class in p − T  projection, using Eqs. 14 and 15

a b l d e

Zeno
d
1

2.3605552 ⋅  105 7.6084834 ⋅  103 −3.6749303 ⋅  101 −8.3589781 ⋅  105 −1.5248228 ⋅  106

d
2

−1.0940337 ⋅  106 −3.6860614 ⋅  104 2.1611845 ⋅  101 3.5554720 ⋅  106 7.3850643 ⋅  106

d
3

2.5367791 ⋅  106 8.4726539 ⋅  104 −1.2202270 ⋅  102 −8.3957290 ⋅  106 −1.6972057 ⋅  107

d
4

−2.1466960 ⋅  106 −6.8988119 ⋅  104 3.6580505 ⋅  102 7.6524230 ⋅  106 1.3813798 ⋅  107

d
5

7.5011107 ⋅  105 2.3101111 ⋅  104 −2.2494867 ⋅  102 −2.8772046 ⋅  106 −4.6233799 ⋅  106

f
1

1.0248440 ⋅  104 3.5754578 ⋅  102 9.7270293 ⋅  10-1 −3.0878782 ⋅  104 −7.1597856 ⋅  104

f
2

−2.7222501 ⋅  104 −8.7391838 ⋅  102 3.6512289 9.8124031 ⋅  104 1.7397880 ⋅  105

f
3

3.7546207 ⋅  104 1.2009676 ⋅  103 −5.9385818 −1.3571081 ⋅  105 −2.3962313 ⋅  105

f
4

1.3219434 ⋅  103 4.3216952 ⋅  101 −1.5473088 ⋅  10-1 −4.5427528 ⋅  103 −8.6801867 ⋅  103

f
5

−7.7708613 ⋅  103 −2.5765349 ⋅  102 7.0796216 ⋅  10-1 2.5958925 ⋅  104 5.1783393 ⋅  104

f
6

−1.0713924 ⋅  103 −3.9612761 ⋅  101 −4.4306725 ⋅  10-1 2.8535817 ⋅  103 7.8258967 ⋅  103

f
7

−5.4166007 ⋅  101 −1.6201090 2.1487924 ⋅  10-2 2.1553915 ⋅  102 3.2636569 ⋅  102

f
8

8.9042684 ⋅  102 2.9419875 ⋅  101 −8.2458230 ⋅  10-2 −3.0058052 ⋅  103 −5.9013753 ⋅  103

f
9

9.5794225 ⋅  101 3.7493574 5.4396659 ⋅  10-2 −2.0554918 ⋅  102 −7.4940641 ⋅  102

f
10

3.4338622 ⋅  10-1 1.4009375 ⋅  10-3 −1.0076745 ⋅  10-3 −3.1216386 −3.1740818 ⋅  10-1

f
11

−3.2669945 ⋅  101 −1.0776073 2.9988882 ⋅  10-3 1.1084988 ⋅  102 2.1593163 ⋅  102

f
12

1.2281066 2.2725957 ⋅  10-2 −1.8524104 ⋅  10-3 −7.9515550 −4.4140577
Amagat

d
1

1.3299841 ⋅  103 5.4541500 ⋅  101 8.5851255 ⋅  10-1 −2.7253493 ⋅  103 −1.0606041 ⋅  104

d
2

3.2308280 ⋅  104 1.3760601 ⋅  103 2.4533996 ⋅  101 −3.6364425⋅  104 −2.8890848 ⋅  105

d
3

−1.1784931 ⋅  105 −5.0736498 ⋅  103 −9.2735164 ⋅  101 1.0397414 ⋅  105 1.0854647 ⋅  106

d
4

1.5020345 ⋅  105 6.5013770 ⋅  103 1.2025184 ⋅  102 −1.1420282 ⋅  105 −1.4039314 ⋅  106

d
5

−6.3597645 ⋅  104 −2.7576727 ⋅  103 −5.1211930 ⋅  101 4.6131921 ⋅  104 5.9702743 ⋅  105

f
1

2.3512739 ⋅  102 9.6184514 1.5329725 ⋅  10-1 −8.0330564 ⋅  102 −1.4665988 ⋅  103

f
2

−2.4656222 ⋅  102 −6.5284227 3.8282364 ⋅  10-2 3.5154757 ⋅  103 −1.4617129 ⋅  103

f
3

1.8019327 ⋅  101 −3.8707183 −2.4155430 ⋅  10-1 −3.2464979 ⋅  103 3.4320995 ⋅  103

f
4

−8.7942095 −3.5494077 ⋅  10-1 −5.5218874 ⋅  10-3 1.0684045 ⋅  102 −3.8687089 ⋅  101

f
5

−2.0605723 ⋅  102 −8.8599631 −1.5848258 ⋅  10-1 −9.2406802 ⋅  101 2.2245122 ⋅  103

f
6

1.2635061 ⋅  102 5.6809922 1.0926341 ⋅  10-1 1.6711907 ⋅  102 −1.4782397 ⋅  103

f
7

4.8509115 2.0672755 ⋅  10-1 3.6770772 ⋅  10-3 −1.3130915 ⋅  101 −3.3960634 ⋅  101

f
8

1.6622833 ⋅  101 6.8443903 ⋅  10-1 1.0982816 ⋅  10-2 −7.8551255 −1.6282401 ⋅  102

f
9

−1.0657795 ⋅  101 −4.3990313 ⋅  10-1 −6.9210236 ⋅  10-3 7.0318936 1.0146632 ⋅  102

f
10

−2.2882077 ⋅  10-1 −9.7570333 ⋅  10-3 −1.7355066 ⋅  10-4 4.5498402 ⋅  10-1 1.8018148
f
11

−3.5283217 ⋅  10-1 −1.3988659 ⋅  10-2 −1.9977553 ⋅  10-4 3.5924830 ⋅  10-1 3.2566560
f
12

2.4497215 ⋅  10-1 9.4802899⋅  10-3 1.2051702 ⋅  10-4 −4.7590445 ⋅  10-1 −1.9867411
Boyle

d
1

3.6881508 ⋅  104 1.7881801 ⋅  103 5.2835882 ⋅  101 −1.0007763 ⋅  104 −3.5888347 ⋅  105

d
2

1.2464572 ⋅  105 6.0332583 ⋅  103 1.7884732 ⋅  102 −3.9978028 ⋅  104 −1.2064586 ⋅  106

d
3

−4.3982462 ⋅  105 −2.7267191 ⋅  104 −1.2009640 ⋅  103 −1.0630719 ⋅  106 5.4615393 ⋅  106

d
4

5.1580743 ⋅  105 3.7815972 ⋅  104 1.9733232 ⋅  103 2.4195378 ⋅  106 −7.5781357 ⋅  106

d
5

−1.8571405 ⋅  105 −1.6177321 ⋅  104 −9.5799879 ⋅  102 −1.3855104 ⋅  106 3.2429513 ⋅  106
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reports the parameter values for the reduced pressure p∗ function describing the 
characteristic curves. 
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Table 3  (continued)

a b l d e

f
1

5.2734838 ⋅  103 2.7500974 ⋅  102 9.2721369 2.4062103 ⋅  103 −5.5141892 ⋅  104

f
2

−9.6725462 ⋅  103 −5.8877418 ⋅  102 −2.4560859 ⋅  101 −2.1235119 ⋅  104 1.1795068 ⋅  105

f
3

1.1477286 ⋅  104 6.5931523 ⋅  102 2.5172800 ⋅  101 1.7433024 ⋅  104 −1.3219805 ⋅  105

f
4

−8.5129621 ⋅  102 −4.4114996 ⋅  101 −1.4314891 −3.3891353 ⋅  102 8.8517607 ⋅  103

f
5

3.0195535 ⋅  103 1.7419182 ⋅  102 6.7645756 4.6995953 ⋅  103 −3.4892945 ⋅  104

f
6

−4.4772488 ⋅  103 −2.4391086 ⋅  102 −8.6487877 −4.1283872 ⋅  103 4.8899759 ⋅  104

f
7

7.1287875 ⋅  101 3.1717538 6.8544872 ⋅  10-2 −7.6044346 ⋅  101 −6.3684149 ⋅  102

f
8

−3.7462487 ⋅  102 −1.9171275 ⋅  101 −6.1346471 ⋅  10-1 −9.4557615 ⋅  101 3.8407138 ⋅  103

f
9

5.4221076 ⋅  102 2.7701682 ⋅  101 8.8094262 ⋅  10-1 1.3165780 ⋅  102 −5.5537932 ⋅  103

f
10

−2.0530383 −8.2366939 ⋅  10-2 −1.1102814 ⋅  10-3 3.9861590 1.6544864 ⋅  101

f
11

1.2332061 ⋅  101 6.0149828 ⋅  10-1 1.7495787 ⋅  10-2 −2.8079890 −1.2051206 ⋅  102

f
12

−1.7477666 ⋅  101 −8.6980425 ⋅  10-1 −2.6327017 ⋅  10-2 3.8274350 ⋅  10-1 1.7439747 ⋅  102

Charles
d
1

8.1333280 ⋅  103 4.0371092 ⋅  102 1.1868915 ⋅  101 2.9711983 ⋅  102 −8.1737897 ⋅  104

d
2

−5.0070445 ⋅  104 −2.1285447 ⋅  103 −3.8438923 ⋅  101 6.9975382 ⋅  104 4.3094569 ⋅  105

d
3

1.2203638 ⋅  105 5.1170057 ⋅  103 8.6660691 ⋅  101 −1.8420720 ⋅  105 −1.0364918 ⋅  106

d
4

−1.2874527 ⋅  105 −5.0338430 ⋅  103 −5.6296623 ⋅  101 2.6735851 ⋅  105 1.0201087 ⋅  106

d
5

4.8424519 ⋅  104 1.7916869 ⋅  103 1.1324035 ⋅  101 −1.2087389 ⋅  105 −3.6324222 ⋅  105

f
1

−9.7108897 ⋅  101 −3.0309296 2.8618085 ⋅  10-2 3.5924030 ⋅  102 6.1392171 ⋅  102

f
2

2.5678644 ⋅  102 3.9409156 ⋅  101 2.7887098 5.5385808 ⋅  103 −8.1229139 ⋅  103

f
3

−1.6906277 ⋅  102 −2.5393186 ⋅  101 −1.7438511 −3.5677276 ⋅  103 5.2721330 ⋅  103

f
4

1.3827291 ⋅  102 6.2702438 1.5355676 ⋅  10-1 −1.2577828 ⋅  102 −1.2577118 ⋅  103

f
5

−5.2376022 ⋅  102 −2.4956017 ⋅  101 −6.5660745 ⋅  10-1 2.0395161 ⋅  102 5.0353438 ⋅  103

f
6

4.1032951 ⋅  102 1.6221941 ⋅  101 2.0239449 ⋅  10-1 −8.4477923 ⋅  102 −3.2586735 ⋅  103

f
7

−1.5647049 ⋅  101 −7.0482575 ⋅  10-1 −1.6624376 ⋅  10-2 1.5202281 ⋅  101 1.4129637 ⋅  102

f
8

5.8392742 ⋅  101 2.3870077 3.6285767 ⋅  10-2 −1.0423972 ⋅  102 −4.7965350 ⋅  102

f
9

−4.5383462 ⋅  101 −1.3157174 2.1513704 ⋅  10-2 1.9244443 ⋅  102 2.6114007 ⋅  102

f
10

4.2730840 ⋅  10-1 1.8900545 ⋅  10-2 4.1897510 ⋅  10-4 −4.8807162 ⋅  10-1 −3.7850024
f
11

−1.5905368 −5.8065542 ⋅  10-2 −3.3998427 ⋅  10-4 4.2763853 1.1624475 ⋅  101

f
12

1.2345835 2.4050176 ⋅  10-2 −1.6644278 ⋅  10-3 −7.6673785 −4.6657590
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