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Abstract
Over the recent decades, Helmholtz energy formulations became available for a 
broad range of fluids. These multiparameter equations of state (R. Span, Springer 
2000) allow computation of thermodynamic properties essentially within the experi-
mental errorbars. Corresponding states-based model by Lemmon and Tillner-Roth 
(Fluid Phase Equilib 165:1, 1999) enabled construction of Helmholtz energy for-
mulations for mixtures. However, we show that this model generates a non-physi-
cal dependence of virial coefficients on composition, which can be strong when the 
components are dissimilar. We propose a new mixture model that overcomes this 
deficiency. It has two main ingredients: (i) Quadratic mixing of “Helmholtz volu-
mities”. This quantity with units of molar volume is introduced as a ratio of the 
molar residual Helmholtz energy to a product of gas constant, thermodynamic tem-
perature, and molar density. It reduces to the second virial coefficient in the zero-
density limit. Helmholtz volumities are considered for components and “cross-com-
ponents”, hypothetical fluids representing the binary interactions. (ii) Replacing the 
variables—reduced reciprocal temperatures and reduced densities—with tempera-
ture and density scaling functions. Different scaling functions can be used for differ-
ent components and cross-components, thus providing a highly flexible framework 
for representing the properties of mixtures. The scaling functions must be expand-
able into Taylor series in terms of molar concentrations in the zero-density limit. For 
the proposed mixture model, we develop formulas for computing virial coefficients 
up to the fourth order. Furthermore, we show that when the proposed mixture model 
is applied to a cubic equation of state, the conventional van der Waals mixing rules 
can be retrieved. These findings allow to consider the new model as a viable alterna-
tive to the corresponding states method of modeling thermodynamic properties of 
fluid mixtures.
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1  Introduction

Multiparameter equations of state enable computation of thermodynamic properties 
with uncertainties comparable with the uncertainties of the underlying experimen-
tal data. They are implemented in thermophysical property databases such as REF-
PROP [1], TREND [2], and CoolProp [3]. Various aspects of multiparameter equa-
tions of state were analyzed by Span [4]. More recent developments were reviewed 
by Thol and Bell [5]. Tillner-Roth [6] and Lemmon [7] independently developed a 
corresponding states method for modeling mixtures of fluids which, as pure compo-
nents, are described by multiparameter equations of state in the form of Helmholtz 
energy [8]. This concept was successfully used to model mixtures of air gases [9], 
natural gas mixtures [10, 11], and mixtures of refrigerants [12].

The present work is motivated by computations performed to support and analyze 
measurements of homogeneous nucleation of water droplets in various gases and 
gaseous mixtures [13–16]. The analysis required computing isentropic expansions 
and chemical potentials in supersaturated humid gases with a goal to determine 
the nucleation temperature and the composition of critical clusters [17]. A mixture 
model for the relevant systems was elaborated by Gernert and Span [18]. Although 
this model reproduces favorably experimental data including phase equilibria, the 
application to supersaturated humid gas lead to nonphysical predictions. An appro-
priate model was obtained by combining a virial equation of state with the ideal-gas 
parts of the multiparameter equations of state. Application of quantum mechanically 
computed cross second virial coefficients [19–22] enabled an accurate analysis of 
the homogeneous nucleation experiments which were restricted to pressures up to 
1 MPa. The reason of the failure of mixture model [7] in this range of conditions 
is the fact that it does not properly reproduce the rigorous dependence of the virial 
coefficients on the composition of the mixture.

Second virial coefficient expresses the first correction to the ideal gas equation of 
state at medium densities, where forces between the molecules forming the gas can-
not be neglected [23]. Virial coefficient B11 represents interactions of two molecules 
of kind 1, cross second virial coefficient B12 represents interactions of one molecule 
of kind 1 and one molecule of kind 2. These coefficients can be expressed as sums 
(in quantum mechanical computations) or integrals (in the semi-classical approxi-
mation) over the configuration space of the two molecules with no reference to the 
concentrations of the components. Consequently, coefficients Bij only depend on 
temperature. Second virial coefficient for a mixture of gases is rigorously given by 
quadratic form 14 in terms of molar fractions of the components, in which Bij form 
the matrix of coefficients. This fact can be traced to statistical mechanics; however, 
it can also be seen as a consequence of a phenomenologically justified assumption 
that, at given temperature, pressure is an analytical function of concentrations of the 
components. Rigorous mixing rules can also be found for the third and higher mix-
ture virial coefficients, as we explain in Sect. 2.1.



1 3

International Journal of Thermophysics (2023) 44:130	 Page 3 of 37  130

The problem of composition dependence of virial coefficients as computed from 
the corresponding states-based mixture model [8] is known to the community active 
in the development of multiparameter equations of state. Jäger et al. [24] provided 
an extensive study of the composition dependence of the cross second virial coeffi-
cient B12 computed from models of binary mixtures. They expressed B12 from rigor-
ous quadratic mixing rule 18 based on virial coefficients of the components B11 and 
B22 , and on the virial coefficient B of the mixture, as given by the corresponding 
states model:

Here, x1 and x2 are molar fractions of components 1 and 2. The result of formula 1 
should depend on temperature T only. This actually happens, e.g., when a cubic 
equation of state with standard van der Waals mixing rules is used. However, as 
shown by Jäger et al. [24], the corresponding states model [7] produces B12 depend-
ing on composition.

We address this problem from a different perspective. (Cross) second virial coef-
ficients Bij , (cross) third virial coefficients Cijk , etc., for a system of I components 
can be identified with zero-density limits of derivatives of the residual pressure with 
respect to molar concentrations � = {�1,… , �I} , as given in Eq. 10, or, equivalently, 
to the zero-density limits of derivatives of the residual Helmholtz energy density, 
Eq. 27. A condition of existence of these limits is that they are invariant to the direc-
tion they are approached, i.e., invariant with respect to the mixture composition. 
It turns out that this condition is not satisfied for the corresponding states mixture 
model [7] not only for the cross terms Bij , but also for diagonal (“pure component”) 
terms Bii . (Later demonstrated in Figs. 1 2, 3 and 4). This testing approach can be 
extended to multi-component cases and to higher virial coefficients.

The origin of the problem is in the composition dependent reducing volume and 
reducing temperature, Eqs.  45 and 46. It concerns the fundamentals of the corre-
sponding states approach. Jäger et  al. [24], expressed their idea how the problem 
could be fixed: “...to have a noncorresponding states-based mixing rule in the 
limit of zero density and keeping the corresponding states character of the model 
at higher densities.” They also suggested that in the low density limit, the model 
should reduce to quadratic mixing of reduced Helmholtz energies �ij of the pure 
components ( i = j ) and interaction terms ( i ≠ j)

Equation 2 is a quadratic form in molar fractions. The currently used expression 42 
can be re-arranged into form 2 by defining �r

ij
 as given in Eq. 47. Using the quadratic 

form 2 directly appears advantageous, because it more closely corresponds to the 
nature of intermolecular interactions. In addition, the interaction function �r

ij
 might 

be estimated as an average of the residual reduced Helmholtz energies of compo-
nents i and j, as suggested by Jäger et al. [24]. More importantly, reduced parameters 

(1)B12 =
B(T , x1) − x2

1
B11(T) − x2

2
B22(T)

2x1x2
.

(2)�r(T , �, x) =

I
∑

i,j=1

xixj�
r
ij
(T , �).
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� and � are abandoned in Eq. 2. This leads immediately to the correct mixing rule 14 
for the second virial coefficient. Composition dependence of the third and higher 
virial coefficient is also correct, although it is restricted: e.g., coefficients C112 and 
C221 cannot be adjusted independently. The quadratic mixing can be considered as an 
acceptable approximation for higher virial coefficients in some cases [25]. However, 
form 2 needs to be modified in some (sophisticated) manner in order to capture the 
behavior of mixtures at high densities.

Cubic equations of state with van der Waals mixing rules are a classical approach 
to mixture modeling. They allow to model complex phase behavior with a few 
adjustable parameters. We show that the cubic equations provide the correct compo-
sition dependence of the mixture second, third, and fourth, virial coefficients. Cubic 
equations of course cannot approach the level of accuracy of the multiparameter 
equations of state. Yet it appears desirable that the physically sound van der Waals 
mixing rules are included as a special case in a general mixture model applicable to 
multiparameter equations of state.

In this article, we propose a route to mixture modeling which, by design, provides 
a correct composition dependence of the virial coefficients. We provide formulas 
for second, third, and fourth, virial coefficients. When applied to a cubic equation of 
state and the model parameters are chosen appropriately, the new model reduces to 
the classical van der Waals mixing.

2 � Preliminaries

In this section we introduce three standard equations of state applicable to mixtures: 
the virial equation of state, cubic equations of state (represented by Peng–Robinson 
equation), and the corresponding states model applied to multiparameter equations 
of state. We review the facts important for the development of the new model.

Virial and cubic equations of state yield pressure as function of tempera-
ture T, density � , and composition represented by a vector of molar fractions 
x = {x1,… , xI} . Reduced residual Helmholtz energy �r can be computed using ther-
modynamic relation

where we introduced the residual pressure pr

Integration 3 is performed at constant temperature and composition.

2.1 � Virial Equation of State

The virial equation of state for a pure fluid at temperature T and molar density � 
gives residual pressure pr as

(3)�r =
ar

RT
=

1

RT ∫
�

0

pr(T , �, x)

�2
d�,

(4)pr(T , �, x) = p(T , �, x) − RT�.
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Here, B, C, and D, are, respectively, the second, third, and fourth virial coefficients. 
The virial coefficients strongly depend on temperature. Relation 5 with infinite num-
ber of terms is usually called the virial expansion. Mathematically, it can be under-
stood as a Taylor expansion of function pr(T , �)∕RT  for a constant T at point � = 0 . 
For a mixture of I components with molar concentrations � = {�1,… , �I} , the virial 
equation is generalized as

In Eq. 6, Bii , Ciii , and Diiii are virial coefficients of pure fluid i. Bij with i ≠ j is the 
cross-second virial coefficient. Similarly, Cijk , and Dijk� are, respectively, the third, 
and fourth, cross virial coefficients. Bij represents interactions of two molecules of 
kind i and j, Cijk represents interactions of three molecules of kinds i, j, and k, etc. 
The (cross) virial coefficients are invariant with respect to any permutation (chang-
ing the order) of the indices and they depend on temperature only.

Equation 6 is a polynomial expression with a structure corresponding to a multi-
variate Taylor expansion of function pr(T ,�) at point � = 0 (all concentrations equal 
to zero) and at given T, with no constant and linear terms:

Here we denoted partial derivatives of residual pressure with respect to concentra-
tions as

and their zero-density limits we denoted as

By comparing Eqs.  6 and  7, we can identify the virial coefficients with limits of 
derivatives 9,

(5)pr(T , �) = RT
[

B(T)�2 + C(T)�3 + D(T)�4 +⋯
]

.

(6)

pr(T ,�) = RT

[ I
∑

i,j=1

Bij(T)�i�j +

I
∑

i,j,k=1

Cijk(T)�i�j�k

+

I
∑

i,j,k,�=1

Dijk�(T)�i�j�k�� +…

]

.

(7)

pr(T ,�) =
1

2

I
∑

i,j=1

pr
ij
(T , 0) �i�j +

1

6

I
∑

i,j,k=1

pr
ijk
(T , 0) �i�j�k

+
1

24

I
∑

i,j,k,�=1

pr
ijk�

(T , 0) �i�j�k�� +… .

(8)pr
ij
(T ,�) =

�2pr(T ,�)

��i��j
, pr

ijk
(T ,�) =

�3pr(T ,�)

��i��j��k
, … ,

(9)pr
ij
(T , 0) = lim

�→0

pr
ij
(T ,�), pr

ijk
(T , 0) = lim

�→0

pr
ijk
(T ,�), … .

(10)Bij(T) =
pr
ij
(T , 0)

2RT
, Cijk(T) =

pr
ijk
(T , 0)

6RT
, Dijk�(T) =

pr
ijk�

(T , 0)

24RT
.
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We note that a condition of the existence of the Taylor expansion 7 and, correspond-
ingly, of the virial expansion 6, is the existence of limits 9. This condition is satisfied 
in physical systems, but it is not the case in the corresponding states mixture model 
as discussed later.

The concentrations are expressed in terms of molar fractions x and molar density 
� as

When expression 11 is substituted in Eq. 6, we obtain a virial equation in a form 
analogous to the pure fluid Eq. 5:

At constant composition, virial Eq. 12 is analogous to a virial equation of a pure 
fluid. The mixture virial coefficients can be identified with zero-density limits of 
derivatives with respect to molar density, 

 The mixture virial coefficients depend on temperature and composition. By substi-
tuting in Eq. 6 for concentrations from Eq. 11 and comparing with the virial expan-
sion in form of Eq. 12, we obtain mixing rules for the virial coefficients,

These relations can be understood as a direct consequence of the existence of the 
multivariate Taylor expansion 6, or, in other words, a consequence of the analyticity 
of function pr(T ,�) at point � = 0.

As already mentioned, cross virial coefficients differing only in the order of sub-
scripts are equal. For example, the (cross) second virial coefficients Bij form a sym-
metric matrix with pure-component second virial coefficients Bii forming its diagonal. 

(11)�i = xi�, � =

I
∑

i=1

�i.

(12)pr(T , x, �) = RT
[

B(T , x)�2 + C(T , x)�3 + D(T , x)�4 +⋯
]

,

(13a)B(T , x) =
1

2RT
lim
�→0

�2pr(�, T , x)

��2
,

(13b)C(T , x) =
1

6RT
lim
�→0

�3pr(�, T , x)

��3
.

(14)B(T , x) =

I
∑

i,j=1

Bij(T) xixj,

(15)C(T , x) =

I
∑

i,j,k=1

Cijk(T) xixjxk,

(16)D(T , x) =

I
∑

i,j,k,�=1

Dijk�(T) xixjxkx� .
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Therefore, sums 14–16 contain many equal terms. We will find the number of occur-
rences of the equal virial terms. The order (second, third, fourth,...) of the virial coef-
ficient we denote as N. If all the indices are different (the interacting molecules are all 
different kinds), the number of occurrences is equal to N! (factorial). If the cross-virial 
coefficient represents interactions of N1 molecules of kind 1, N2 molecules of kind 2, 
and so on up to NI molecules of kind I, so that N =

∑I

i=1
Ni , the number of occurrences 

of the respective N-th order cross-virial coefficient in the virial expansion 6 is given by 
the multinomial coefficient

Let us consider a binary mixture ( I = 2 ). Mixing rule 14 for the second virial coef-
ficient becomes with help of 17

Here, B11 and B22 are virial coefficients of pure components 1 and 2, and B12 is the 
cross second virial coefficient. Representative cross virial coefficients are selected 
such that their indices form a non-decreasing sequence. The temperature variable 
of Bij is not shown for brevity. The third virial coefficient 15 reduces for a binary 
mixture to

and for the fourth virial coefficient 16 of a binary mixture we obtain

Reduced residual Helmholtz energy �r for the virial equation of state can be obtained 
by integration 3 with the residual pressure expressed by Eq. 12:

This expression can be considered as a Taylor expansion with respect to density at 
point � = 0 at constant temperature and composition. Correspondingly, the mixture 
virial coefficients can be identified with limits 

(17)
(

N

N1,N2,… ,NI

)

=
N!

N1! × N2! ×… × NI!
.

(18)B(T , x) = x2
1
B11 + 2x1x2B12 + x2

2
B22.

(19)C(T , x) = x2
1
C111 + 3x2

1
x2C112 + 3x1x

2
2
C122 + x3

2
C222,

(20)D(T , x) = D1111x
4
1
+ 4D1112x

3
1
x2 + 6D1122x

2
1
x2
2
+ 4D1222x1x

3
2
+ D2222x

4
2
.

(21)�r = B(T , x)� +
1

2
C(T , x)�2 +

1

3
D(T , x)�3 +… .

(22a)B(T , x) = lim
�→0

��r(�, T , x)

��
,

(22b)C(T , x) = lim
�→0

�2�r(�, T , x)

��2
.
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For the present analysis it is advantageous to introduce reduced Helmholtz energy 
density

Ratio of the Helmholtz energy of the system A (in joules) to the system volume V (in 
cubic meters) is the density of Helmholtz energy (J·m−3). The unit of �d is m−3. We 
use function �d(�,�) as a thermodynamic potential. In Supplementary Information 
(SI), we review relations needed to compute thermodynamic quantities based on this 
function. Because the reciprocal temperature

acts as natural variable there, we will use � rather than T in subsequent analysis. 
Reduced Helmholtz energy density �d can be separated into ideal and residual parts. 
The residual reduced Helmholtz energy density for the virial equation of state 21 is

In the superscript, “d” stands for “density”, and “r” stands for “residual”. When 
the virial coefficients are expressed with Eqs.  14–16 and the molar fractions are 
expressed in terms of concentrations, we obtain a virial expansion of the residual 
reduced Helmholtz energy density

By comparing virial expansion 26 with the Taylor expansion of function �dr(�,�) at 
� = 0 and constant temperature, the (cross) virial coefficients can be identified with 
limits of derivatives as

The notation for derivatives of the residual reduced Helmholtz energy density with 
respect to molar concentrations is analogous to that used for derivatives of the resid-
ual pressure, Eqs. 8 and 9.

2.2 � Cubic Equations of State

Cubic equations of state such as (Soave)–Redlich–Kwong [26, 27] provide a consist-
ent (albeit less accurate) model of mixtures in gas and liquid phases. Bell and Jäger 

(23)�d =
A

VRT
=

a�

RT
= ��.

(24)� =
1

T
,

(25)�dr = �r� = B(�, x)�2 +
1

2
C(�, x)�3 +

1

3
D(�, x)�4 +… .

(26)

�dr(�,�) =

I
∑

i,j=1

Bij(�)�i�j +
1

2

I
∑

i,j,k=1

Cijk(�)�i�j�k

+
1

3

I
∑

i,j,k,�=1

Dijk�(�)�i�j�k�� +… .

(27)Bij(�) =
1

2
�dr
ij
(�, 0), Cijk(�) =

1

3
�dr
ijk
(�, 0), Dijk�(�) =

1

8
�dr
ijk�

(�, 0).
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[28] provided thermodynamic equations for a class of cubic equations. For the sake 
of concreteness we chose the Peng–Robinson equation [29], giving for a pure com-
ponent i pressure p as function of temperature T and molar volume v = 1∕� as

The notation with a “bar” over ā and b̄ is used to distinguish from other quantities 
introduced later. For a mixture, the two parameters ā and b̄ are given, respectively, 
by linear form 29 and quadratic form 30 in terms of molar fractions xi of the compo-
nents as

where b̄i and āii are parameters of the pure components and āij , i ≠ j , capture interac-
tions of unlike molecules. Relations 29 and 30 are generally referred to as the van 
der Waals mixing rules. Parameter b̄i is related to the size of molecule i and it is 
taken as a substance-specific constant. Parameter āii in the attraction term depends 
on temperature and on the substance-specific acentric factor by a function designed 
by original authors [29] or later modifications. Interaction parameters āij are esti-
mated as a geometric average of the pure component parameters āii and ājj , possibly 
modified by an interaction coefficient. These details are not relevant to the present 
analysis; it is sufficient to consider āij for like and dislike interactions as general 
functions of temperature as indicated in Eq. 30. To shorten formulas and to make 
the subsequent derivations easier, it is suitable to introduce a modified attraction 
parameter

We express the residual pressure defined by Eq.  4 for the Peng–Robinson equa-
tion 28 as function of density,

The residual reduced Helmholtz energy is obtained by integration 3,

(28)p =
RT

v − b̄
−

ā

v2 + 2b̄v − b̄2
.

(29)b̄(x) =

I
∑

i=1

b̄ixi,

(30)ā(T , x) =

I
∑

i,j=1

āij(T) xixj,

(31)A(T , x) =
∑

ij

Aij(T) xixj, Aij(T) =
āij

RT
.

(32)pr = RT

(

b̄𝜌2

1 − b̄𝜌
−

A𝜌2

1 + 2b̄𝜌 − b̄2𝜌2

)

.

(33)𝛼r = − ln(1 − b̄𝜌) +
A

2
√

2 b̄
ln

1 +
�

1 −
√

2
�

b̄𝜌

1 +
�

1 +
√

2
�

b̄𝜌

.
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The residual pressure pr or the residual reduced Helmholtz energy density �dr can be 
Taylor-expanded in terms of density � at point � = 0 . By comparing the expansion 
of pr with Eq. 12, or by comparing expansion of �dr with Eq. 21, we obtain expres-
sions for the second, third, and fourth virial coefficient

To obtain the composition dependence of the mixture virial coefficients, we use 
Eqs. 29 and 31 in expressions 34. The resulting multiple sums need to be re-arranged 
as described in SI. As a result, we recover mixing rules 14, 15, and 16, with (cross) 
virial coefficients given as

The obtained (cross) second virial coefficients Bij , (cross) third virial coefficients 
Cijk , and (cross) fourth virial coefficients Dijk� depend only on temperature, not on 
composition. In this way, we have verified that the Peng–Robinson equation, as a 
typical representative of the family of cubic equations, exhibits a correct limiting 
behavior.

2.3 � Multiparameter Equations of State and the Corresponding States Mixture 
Model

Modern multiparameter equations of state of pure fluids are generally developed in 
form of reduced (or dimensionless) Helmholtz energy �

where a is molar Helmholtz energy, R is the universal gas constant, and T is thermo-
dynamic temperature. Variables of the reduced Helmholtz energy are the reduced 
reciprocal temperature

and reduced density

(34)B = b̄ −A, C = b̄2 + 2b̄A, D = b̄3 − 5b̄2A.

(35)Bij =
1

2
(b̄i + b̄j) −Aij,

(36)Cijk =
1

3

(

b̄ib̄j + b̄ib̄k + b̄jb̄k
)

+
2

3

(

b̄iAjk + b̄jAik + b̄kAij

)

,

(37)

Dijk =
1

4

(

b̄ib̄jb̄k + b̄ib̄jb̄� + b̄ib̄kb̄� + b̄jb̄kb̄�
)

−
5

6

(

b̄ib̄jAk� + b̄ib̄kAj� + b̄ib̄�Ajk + b̄jb̄kAi� + b̄jb̄�Aik + b̄kb̄�Aij

)

.

(38)�(�, �) =
a

RT
= �◦(�, �) + �r(�, �),

(39)� =
Tr

T
= Tr�,

(40)� = vr�,
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where Tr is the reducing temperature (chosen as the critical temperature of the fluid), 
and vr is the reducing volume (chosen as the critical volume of the fluid). As indi-
cated by Eq. 38, the reduced Helmholtz energy is divided in the ideal gas part �◦ , 
and the residual part �r . Modern multiparameter equations of state [30–40], express 
the residual reduced Helmholtz energy as a sum of Kpol polynomial terms, Kexp 
exponential terms, and Kgbs Gaussian bell-shaped terms:

While the density exponents dk are generally natural numbers, temperature expo-
nents tk are typically rational or optimized irrational numbers. The polynomial terms 
correspond to the virial equation of state. The exponential terms, originally intro-
duced in the Benedict–Webb–Rubin equation of state [41], enable to mathematically 
decouple the vapor and liquid regions. The Gaussian terms [30] are used for the 
critical region. Some earlier formulations [42, 43] contain additional “non-analyti-
cal” terms attempting to mimic the behavior of fluids in close vicinity of the critical 
point.

Reduced Helmholtz energy of a mixture can be separated into an ideal gas part 
and a residual part. The ideal gas part is given by rigorous thermodynamics. Dif-
ficult is the residual part. Residual reduced Helmholtz energy �r of a mixture of I 
components is modeled [8, 11] as

where dimensionless density is defined as

and dimensionless reciprocal temperature is defined as

Reducing volume vr(x) and reducing temperature Tr(x) depend on the mixture com-
position. These functions are constructed such that in the limit xi → 1 they approach, 
respectively, the reducing molar volume vri and the reducing temperature Tri of com-
ponent  i. Their contemporary functional forms [10, 11] are Lorentz-Berthelot for-
mulas modified to capture asymmetric mixture behavior,

(41)

�r(�, �) =

Kpol
∑

k=1

nk�
dk� tk +

Kpol+Kexp
∑

k=Kpol+1

nk�
dk� tk exp

(

−lk�
pk
)

+

Kpol+Kexp+Kgbs
∑

k=Kpol+Kexp+1

nk�
dk� tk exp

[

−�k (� − �k)
2 − �k (� − �k)

2
]

.

(42)�r(T , �, x) =

I
∑

i=1

xi�
r
i
(�, �) +

I−1
∑

i=1

I
∑

j=i+1

xixjFijΔ�
r
ij
(�, �),

(43)� = �vr(x),

(44)� =
Tr(x)

T
.
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The adjustable parameters in Eqs.  45 and 46 satisfy symmetries �Tji = 1∕�Tij , 
�vji = 1∕�vij , �Tji = �Tij , and �vji = �vij . Further in Eq. 42, Δ�r

ij
(�, �) is an interaction 

function whose structure is analogous to the functional form of the reduced Helm-
holtz energy of a pure component, Eq. 41, and Fij is an adjustable parameter. Func-
tion Δ�r

ij
 is denoted here with the added “ Δ ” in order to distinguish from �r

ij
 intro-

duced in Eq. 2. Both quantities can be related. Expression 42 can be re-arranged into 
quadratic form 2 by defining

with

2.3.1 � Virial Expansion Applied to the Corresponding States Mixture Model

Relations 22 can be written in terms dimensionless variables 43 and 44 as

Here, subscript � indicates derivative with respect to � at constant � and x . By appli-
cation of relations 49 to the corresponding states formulation Eq. 42 we find

where we used for the second virial coefficient of component i

In Eq. 50, second virial coefficients of the components Bi are evaluated at tempera-
tures given by the expression in square brackets, differing from the actual 

(45)vr(x) =

I
∑

i,j=1

xixj�vij�vij

xi + xj

�2
vij
xi + xj

⋅
1

8

(

v
1∕3

ri
+ v

1∕3

rj

)3

,

(46)Tr(x) =

I
∑

i,j=1

xixj�Tij�Tij

xi + xj

�2
Tij
xi + xj

⋅
(

Tri ⋅ Trj
)1∕2

.

(47)�r
ij
=

1

2

(

�r
i
+ �r

j
+ FijΔ�

r
ij

)

(48)FjiΔ�
r
ji
= FijΔ�

r
ij
, FiiΔ�

r
ii
= 0.

(49)B(T , x) = vr(x) lim
�→0

�r
�
(�, �, x), C(T , x) = v2

r
(x) lim

�→0
�r
��
(�, �, x).

(50)

B(T , x) = vr(x)

{ I
∑

i=1

xi

vri
Bi

[

T ⋅ Tri

Tr(x)

]

+

I−1
∑

i=1

I
∑

j=i+1

xixjFij Δ�
r

ij,�

[

Tr(x)

T
, 0

]}

,

(51)Bi = vri�
r
i,�
(�, 0).
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temperature T. As it can be seen from expression 50, the corresponding states con-
tribution to the second virial coefficients generally does not obey the quadratic mix-
ing rule 14. Only in some special cases the quadratic mixing is recovered. One such 
case is that (i) the reducing temperature Tr is constant (composition independent), 
(ii) zero correction term Δ�r

ij,�
(�, 0) = 0 , and (iii) a linear form for the mixture 

reducing volume is assumed,

For this case, we obtain a special case of quadratic scaling

Another special case is when (i) the reducing temperature Tr is constant (composi-
tion independent), and, consequently, Δ�r

ij,�
(�, 0) does not depend on composition, 

(ii) the reducing volume vr is constant, and, consequently, vr = vri . In this case, 
Eq. 50 reduces to

where we assumed conditions 48. These conditions are not met by any physical sys-
tem, but for a mixture of similar gases the deviations from the rigorous quadratic 
mixing rule might be insignificant.

In the Introduction we described the method of testing the composition depend-
ence of second virial coefficient of a binary mixture introduced by Jäger et al. [24], 
which is based on Eq. 1. In this work we introduce a test based on Eq. 10, which 
identifies the (cross) second virial coefficients Bij (and higher coefficients as well) to 
the zero-density limits of the derivatives pr

ij
 of the residual pressure with respect to 

molar concentrations �i and �j at constant temperature. We note that relations of the 
(cross) virial coefficients to derivatives of the residual reduced Helmholtz energy 
density, Eq. 27, could be used with the same results. Using Eqs. 9 and 10, the sec-
ond (cross) virial coefficient should be expressible as a limit

Point � = 0 can be approached from various directions in the I-dimensional space. A 
condition of the existence of limit 55 is that the same value is reached for any direc-
tion of approach. The direction of approach can be labeled with the vector of molar 
fractions x , and the distance from point 0 can be measured as molar density � . Thus, 
the studied limit can be written as

(52)vr(x) =

I
∑

j=1

xjvrj.

(53)B(T , x) =

I
∑

i,j=1

xixj
1

2

[

vrj

vri
Bi(T) +

vri

vrj
Bj(T)

]

.

(54)B(T , x) =

I
∑

i,j=1

xixj
1

2

[

Bi(T) + Bj(T) + FijΔ�
r
ij,�
(T)

]

,

(55)Bij(T) =
1

2RT
lim
�→0

pr
ij
(T ,�).
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where the right-most expression is meant for the case of a binary mixture. The 
dependence of Bij(T , x) on composition is nonphysical. Yet we need to consider it 
here to evaluate how strong is this nonphysical effect in the corresponding states 
mixture model.

In the present test, we computed the (cross) second virial coefficients Bij(T , x) 
in two ways, as explained below and detailed in SI. Both methods gave identical 
results, within the numerical accuracy.

In the first method, we computed the residual pressure using REFPROP10 soft-
ware [1] which implements multiparameter equations of state and mixture models 
for the tested binary systems. Second-order partial derivatives pr

ij
 were computed 

numerically using standard differentiation schemes as explained in SI. We computed 
these derivatives along lines of constant composition with molar density as a param-
eter. The computed values pr

ij
 were extrapolated towards zero density as exemplified 

in Fig. 1.
In the second method, we computed Bij(T , x) based on derivatives of the mixture 

virial coefficient B(T , x) , as given by the corresponding states mixture model, with 
respect to molar fraction x1 ; Bx denotes the first derivative, and Bxx denotes the sec-
ond derivative. In SI, we derived formulas

(56)Bij(T , x) =
1

2RT
lim
�→0

pr
ij
(T , x�) =

1

2RT
lim
�→0

pr
ij
(T , �, x1),

(57)B11(T , x1) =B(T , x1) + x2Bx(T , x1) +
x2
2

2
Bxx(T , x1),

(58)B12(T , x1) =B(T , x1) +
x2 − x1

2
Bx(T , x1) −

x1x2

2
Bxx(T , x1),

(59)B22(T , x1) =B(T , x1) − x1Bx(T , x1) +
x2
1

2
Bxx(T , x1).

Fig. 1   Composition dependent second virial coefficient of nitrogen B11 in the mixture with water vapor. 
(An artifact of the corresponding states mixture model [8, 18]). Left: lines pr

11
(T , x1, �)∕2RT  [18], 

T = 600 K, circle: B11 [33], cross: B11 [44]. Right: isotherms B11(T , x) [18] (solid lines) and B11(T) [33] 
(dashed lines)
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Two binary systems were studied as certain extreme cases: nitrogen-oxygen (rather 
similar gases) and nitrogen-water (gas and vapor dissimilar in critical parameters 
and other aspects).

Fig. 2   Solid lines: composition dependent cross second virial coefficient of nitrogen and water B12(T , x) 
(left) and composition dependent second virial coefficient of water in the mixture with nitrogen B22(T , x) 
(right). (Artifacts of mixture model [8, 18]). Dashed lines: cross second virial coefficient of nitrogen and 
water B12(T) [21] (left) and second virial coefficient for water B22(T) [43]

Fig. 3   Solid lines: composition dependent second virial coefficient of nitrogen B11(T , x) (left) and oxy-
gen B22(T , x) (right). (Artifacts of mixture model [8, 9]). Dashed lines: second virial coefficient of nitro-
gen B11(T) [33] (left) and second virial coefficient for oxygen B22(T) [45]

Fig. 4   Solid lines: composi-
tion dependent cross second 
virial coefficient of nitrogen and 
oxygen B12(T , x) (Artifact of 
mixture model [8, 9]). Dashed 
lines: cross second virial coef-
ficient of nitrogen and oxygen 
B12(T) [46]
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Corresponding states model for mixtures of nitrogen [33] (component 1) and 
water [43] (component 2) was developed by Gernert and Span [18]. In Fig. 1 (left), 
expression pr

11
∕(2RT) is shown as function of density for various compositions 

of the gaseous mixture at 600 K. The composition dependent (artifact) coefficient 
B11(T , x) is obtained as the zero-density limit (intersection of the lines with the left 
axis). Also shown is the second virial coefficient of nitrogen as given by the used 
multiparameter equation of state [33] and as given by recent quantum mechani-
cal computations [44]. It can be seen that lines for high nitrogen content approach 
the second virial coefficient of nitrogen, whereas other lines do not (although they 
should). The composition dependent (artifact) second virial coefficient of nitrogen 
B11(T , x) is shown in Fig. 1 (right). The lines are flat in the region of high nitrogen 
fraction (low humidity), but they widely diverge in mixtures containing more water. 
Similarly, in Fig. 2 (right) we see that lines representing the composition dependent 
(artifact) second virial coefficient of water B22(T , x) approach the correct (composi-
tion independent) values B22(T) when water vapor prevails in the mixture. Figure 2 
(left) shows that the composition dependent (artifact) cross-second virial coefficient 
B12(T , x) approaches the correct value B12(T) in the region of low humidity. This 
corresponds to the fact that the largest part the vapor-liquid equilibrium data is in 
the region of low humidity and this region is correctly represented by the mixture 
model.

Nitrogen [33] (component 1) and oxygen [45] (component 2) have similar sec-
ond virial coefficients, and also the cross second virial coefficient [46] is of similar 
magnitude. As shown in Fig. 3, the nonphysical composition dependence of second 
virial coefficients for nitrogen B11(T , x) and oxygen B22(T , x) as obtained from the 
mixture model by Lemmon et al. [9] is almost negligible for this system. The same 
can be said for the cross virial coefficient B12(T , x) shown in Fig. 4.

Finally, we note that when the (by artifact) composition dependent (cross) second 
virial coefficients (56) are used in the quadratic mixing rule, a correct mixture sec-
ond virial coefficient is obtained:

For a binary system, this fact can be proved by substituting Eqs. 57–59 into Eq. 60. 
It can be seen as a “generalization” of the rigorous mixing rule 14. We conclude 
that for the corresponding-states based mixture models, the quadratic mixing rule is 
valid only locally (in the vicinity of given x ), whereas in physical systems it captures 
the complete composition dependence of the second virial coefficient.

3 � Suggested Mixture Model

The purpose of the suggested formulation is to provide a complete scheme for mod-
eling thermodynamic properties of mixtures starting form Helmholtz energy formu-
lations for its components. Such a scheme is provided by the corresponding states 

(60)B(T , x) =
∑

ij

Bij(T , x) xixj.



1 3

International Journal of Thermophysics (2023) 44:130	 Page 17 of 37  130

mixture model. The model needs to be sufficiently general to embrace various non-
ideal mixtures. In constructing the model, we aim at accurately reproducing the rig-
orous mixing rules for virial coefficients. This is a weak point of the corresponding 
states model, as discussed in the previous section.

3.1 � Quadratic Mixing of “Helmholtz Volumities”

We introduce a quantity �vr as

Quantity �vr has units of molar volume. Consequently, it appears appropriate to call 
it Helmholtz volumity. In the superscript, “v” stands for “volumity” and “r” stands 
for “residual”. This quantity will be used exclusively for the residual part of the 
Helmholz energy. Therefore, we skip the adjective “residual” in its name.

Let us first consider a pure fluid. With help of a reducing volume vr it is possible 
to define dimensionless reduced Helmholz volumity

With respect to Eqs. 40 and 61, the reduced Helmholtz volumity 𝛼̂vr of a pure com-
ponent can be related to the residual reduced Helmholtz energy �r as

We note that function 𝛼̂vr(𝜏, 𝛿) can be obtained analytically by simply lowering by 
one the powers of � in individual terms of the reduced Helmholtz energy � as given 
by thermodynamic property formulations; these powers are generally greater or 
equal to one [31–40, 43], There are exceptions—in [30] some of the “modified two-
dimensional Gaussian terms” appear with power �0 , so that special measures need to 
be taken when evaluating 𝛼̂vr in the zero-density limit.

From Eq. 25 we see that the Helmholtz volumity has virial expansion

We recall that the virial coefficients depend on temperature and, for mixtures, also 
on composition as given by Eqs. 14–16. In the low-density limit, Helmoltz volumity 
�vr approaches the second virial coefficient. Inspired by this finding, we construct 
a function �vr for a mixture based on a quadratic mixing rule analogous to mixing 
rule 14 for the second virial coefficient:

(61)�vr =
ar

�RT
=

�r

�
=

�dr

�2
.

(62)𝛼̂vr =
𝛼vr

vr
.

(63)𝛼̂vr(𝜏, 𝛿) =
𝛼r(𝜏, 𝛿)

𝛿
.

(64)�vr =
�dr

�2
= B +

1

2
C� +

1

3
D�2 +… .
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By design, Eq.  25 is accurate in the zero-density limit. We can hope that it will 
allow, at least to some extent, to represent the mixture properties also at higher den-
sities. This actually happens, although a substantial refinement of the model, intro-
duced in Sect. 3.2, is needed to make the suggested formulation sufficiently general. 
Formulation 65 treats interactions between like and unlike components in a symmet-
ric form. Functions �vr

ii
 are Helmholtz volumities for individual components. Func-

tions �vr
ij

 for i ≠ j are to some extent analogous to the functions for components. It 
appears appropriate in this context to introduce a term cross-component to denote a 
hypothetical fluid formed by particles interacting by i-j interaction forces. At the end 
of this subsection we provide a short discussion of the cross-components. Similarly 
as the (cross) second virial coefficients, functions �vr

ij
 form a symmetric matrix:

Multiplication of Eq. 23 with �2 yields an expression in terms of the residual reduced 
Helmholtz energy density (23),

The reduced Helmholtz energies �r
ii
 for pure components as given by thermody-

namic property formulations are generally functions of reduced density

and reduced reciprocal temperature

where the reducing volume vr = vii is chosen as the critical volume of pure fluid i, 
and the reducing temperature Tr = Tii is chosen as the critical temperature of pure 
fluid i. Analogously we define reduced reciprocal temperature and reduced density 
for the cross-components,

The reducing parameters form symmetric matrices,

(65)�vr(�, x, �) ≈

I
∑

i,j=1

xixj�
vr
ij
(�, �).

(66)�vr
ji
(�, �) = �vr

ij
(�, �).

(67)�dr(�,�) ≈

I
∑

i,j=1

�i�j�
vr
ij
(�, �).

(68)�ii = vii�,

(69)�ii =
Tii

T
= Tii�,

(70)�ij =
Tij

T
= Tij�,

(71)�ij =vij�.

(72)Tji = Tij, vji = vij.
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Reduced Helmholz volumities as defined by Eqs. 62 and 63 can be expressed for all 
components and cross-components:

The quadratic expression 67 then becomes

As we demonstrate in Sect. 3.5, the Helmholtz volumity for a cross-component (i, j) 
can be assumed in a form corresponding to a hypothetical pure fluid whose mole-
cules interact through a force field physically existing between molecules of types i 
and j. This allows its construction based on equations of state for pure components i 
and j (or other pure fluids) and justifies the term cross-component. However, at con-
ditions where more complex interactions and critical phenomena play a role, the 
shape of function 𝛼̂vr

ij
(𝜏ij, 𝛿ij) will differ from a pure component case. One reason is 

that thermodynamic properties in the critical region of mixtures are strongly influ-
enced by large composition fluctuations, which are absent in pure fluids. To some 
extent there is an analogy with functions Δ�r

ij
(�, �) of the corresponding states 

model 42, for which a similar functional form is used as for the residual reduced 
Helmholtz energy of a pure fluid, Eq.  41, however including special exponential-
Gaussian terms [11, 18].

3.2 � General Density and Temperature Scaling

Function  74 provides a correct virial expansion and a considerable freedom in 
designing functions 𝛼̂vr

ij
(𝜏ij, 𝛿ij) for the cross-components. However, it is still not suf-

ficiently general. In the gas phase, it does not allow to independently adjust the third 
and higher order cross virial coefficients. In the liquid phase, it is not capable of 
modeling mixtures of molecules with significantly different sizes (different partial 
volumes) and non-ideal mixtures. In fact, expression 74 corresponds to the formula-
tion 42 for the case that the corresponding states procedure is not adopted.

Instead of the corresponding states approach, we refine the formulation in the fol-
lowing way. At place of the reduced reciprocal temperature �ij defined by Eqs. 69 
and  70 we substitute a temperature scaling function Tij(�,�) , and at place of the 
reduced density �ij defined by Eqs. 68 and 71 we substitute a density scaling func-
tion Dij(�,�) . Both classes of scaling functions depend on reciprocal temperature � 
and on the vector of concentrations � . In this way, the residual reduced Helmholtz 
energy density is expressed in a general form

(73)𝛼̂vr
ij
(𝜏ij, 𝛿ij) =

𝛼vr
ij

vij
=

𝛼r(𝜏ij, 𝛿ij)

𝛿ij
.

(74)𝛼dr(𝜃,�) ≈

I
∑

i,j=1

𝜌i𝜌jvij𝛼̂
vr
ij
[𝜏ij(𝜃), 𝛿ij(𝜌ij)].
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Equation 75 is the central formulation of the proposed model. We note that the tem-
perature scaling functions Tij(�,�) and the density scaling functions Dij(�,�) are 
dimensionless functions of dimensional arguments � and � . These arguments can be 
reduced, e.g., using Eqs. 70 and 71. We do not proceed in this direction here in order 
to avoid unnecessary complexity of the resulting relations.

By introducing the generalized scaling functions, we obtain an extreme level of 
flexibility. Note that different scaling functions can be designed for different com-
ponents and cross-components. However, the temperature and density scaling func-
tions must satisfy certain conditions in order that the model is physically sound. We 
will investigate these conditions.

Because the scaling functions adjust the representation of interactions of two 
components which are symmetric, we expect also the scaling functions to be 
symmetric,

When the composition reduces to a single component i, the temperature scaling 
function Tii must be equal to the reduced inverse temperature,

and also the density scaling function Dii must become equal to the reduced density,

Relations 77 and 78 can conveiently be called “boundary conditions” of the scaling 
functions. For scaling functions of the cross-components ( i ≠ j ), direct analogy of 
these boundary conditions is not available.

We turn attention to the derivatives of the scaling functions. We denote them as 
follows:

As given by Eq. 76, scaling functions Tij and Dij are symmetric with respect to an 
interchange of indices. Therefore, also their derivatives are symmetric,

(75)𝛼dr(𝜃,�) =

I
∑

i,j=1

𝜌i𝜌jvij𝛼̂
vr
ij
[Tij(𝜃,�),Dij(𝜃,�)].

(76)Tij(�,�) = Tji(�,�), Dij(�,�) = Dji(�,�).

(77)Tii(�, {0,… , �i,… , 0}) = �ii = Tii�,

(78)Dii(�, {0,… , �i,… , 0}) = �ii = vii�i.

(79)Tij,k(�,�) =
�Tij(�,�)

��k
, Tij,k�(�,�) =

�2Tij(�,�)

��k���
,

(80)Dij,k(�,�) =
�Dij(�,�)

��k
, Dij,k�(�,�) =

�2Dij(�,�)

��k���
.

(81)Tji,k(�,�) =Tij,k(�,�), Tji,k�(�,�) = Tij,k�(�,�),

(82)Dji,k(�,�) =Dij,k(�,�), Dji,k�(�,�) = Dij,k�(�,�).
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Furthermore, because the sequence of taking derivatives with respect to various 
variables is irrelevant, the second-order derivatives are symmetric with respect to 
indices denoting derivatives:

Scaling functions need to be designed such that they enable capturing detailed fea-
tures of the mixture thermodynamics at higher densities, but they must not affect the 
proper virial expansion. This can be achieved if the scaling functions can be Taylor-
expanded in terms of molar concentrations as

In the zero-density limit, the temperature scaling function Tij becomes equal to 
the reduced reciprocal temperature �ij = Tij� , while the density scaling function 
approaches zero as a linear function of �.

Coefficients of Taylor series 84 and 85 are zero-density limits of derivatives 79 
and 80. We denoted these limits as follows:

Note that the zero-density limits of the derivatives of the scaling functions may 
depend on (reciprocal) temperature only. They must not depend on composition. 
Zero density limits of second and higher order derivatives are defined analogously 
to the limits of the first derivatives.

Equations 81 and 82 are valid also in the zero-density limit:

In addition, Eqs. 83 hold in the zero-density limit,

Boundary condition 77 can be expressed in terms of series 84 as

In order that the Eq. 90 is satisfied for any �i , the coefficients of the linear, quadratic, 
and higher terms must vanish:

(83)Tij,�k(�,�) = Tij,k�(�,�), Dij,�k(�,�) = Dij,k�(�,�).

(84)Tij(𝜃,�) =Tij𝜃 +

I
∑

k=1

T
<

ij,k
(𝜃) 𝜌k +

1

2

I
∑

k,�=1

T
<

ij,k�
(𝜃) 𝜌k𝜌� … ,

(85)Dij(𝜃,�) =

I
∑

k=1

D
<

ij,k
(𝜃) 𝜌k +

1

2

I
∑

k,�=1

D
<

ij,k�
(𝜃) 𝜌k𝜌� .

(86)T
<

ij,k
(𝜃) = lim

�→0

Tij,k(𝜃,�), T
<

ij,k�
(𝜃) = lim

�→0

Tij,k�(𝜃,�),

(87)D
<

ij,k
(𝜃) = lim

�→0

Dij,k(𝜃,�), D
<

ij,k�
(𝜃) = lim

�→0

Dij,k�(𝜃,�).

(88)T
<

ij,k
= T

<

ji,k
, T

<

ij,k�
= T

<

ji,k�
, D

<

ij,k
= D

<

ji,k
, D

<

ij,k�
= D

<

ji,k�
.

(89)T
<

ij,k�
= T

<

ij,�k
, D

<

ij,k�
= D

<

ij,�k
.

(90)Tii𝜃 + T
<

ii,i
𝜌i +

1

2
T
<

ii,ii
𝜌2
i
+… = Tii𝜃.
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Similarly, boundary condition78 can be expressed in terms of series 85 as

In order that this condition holds for any �i , the coefficients must be

It can be convenient to set a condition analogous to Eq. 93 also for the cross-compo-
nents. We suggest a straightforward generalization of Eq. 93:

Also, Eq. 94 can be generalized for a cross-component scaling function:

Conditions 95 and 96 appear be suitable for reducing extra degrees of freedom of 
the scaling functions. However, their application is not necessary.

The temperature scaling is assumed to substantially enhance the flexibility of the 
model, in particular for nonideal mixtures showing local composition effects. For 
simpler systems it is possible that an isothermal model with density scaling only is 
sufficient. In the isothermal model, Eq. 75 simplifies to

where �ij(�) is just a transformation of the reciprocal temperature � to the dimension-
less reciprocal temperatures according to Eq. 70.

3.2.1 � Examples of the Density and Temperature Scaling Functions

The basic cases of the density scaling function are linear and quadratic.
Linear density scaling function is a linear function of concentrations �k,

Coefficients bijk are generally functions of temperature. In the low density limit, we 
can easily identify

(91)T
<

ii,i
= 0, T<

ii,ii
= 0, etc.

(92)D
<

ii,i
𝜌i +

1

2
D

<

ii,ii
𝜌2
i
+… = vii𝜌i.

(93)D
<

ii,i
= vii,

(94)D
<

ii,ii
= 0, etc.

(95)1

2
D

<

ij,i
+

1

2
D

<

ij,j
= vij.

(96)D
<

ij,ij
= 0.

(97)𝛼dr(𝜃,�) =

I
∑

i,j=1

𝜌i𝜌jvij𝛼̂
vr
ij
[𝜏ij(𝜃),Dij(𝜃,�)],

(98)Dij(�,�) =

I
∑

k=1

bijk(�) �k.

(99)D
<

ij,k
= bijk.
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Therefore, all relations developed for the derivatives of the density scaling function 
in the low-density limit apply to coefficients bijk.

Quadratic scaling includes linear and quadratic terms,

By comparison with Taylor expansion 85 we see that the linear term corresponds 
to the linear part of the series as given by Eq.  99, and also the quadratic terms 
correspond,

Linear and quadratic temperature scaling functions can be developed. The quadratic 
temperature scaling function can be written as

By comparison with Eq. 84 we see that coefficients cijk and cijk� can be identified 
with the zero-density limits of the derivatives of the temperature scaling function.

3.3 � Virial Expansion for the Proposed formulation

We first develop an expansion of the reduced Helmholtz volumity 𝛼̂vr(𝜏, 𝛿) of a pure 
fluid. Using Eqs. 63 and 64 we obtain a virial expansion in dimensionless form

Here we defined reduced second, third, and fourth, virial coefficients

By comparing expression 103 with a Taylor expansion of function 𝛼̂vr(𝜏, 𝛿) at � = 0 , 
� being fixed, we find for the reduced virial coefficients

We also consider derivatives of the reduced virial coefficients B̄ and C̄ with respect 
to � . We denote these derivatives with primes and we relate them to the derivatives 
of the reduced Helmholtz volumity 𝛼̂vr in the zero-density limit:

(100)Dij(�,�) =

I
∑

k=1

bijk(�) �k +
1

2

I
∑

k,�=1

bijk�(�) �k�� .

(101)D
<

ij,k�
= bijk� .

(102)Tij(�,�) = Tij� +

I
∑

k=1

cijk(�) �k +
1

2

I
∑

k,�=1

cijk�(�) �k�� .

(103)𝛼̂vr(𝜏, 𝛿) = B̄(𝜏) +
1

2
C̄(𝜏)𝛿 +

1

3
D̄(𝜏)𝛿2 +… .

(104)B̄ =
B

vr
, C̄ =

C

v2
r

, D̄ =
D

v3
r

.

(105)B̄(𝜏) = 𝛼̂vr(𝜏, 0), C̄(𝜏) = 2𝛼̂vr
𝛿
(𝜏, 0), D̄(𝜏) =

3

2
𝛼̂vr
𝛿𝛿
(𝜏, 0).
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We can now develop a two-dimensional second-order Taylor expansion of function 
𝛼̂vr at point (�, 0):

Using Eqs. 105 and 106 we replace the derivatives of function 𝛼̂vr(𝜏, 𝛿) with reduced 
virial coefficients and their temperature derivatives,

We apply expansion 108 to all components and cross-components,

Because of the symmetry of the dimensionless Helmholtz energy with respect to 
the inversion of indices, also the virial coefficients for the cross-components are 
symmetric,

The symmetry of course holds also for temperature derivatives 106,

Now we perform the scaling step—at place of �ij we substitute in 109 the density 
scaling function Dij(�,�) in form of Taylor expansion 85. For �ij we substitute the 
temperature scaling function Tij(�,�) in form of Taylor expansion 84. For Δ�ij we 
substitute

(106)
B̄�(𝜏) =

dB̄

d𝜏
= 𝛼̂vr

𝜏
(𝜏, 0), B̄��(𝜏) =

d2B̄

d𝜏2
= 𝛼̂vr

𝜏𝜏
(𝜏, 0),

C̄�(𝜏) =
dC̄

d𝜏
= 2𝛼̂vr

𝛿𝜏
(𝜏, 0).

(107)
𝛼̂vr(𝜏 + Δ𝜏, 𝛿) = 𝛼̂vr(𝜏, 0) + 𝛼̂vr

𝛿
(𝜏, 0) 𝛿 + 𝛼̂vr

𝜏
(𝜏, 0) Δ𝜏

+
1

2
𝛼̂vr
𝛿𝛿
(𝜏, 0) 𝛿2 + 𝛼̂vr

𝛿𝜏
(𝜏, 0) 𝛿Δ𝜏 +

1

2
𝛼̂vr
𝜏𝜏
(𝜏, 0) (Δ𝜏)2.

(108)
𝛼̂vr(𝜏 + Δ𝜏, 𝛿) = B̄(𝜏) +

1

2
C̄(𝜏) 𝛿 + B̄�(𝜏) Δ𝜏

+
1

3
D̄(𝜏) 𝛿2 +

1

2
C̄�(𝜏) 𝛿Δ𝜏 +

1

2
B̄��(𝜏) (Δ𝜏)2.

(109)
𝛼̂vr
ij
= B̄ij +

1

2
C̄ij 𝛿ij + B̄�

ij
Δ𝜏ij

+
1

3
D̄ij 𝛿

2
ij
+

1

2
C̄�
ij
𝛿ij Δ𝜏ij +

1

2
B̄��
ij
(Δ𝜏ij)

2.

(110)B̄ji = B̄ij, C̄ji = C̄ij, D̄ji = D̄ij.

(111)B̄�
ji
= B̄�

ij
, B̄��

ji
= B̄��

ij
, C̄�

ji
= C̄�

ij
.

(112)

Tij(𝜃,�) − 𝜏ij = Tij(𝜃,�) − Tij𝜃 =

I
∑

k=1

T
<

ij,k
(𝜃) 𝜌k +

1

2

I
∑

k,�=1

T
<

ij,k�
(𝜃) 𝜌k𝜌� … .
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Performing the substitutions and neglecting higher than quadratic terms we obtain 
expansion for reduced Helmholtz volumity of (cross)component ij including the 
temperature and density scaling,

In order to simplify consequent derivations, we symmetrize the terms in the double 
summation. It is possible to write

Using this result, we re-arrange expression 113 as

We substitute Eq. 115 into expression 97 for the residual reduced Helmholtz energy 
density. After a re-arrangement, we obtain expansion

where we introduced coefficients

(113)
𝛼̂vr
ij
= B̄ij +

I
∑

k=1

(

1

2
C̄ijD

<

ij,k
+ B̄�

ij
T
<

ij,k

)

𝜌k +

I
∑

k,�=1

(

1

4
C̄ijD

<

ij,k�
+

1

2
B̄�
ij
T
<

ij,k�

+
1

3
D̄ijD

<

ij,k
D

<

ij,�
+

1

2
C̄�
ij
D

<

ij,k
T
<

ij,�
+

1

2
B̄��
ij
T
<

ij,k
T
<

ij,�

)

𝜌k𝜌� … .

(114)

I
∑

k,�=1

D
<

ij,k
T
<

ij,�
𝜌k𝜌� =

I
∑

k,�=1

D
<

ij,�
T
<

ij,k
𝜌k𝜌�

=

I
∑

k,�=1

(

1

2
D

<

ij,k
T
<

ij,�
+

1

2
D

<

ij,�
T
<

ij,k

)

𝜌k𝜌� .

(115)

𝛼̂vr

ij
= B̄ij +

I
∑

k=1

(

1

2
C̄ijD

<

ij,k
+ B̄�

ij
T
<

ij,k

)

𝜌k

+

I
∑

k,�=1

[

1

4
C̄ijD

<

ij,k�
+

1

2
B̄�
ij
T
<

ij,k�
+

1

3
D̄ijD

<

ij,k
D

<

ij,�

+
1

4
C̄�
ij

(

D
<

ij,k
T
<

ij,�
+D

<

ij,�
T
<

ij,k

)

+
1

2
B̄��
ij
T
<

ij,k
T
<

ij,�

]

𝜌k𝜌� … .

(116)

𝛼dr(𝜃,�) =

I
∑

i,j=1

B̂ij𝜌i𝜌j +
1

2

I
∑

i,j,k=1

Ĉijk 𝜌i𝜌j𝜌k

+
1

3

I
∑

i,j,k,�=1

D̂ijk� 𝜌i𝜌j𝜌k𝜌� +… ,

(117)B̂mn =vmnB̄mn,

(118)Ĉmnp =vmn

(

C̄mnD
<

mn,p
+ 2B̄�

mn
T
<

mn,p

)

,
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Coefficients B̂mn , Ĉmn , and D̂mn depend only on temperature. Due to the symmetry 
of the scaling volume 72, symmetries of derivatives of the scaling functions 88 and 
89, and symmetries of the virial coefficients of the cross-components 110, the coef-
ficients B̂mn , Ĉmn , and D̂mn , also show some symmetries:

However, coefficients Ĉijk and D̂ijk� are not completely symmetric as it is the case of 
the virial coefficients Cijk an Dijk�.

We collect the terms in 116 into groups with the same combination of indices (and 
the same combination of exponents of concentrations). We further use symmetries 120, 
121, and 122. This procedure results in a rather long expression (SI.2) given in the SI. 
By comparison of terms in Eq. SI.41 with virial expansion (SI.2), we can express virial 
and cross-virial coefficients in terms of the present model as follows.

Pure-component virial coefficients are straightforward, 

Next we consider coefficients related to two different molecular kinds i and  j. We 
will not show variants of the formulas obtainable by re-naming the indices. Second 
cross-virial coefficient is simple:

We used Eq.  117 for the right-most expression. Third cross-virial coefficients for 
two kinds of molecules are

(119)
D̂mnpq =vmn

[

D̄mnD
<

mn,p
D

<

mn,q
+

3

4
C̄mnD

<

mn,pq
+

3

4
C̄�
mn

(

D
<

mn,p
T
<

mn,q

+ T
<

mn,p
D

<

mn,q

)

+
3

2
B̄��
mn
T
<

mn,p
T
<

mn,q
+

3

2
B̄�
mn
T
<

mn,pq

]

.

(120)B̂ij =B̂ji,

(121)Ĉijk =Ĉjik,

(122)D̂ijk� =D̂ij�k = D̂jik� = D̂ji�k.

(123a)Bii =B̂ii,

(123b)Ciii =Ĉiii,

(123c)Diiii =D̂iiii.

(124)Bij = B̂ij = vijB̄ij.

(125)Ciij =
1

3

(

Ĉiij + 2Ĉiji

)

.
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Fourth order cross-virial coefficient describing interactions of three, two, or one, 
molecules of kind i and one, two, or three molecules of kind j can be expressed, 
respectively, as

We consider interactions involving three molecular kinds i, j, and k. By comparing 
terms with powers �i�j�k , in Eqs. SI.2 and SI.41, we obtain expression

Equation 125 for two different kinds, as well as Eq. 123b for three-body interactions 
of a single molecular kind, can be obtained as special cases of Eq. 127. By compar-
ing terms with powers �2

i
�j�k in Eqs. SI.2 and SI.41, we obtain expression

Finally, we consider interactions of four different molecules. By comparing terms 
with product �i�j�k�� in Eqs. SI.2 and SI.41, we obtain expression

Relations for cross-virial coefficients involving four-body interactions of three kinds 
of molecules 128, two kinds of molecules 126), and a single molecular kind 123c, 
can be obtained as special cases of Eq. 129.

We expressed the second, third, and fourth, (cross) virial coefficients of a mixture 
Bij , Cijk , and Dijk� , in terms of the parameters of the proposed model: the virial coeffi-
cients of the components and cross-components B̄ij , C̄ij , D̄ij , and the zero-density limits 
of first and second derivatives of the density scaling functions D<

ij,k
 and D<

ij,k�
 , and the 

temperature scaling functions T<
ij,k

 and T<
ij,k�

 . This was accomplished through Eqs. 117, 
118, and 119, giving, respectively, coefficients B̂mn , Ĉmnp , and D̂mnpq , in terms of B̄ij , 
C̄ij , D̄ij , D

<

ij,k
 , D<

ij,k�
 , T<

ij,k
 , and T<

ij,k�
 , and through Eqs. 124, 127, and 129, giving, respec-

tively, the (cross) virial coefficients Bij , Cijk , and Dijk� , in terms of coefficients B̂mn , 
Ĉmnp , and D̂mnpq.

3.4 � Why NOT to Use a Quadratic form in Terms of Residual Reduced Helmholtz 
Energy

We suggested formulation 75 as a quadratic form in terms of reduced Helmholtz volu-
mities 𝛼̂vr

ij
 , which are related to the residual reduced Helmholtz energies �r

ij
 by Eq. 63 as 

𝛼̂vr
ij
(𝜏ij, 𝛿ij) = 𝛼r

ij
(𝜏ij, 𝛿ij)∕𝛿ij . Here we would like to explain, why it is not wise to use a 

quadratic form in terms of residual reduced Helmholtz energies, as suggested by Jäger 
et al. [24] in Eq. 2. We note that this form can be considered as convenient rearrange-
ment of the contemporarily used formulation 42, as we have shown by Eqs. 47 and 48. 

(126)Diiij =
1

2

(

D̂iiij + D̂ijii

)

, Diijj =
1

6

(

D̂iijj + 4D̂ijij + D̂jjii

)

.

(127)Cijk =
1

3

(

Ĉijk + Ĉikj + Ĉjki

)

.

(128)Diijk =
1

6

(

D̂iijk + 2D̂ijik + 2D̂ikij + D̂jkii

)

.

(129)Dijk� =
1

6

(

D̂ijk� + D̂ikj� + D̂i�jk + D̂jki� + D̂j�ik + D̂k�ij

)

.
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The important difference comes when we attempt to introduce the temperature and 
density scaling functions into Eq. 2:

We multiply Eq. 130 by �2 and find that the left-hand side is equal to the product of 
molar density � and the reduced density of residual Hemlholtz energy �dr,

We expand the reduced residual Helmholtz energy analogously to Eq. 109, however 
keeping fewer terms:

We perform the scaling step analogously to Eq. 113, but keeping only the first term, 
which is sufficient for the argument:

We substitute expansion 133 into the right-hand side of Eq. 131, and in the left-hand 
side we apply virial expansion 26:

The dots on both sides stay for fourth and higher powers of molar concentrations. 
Since equality 134 must hold for all values of concentrations �i, �j, �k , and all the 
coefficients are independent of concentrations (only depending on temperature), we 
find that this can only happen if D<

ij,k
 is the same number for given i and j (independ-

ent of k). The choice compatible with boundary conditions 93 and 95 is

where vij is the reducing volume. In this case, Eq. 134 simplifies to

With respect to the definition of reduced virial coefficients Eq.  104 we find that 
Eq.  136 is correct. However, condition  135 makes it impossible to choose vari-
ous values D<

ij,k
 for various k, that is, various degrees of influence of different 

(130)�r =

I
∑

i,j=1

xixj�
r
ij
[Tij(�,�),Dij(�,�)].

(131)�2�r = ��dr =

I
∑

i,j=1

�i�j�
r
ij
[Tij(�,�),Dij(�,�)].

(132)𝛼r
ij
= B̄ij 𝛿ij +

1

2
C̄ij 𝛿

2
ij
+ B̄�

ij
𝛿ijΔ𝜏ij +… .

(133)𝛼r
ij
= B̄ij

[

I
∑

k=1

D
<

ij,k
(𝜃) 𝜌k

]

+… .

(134)
I

∑

k=1

𝜌k ⋅

I
∑

i,j=1

Bij𝜌i𝜌j +⋯ =

I
∑

i,j=1

𝜌i𝜌jB̄ij

[

I
∑

k=1

D
<

ij,k
𝜌k

]

+… .

(135)D
<

ij,k
= vij,

(136)
I

∑

i,j=1

Bij𝜌i𝜌j +⋯ =

I
∑

i,j=1

𝜌i𝜌jB̄ijvij +… .
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components k on the scaling of (cross) component (i, j). For limits of higher deriva-
tives, it can be deduced in a similar manner that formulation  130 with boundary 
condition 94 enforce Dij,k� = 0 . The same result will be found for higher derivatives. 
Therefore, we conclude that formulation 130 does not allow introducing the scaling 
functions.

3.5 � Application of the Suggested Formulation to a Cubic Equation of State

We will show that conventional van der Waals mixing rules 29 and 30 for parameters of 
cubic equations of state represent a special case of the suggested method for modeling 
mixtures based on Helmholtz energy equations of state.

Reduced Helmholz energy for a pure component i can be obtained as a special case 
of Eq. 33

We convert density into a dimensionless variable

where vii is the critical volume of component i. The considered scaling will be iso-
thermal; parameter Aii(T) will be evaluated at physical temperature T and intro-
duction of a reduced temperature is needless in this context. Reduced Helmholtz 
energy 137 can be expressed in terms of the reduced density 138 as

We note hat the critical volume vii and critical temperature Tii are related to param-
eters āii (or Aii ) and b̄i . In Eq. 139, a constant � was introduced

This numerical value of constant � is specific for the Peng–Robinson equation and it 
is different for other cubic equation of state.

Equation 139 is an equation of state of a pure component i in the form of reduced 
Helmholtz energy depending on reduced density and reduced reciprocal temperature, 
as it is usual for the multiparameter equations of state. We can now start to model the 

(137)𝛼r
ii
= − ln(1 − b̄i𝜌) +

Aii(T)

2
√

2 b̄i

ln

1 +
�

1 −
√

2
�

b̄i𝜌

1 +
�

1 +
√

2
�

b̄i𝜌

.

(138)�ii = vii�,

(139)�r
ii
= − ln(1 − ��ii) +

Aii

2
√

2 vii�
ln

1 +
�

1 −
√

2
�

��ii

1 +
�

1 +
√

2
�

��ii

.

(140)𝛽 =
b̄i

vii
= 0.253… .
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mixture based on the present method. First, we express reduced Helmholtz volumity 
𝛼̂vr
ii

 according to Eq. 63

As the second step we suggest a suitable equation for the reduced Helmholtz volu-
mity of the cross-components 𝛼̂vr

ij
 , i ≠ j . We chose a form analogous to the equation 

for a pure component 141:

Here, Aij is the attractive term of the original Peng–Robinson equation modified 
according to Eq. 31, and vij is the critical volume of the hypothetical cross-compo-
nent fluid; Eq. 140 holds also for ratio b̄ij∕vij . Reduced density for the cross-compo-
nent is defined as

As the third step, we replace reduced densities �ij in Eqs. 141 and 142 with density 
scaling functions Dij(�,�) . The scaling functions are so far unspecified. We con-
struct the modified residual Helmholtz energy density �dr(�,�) as given by Eq. 97:

As the final step, we have to choose the density scaling functions. We chose linear 
scaling 98 ,

From condition 93 it follows

(141)𝛼̂vr
ii
=

𝛼r
ii

𝛿ii
= −

1

𝛿ii
ln(1 − 𝛽𝛿ii) +

Aii

2
√

2 vii𝛽𝛿ii

ln

1 +
�

1 −
√

2
�

𝛽𝛿ii

1 +
�

1 +
√

2
�

𝛽𝛿ii

.

(142)𝛼̂vr
ij
= −

1

𝛿ij
ln(1 − 𝛽𝛿ij) +

Aij

2
√

2 vij𝛽𝛿ij

ln

1 +
�

1 −
√

2
�

𝛽𝛿ij

1 +
�

1 +
√

2
�

𝛽𝛿ij

.

(143)�ij = vij�.

(144)

�dr(�,�) = −

I
�

i,j=1

�i�j

vij

Dij

ln(1 − �Dij)

+

I
�

i,j=1

�i�j

Aij

2
√

2 �Dij

ln

1 +
�

1 −
√

2
�

�Dij

1 +
�

1 +
√

2
�

�Dij

.

(145)Dij =

I
∑

k=1

bijk �k.

(146)D
<

ii,i
= biii = vii,
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and from condition 95 we have for i ≠ j

These conditions still leave much freedom in shaping the scaling functions. In order 
to end up with the standard mixing rules for the cubic equations of state, we choose

With this choice, Dij as given by Eq.  145 is the same for all components and 
cross-components:

We removed the indices i and j to indicate that the value D is, for a given � , the same 
for all components and cross-components. From Eq. 147 it follows that choice 148 
requires a special value of the scaling volume of a cross-component as the arithme-
tic average of critical volumes of the respective pure components,

For a pure fluid i at critical density equal to 1∕vii , the density scaling function D 
given by Eq. 149 equals to unity. For an equimolar binary mixture x1 = x2 = 1∕2 at 
density equal to the hypothetical critical density 1∕v12 of the cross-component, the 
density scaling function 149 is also equal to unity.

Using Eqs. 149 and 150 in expression 144 we obtain

The last result can be considered as a final expression for the residual reduced Helm-
holtz energy density, which can be used to compute all thermodynamic properties 
of the mixture. We will now transform it to the form of reduced Helmholtz energy 
in order to compare it with expression 33 obtained using the conventional mixing 
rules. Using Eq. 61 we obtain reduced residual Helmholtz energy �r of the mixture

(147)1

2
D

<

ij,i
+

1

2
D

<

ij,j
=

1

2
biji +

1

2
bijj = vij.

(148)bijk = vkk.

(149)Dij =

I
∑

k=1

vkk�k = D.

(150)vij =
1

2
vii +

1

2
vjj.

(151)

�dr = −

I
�

i,j=1
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With help of Eqs. 140, 149, and 11 we find

In the right-most equality we recover the linear van der Waals mixing rule for 
parameter b̄ , Eq.  29. Further, using relation  11 we see that the modified attrac-
tion parameter A for the mixture is given by quadratic mixing rule 31, which is a 
straightforward modification of the van der Waals mixing rule 30:

Using results  153 and  154 in Eq.  152 we recover expression 33 for the reduced 
residual Helmholtz energy of the mixture described by the Peng–Robinson equation 
of state.

We conclude that the present method of mixture modeling becomes identical 
with application of the conventional mixing rules 29 and 30 for the parameters of 
cubic equations of state when the following choices are adopted. (i) The cross-com-
ponents are represented by the same cubic equation of state as the components. (ii) 
The reducing volume (hypothetical critical volume) of cross-component ij is taken 
as an arithmetic average of critical volumes of the pure components i and j, Eq. 150. 
The hypothetical critical temperature Tij of the cross-component is unconstrained; it 
corresponds to the choice of parameter āij . (iii) The dimensionless volumities 𝛼̂vr

ij
 of 

the pure components and cross-components are evaluated for the same value of 
reduced density D given by linear scaling function 149 and the same temperature 
(isothermal scaling). However, the present method is much more general—a plenti-
tude of other, physically sound mixture models can be developed when the model is 
not constrained as described in points (i) to (iii).

4 � Conclusions

The contemporary corresponding states approach to modeling thermodynamic prop-
erties of mixtures [8] based on the equations of state of the components in form of 
Helmholtz energy is generally very successful, but it fails to reproduce the rigorous 
concentration dependence rules for the mixture virial coefficients [24]. To analyze 
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this aspect deeper, we computed the second virial coefficients for pairs of like mol-
ecules and the cross virial coefficients for pairs of unlike molecules based on their 
definition as second order partial derivatives of the residual pressure. We developed 
formulas for computing these (cross) second virial coefficients based on the mixture 
virial coefficient and its derivatives with respect to molar fraction. The (cross) sec-
ond virial coefficients should be independent of composition of the mixture. This 
rigorous requirement cannot be satisfied by the corresponding states mixture model. 
Yet for mixtures of similar gases (given example of nitrogen-oxygen), the deviations 
from the correct constant value can be negligible. For mixtures of fluids widely dif-
fering in critical parameters and other properties, as exemplified by nitrogen-water 
system, the (cross) virial coefficients may be sufficiently accurate in a region satis-
factorily covered by experimental data, but strongly deviate in other regions.

We suggest a mixture model which, by design, provides correct composition 
dependences of second and higher virial coefficients. The concept of the model can 
be summarized in the following points. 

(1)	 Residual thermodynamic properties of the mixture are modeled based on Helm-
holtz energy models of the components with arbitrary mathematical structure, 
with reduced density and reduced reciprocal temperature as independent vari-
ables. (The same framework as for the corresponding states model.)

(2)	 Quadratic mixing is used as a basis. This leads to the introduction of “cross-
components” which reflect the interactions of unlike molecules. The cross-com-
ponent is represented by a Helmholtz energy model analogous to a model of a 
component. (See the last paragraph of Sect. 3.1 for a brief discussion of this 
analogy and its limitations.)

(3)	 The quadratically mixed property is not the residual reduced Helmholtz energy 
�r , but rather a ratio �r∕� . This ratio has a dimension of volume. Therefore, we 
call it “Helmholtz volumity”. We also introduce reduced Helmholtz volumity 
𝛼̂vr = 𝛼r∕𝛿 , which is dimensionless.

(4)	 Functions for the reduced Helmholtz volumity 𝛼̂vr
ij
(𝜏ij, 𝛿ij) for the components 

i = j and cross-components i ≠ j are considered; arguments of these functions 
are the reduced reciprocal temperature �ij = Tij∕T  and the reduced density 
�ij = vij� , where Tij and vij are, respectively, the reducing temperature and reduc-
ing volume of the (cross) component.

(5)	 Reduced reciprocal temperatures �ij are substituted for with temperature scaling 
functions Tij(�,�) . Reduced densities �i,j are substituted for with density scaling 
functions Dij(�,�) . Variables of the scaling functions are reciprocal temperature 
� = 1∕T  and vector of molar concentrations � = {�1,… , �I} . The scaling func-
tions must satisfy certain boundary conditions in order that pure component 
properties are reproduced by the mixture model. In addition, multivariate Taylor 
expansions with respect to concentrations � at point � = 0 must exist, such that 
the lowest term of any temperature scaling function expansion is a constant (only 
depends on � ), and the lowest term of any density scaling function expansion is 
a linear form of � with coefficients depending on � only.



	 International Journal of Thermophysics (2023) 44:130

1 3

130  Page 34 of 37

(6)	 A variety of temperature and density scaling functions can be proposed. The 
basic ones are linear in � and quadratic in �.

Possibly the linear model already provides enough flexibility for fitting the ther-
modynamic surfaces of simpler mixtures. We note that the coefficients bijk and 
others are assumed as temperature functions. The model can be further simpli-
fied by keeping the temperature variable unscaled ( Tij = �ij ). Such a model can be 
called “isothermal”. We have shown that the van der Waals mixing rules for cubic 
equations of state can be considered as a special case of an isothermal model. 
On the other hand, for non-ideal mixtures which show local composition and 
local structuring effects, having the two variables (scaled temperature and scaled 
density) per binary interaction might be important. The two “tweaked” variables 
correspond to the two main parameters of the interaction - energy and entropy. 
Local ordering leads to lowering the residual entropy and this could be modeled 
by scaling down the temperature for a component and/or a cross-component.

Mathematically, the present approach is to some extent similar to the contem-
porary corresponding state method. It is also a “hybrid” model combining a quad-
ratic form in concentrations or molar fractions with scaling of the variables of the 
functions forming the matrix of the quadratic form. The main differences can be 
summarized as follows: 

(a)	 The functions forming the matrix of coefficients are not the residual reduced 
Helmholtz energies but rather the Helmholtz volumities introduced in this arti-
cle. The reason for this choice was explained in Sect. 3.4.

(b)	 Density and temperature scalings are used for more subtle purposes in the present 
approach. The scalings fade away in the zero density limit. In the corresponding 
states approach, the scaling of temperature and density do the “brutal” job of 
transforming the properties of the mixture components from completely different 
physical conditions where there were measured for the pure fluids to the actual 
conditions of the mixture.

(c)	 While for the corresponding states method the properties of all components and 
also the interaction terms (corresponding to the cross-components in language 
of this article) are evaluated at the same reduced temperature and density, in the 
present approach each component and cross-component has individual tempera-
ture and density scaling functions.

In this article we elaborated some basic properties of the proposed model. In par-
ticular we focused on the virial expansion, which is the weakness of the correspond-
ing states method. We have shown how the virial coefficients can be obtained up to 
the fourth order. Further, we have shown that the van der Waals mixing rules can 
be considered as special case of the present model when applied to a cubic equa-
tion of state. These findings allow to consider the present model as a viable alterna-
tive to the corresponding states method of modeling thermodynamic properties of 
fluid mixtures. The model can be developed at several levels of detail: from a sim-
ple variant where the cross-component is modeled as a pure fluid and a few scaling 
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parameters are adjusted to binary mixture data, over a complete fit of the cross-
component functions to binary mixture data, up to highly detailed models enabling 
adjustment to ternary or quaternary mixture data.
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