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Abstract
A generalized van der waals model is considered to study the thermodynamic prop-
erties of pure fluids. Analytical solution of the equivalent cubic equation of state is 
presented and the critical properties in the general form are derived. The fluctuations 
of number of particles are calculated in the grand canonical ensemble by using three 
quantities (scaled variance �(N) , skewness S�, and kurtosis k�2 ). The critical behav-
ior of these quantities is investigated in terms of the dimensionless particle number 
density and temperature for different models. It is found that the fluctuations have a 
singular behavior close to the critical point.

Keywords  Critical point phenomena · Fluctuation phenomena · Statistical models

1  Introduction

Equations of state (EoSs) are mathematical tools for describing the state of matters. 
Generalized EOSs are widely used to represent and predict thermodynamic proper-
ties and phase equilibria of pure fluids and mixtures. The two-parameter van der 
Waals (vdW) model (1873) was the first equation to predict vapor–liquid coexist-
ence [1]. Later, numerous modifications to the vdW model have been presented (see 
for instance, [2–14]). The most commonly used equations of state are cubic equa-
tions, which have been extensively used over the last three decades. Cubic EoSs are 
a class of equations of state that may be represented by a polynomial when referenc-
ing the volume or compressibility factor, in such a way that the highest power in the 
polynomial is to the third degree [15, 16].

Here, we present a new generalization of the two-parameter vdW EoS and solve 
analytically the corresponding cubic EoS. Also, we reconsider the generalized vdW 
EoS in the grand canonical ensemble (GCE) formulation to calculate some meas-
ures of the particle number fluctuations such as the scaled variance, skewness, and 
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kurtosis and investigate the critical behavior of their behavior in a vicinity of the 
critical point.

The paper is organized as follows: In Sect. 2, a new generalization of the vdW model 
and its corresponding cubic equation are presented. In Sect. 3, the cubic EoS is solved 
analytically and the critical properties are calculated in the general form. In Sect. 4, the 
GCE formulation of one family of the generalized vdW equation is derived. In Sect. 5, 
the particle number fluctuations for different models are studied. Three quantities 
measuring the particle number fluctuations are calculated and their behavior close to 
the critical point (CP) is then analyzed. The paper closes with a short discussion given 
in Sect. 6.

2 � Generalized vdW EoS

Here, we consider a new generalization of the two-parameter vdW model [1] in the 
canonical ensemble (CE) formulation

where the first term represents the repulsive term and the the second represents the 
attractive term. The parameters r1, r2 are two specific constants that vary depend-
ing on the EoS and the parameter k has the physical valid range of 0 ≤ k ≤ 2 . The 
characteristic parameters a and b describe, respectively, the attractive and repulsive 
interactions between N particles. With different values of k, r1, and r2 , most of the 
well-known EoS can be obtained. Table 1 presents the attractive term of some mod-
els, like vdW model [1], SRK model [3], PR model [6], PT model [9], and Nasrifar-
Bolland (NB model) [17]. The repulsive term (not shown) is similar in all of these 
models as defined in Eq. 1.

Using the critical point conditions

(1)P(T ,V ,N) =
NkBT

V − Nb
−

N2a

V2
(

1 + N
r1

V

)k
+ N2r2

.,

Table 1   Some of the well-
known models are obtained 
from Eq. 1

Model k r1 r2 Attractive term

vdW 0 0 0 N2a

V2

SRK 1 b 0 N2a

V2+NbV

2 b

2
−

b2

4

PR 1 2b −b2 N2a

V2+2NbV−N2b2

2 b −2b2

PT 1 b + c −bc N2a

V2+N(b+c)V−N2bc

NB 1 2
√

3
b

1

3
b2

N2a

(V+
1
√

3
Nb)2

2 1
√

3
b 0
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EoS (1) can be transformed into the corresponding generalized cubic polynomial in 
the form

3 � Analytical Solution of the Cubic EoS

The solution of the cubic EoS (5) depends on the value of k as follows:
I- When k = 0 and r1 = r2 = 0 , one obtains the cubic equation of the original 

vdW model

In this case, we obtain the well-known critical point Vc = 3Nb , kBTc =
8a

27b
, and 

Pc =
a

27b2
.

II- When k = 1 , the generalized cubic Eq. 5 reduces to the form

where

There are different analytical methods for solving the cubic EoS. Here, we consider 
Cardano method (see [18, 19]) which can be used to calculate all real and complex 
roots of cubic polynomials that have only real coefficients. In this method, the cubic 
polynomial (7) is reduced via the substitution

(2)P(T = Tc,V = Vc) =Pc

(3)
( �P
�V

)

T=Tc,V=Vc

= 0,

(4)
( �2P
�V2

)

T=Tc,V=Vc

= 0.

(5)

V3

c
−
[

3b + 2(k − 1)r1

]

NV2

c
+ (k − 2)r1

[

3b +
1

2
(k − 1)r1

]

N2Vc

−
1

2
(k − 2)(k − 3)N3br2

1

− N2r2
(

1 + N
r1

Vc

)1−k
{

2Vc + (2 − k)Nr1 + (Vc − Nb)
(

1 + N
r1

Vc

)−1

[

1 − (k − 2)N
r1

Vc

+
1

2
(k − 1)(k − 2)N2

r2
1

V2
c

]}

= 0; 0 ≤ k ≤ 2.

(6)V3

c
− 3NbV2

c
= 0

(7)V3

c
+ AV2

c
+ BVc + C = 0,

(8)A = −3Nb, B = −3(r1b + r2)N
2 and C = −

(

r2
1
b − r2b + r1r2

)

N3.
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which leads to

with the coefficients

The numbers and types of roots of Eq. 10 depend on the sign of the the polynomial 
discriminant, Δ , defined as

There are three possibilities:
1. If Δ > 0, there is only one real root and two conjugate-complex solutions

where

The conjugate-complex solutions also may be ignored in the context of cubic EoS, 
because they do not describe any physical solution.

2. If Δ < 0 , there are three real roots come from the expression

The angle � (in radius) is calculated as

Equation 15 can be rewritten in a way to provide the roots in ascending order, as 
follows

(9)Vc = X −
A

3
,

(10)X3 − 3pX − 2q = 0,

(11)p =
A2

9
−

B

3
and q = −

A3

27
+

AB

6
−

C

2

(12)Δ = q2 − p3,

(13)V (1)
c

= r + s −
A

3
and V (2,3)

c
=

−(r + s) ± i
√

3(r − s)

2
−

A

3
,

(14)r =
3

�

q +
√

Δ and s =
3

�

q −
√

Δ

(15)V (j)
c

= 2
√

p cos
�

� + 2�j

3

�

−
A

3
; j = 0, 1, 2.

(16)� = arccos
� q
√

p3

�

.

(17)

V (1)
c

= −
√

p
�

cos

�

�

3

�

− sin

�

�

3

��

−
A

3
; for j = 2,

V (2)
c

= −
√

p
�

cos

�

�

3

�

+ sin

�

�

3

��

−
A

3
; for j = 1,

V (3)
c

=2
√

p cos
�

�

3

�

−
A

3
; for j = 0.
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3. When Δ = 0 , we have q = ±
√

p3 , that is, � = arccos(±1) , i.e., � ranges from 0 to 
� . In this case, Eq. 17 can be simplified to obtain the special case of three real roots, 
where two of them are identical

Using the second critical condition (3), one can obtains the critical temperature

In this case, the critical compressibility factor Zc takes the form

III- When k = 2 , we obtain the same cubic equation of k = 1 (7) and its solution but 
with r1 = 2r1 and r2 = r2

1
+ r2.

4 � The GCE Formulation of the Generalized vdW Model

We consider one family of the generalized vdW model, by taking k = 1, r1 = 2�b, 
and r2 = �

2b2 in Eq. 1, we obtain

where n = N∕V  is the particle number density. Note that, for � = 0 , the standard 
vdW model is obtained and for � = 1∕

√

3 , NB model is obtained.
The GCE formulation of (21) can be obtained as follows:
First, we find the free energy F(T, V, N) in the CE formulation, which can be 

obtained by integrating the thermodynamic identity

which for the model (21) yields

where Fid(T ,V − Nb,N) is the free energy of the ideal gas,

and the quantum concentration nQ is given by

(18)V (1)
c

= 2
√

p −
A

3
and V (2)

c
= V (3)

c
= −

√

p −
A

3
.

(19)kBTc =
a(Tc)(2Vc + Nr1)(Vc−Nb)

2

(

V2
c
+ Nr1Vc + N2r2

)2

(20)Zc =
PcVc

NkBTc
=

Vc(V
2
c
− 2NbVc − N2r1b − N2r2)

(2Vc + Nr1)(Vc − Nb)2
.

(21)P(T ,V ,N) ≡ P(T , n) = kBT
n

1 − bn
−

an2

(1 + �bn)2
,

(22)
(

�F(T ,V ,N)

�V

)

T ,N
= −P(T ,V ,N)

(23)F(T ,V ,N) = Fid(T ,V − Nb,N) −
Nan

1 + �bn
,

(24)Fid(T ,V − Nb,N) = −NkBT
{

ln
[

nQ
(1 − bn

n

)

]

+ 1

}

,
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where m is the mass of a particle and ℏ is Planck ′  s constant. Using Eq. 23 for the 
free energy, we can find all the thermodynamic quantities, such as the chemical 
potential � , the particle number density n, the entropy density s, and the energy den-
sity � . Differentiating the relation (23) with respect to T and N, one gets S and � , 
respectively

where

are the entropy, the chemical potential, and the pressure of the ideal gas, respectively.
Second, we invert the relation (27) to get the particle number density n(T ,�) 

which lies in the heart of the GCE formulation [20]

where nid is the density of the ideal gas and �id = � − bPid +
an

1+�bn

(

1 +
1

1+�bn

)

.
Third, we put n(T ,�) back into the CE pressure (21) to obtain the pressure in the 

GCE

5 � Critical Behavior of the Particle Number Fluctuations

Our concentration in this section will be in the fluctuations of number of particles, 
which are absent in the CE. The particle number fluctuations in the GCE can be 
characterized by the following dimensionless cumulants (susceptibilities),

(25)nQ =
(mkBT

2�ℏ2

)3∕2

,

(26)S(T ,V ,N) =Sid(T ,V − Nb,N),

(27)
�(T ,V ,N) =�id(T ,V − Nb,N) + bPid(T ,V − Nb,N)

−
an

1 + �bn

(

1 +
1

1 + �bn

)

,

(28)

Sid(T ,V − Nb,N) =NkB

[

nQ
(1 − bn

n

)

+
5

2

]

,

�id(T ,V − Nb,N) =kBTln
[

n

nQ(1 − bn)

]

and

Pid(T ,V − Nb,N) =kBT
( n

1 − bn

)

(29)n ≡ n(T ,�) =
nid(T ,�id)

1 + bnid(T ,�id)
,

(30)P(T ,�) = kBT
n(T ,�)

1 − bn(T ,�)
−

an2(T ,�)

[1 + �bn(T ,�)]2
,
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which are related to the moments of the particle number distribution by

In the GCE, the particle number N fluctuates around its average value < N > with 
the normalized probability distribution P(N). Let us introduce the k moment < Nk

>

where symbol < ⋯ > denotes the GCE averaging, ΔN ≡ N− < N >, and the vari-
ance 𝜎2 =< (ΔN)2 >.

Now, we consider three well-known measures of the particle number fluctua-
tions: the scaled variance �(N) , the skewness S�, and the kurtosis k�2 . The scaled 
variance �(N) is an intensive measure of N-fluctuations and is given by (Taking 
kB = 1)

The skewness S� measures the degree of asymmetry of the distribution P(N) around 
its mean value < N > and is defined as

The kurtosis �2 is the measure of “peakedness” of the probability distribution P(N),

(31)�n =
�
n
(

P∕T4
)

�

(

�∕T
)n ,

(32)
𝜒1 =

< N >

VT3
,𝜒2 =

< (ΔN)2 >

VT3
,𝜒3 =

< (ΔN)3 >

VT3
,

𝜒4 =
< (ΔN)4 > −3 < (ΔN)2 >2

VT3

(33)< Nk
>=

∑

N

NkP(N),

(34)
𝜔(N) ≡

𝜎
2

< N >

=
𝜒2

𝜒1

=
T

n

(

𝜕n

𝜕𝜇

)

T

=
[

1

(1 − bn)2
−

2an

T(1 + 𝛽bn)3

]−1

(35)
S𝜎 ≡

< (ΔN)3 >

𝜎
2

=
𝜒3

𝜒2

=𝜔(N) +
T

𝜔

(

𝜕𝜔

𝜕𝜇

)

T

=𝜔2

[

1 − 3bn

(1 − bn)3
−

6𝛽abn2

T(1 + 𝛽bn)4

]

(36)

k�2 ≡ < (ΔN)4 > −3 < (ΔN)2 >2

�2 =
�4
�2

= (S�)2 + T
(�S�
��

)

T

= 3(S�)2 − 2�(N)S� − 6(�(N))3
[ b2n2
(1 − bn)4

+ 2�ab n
2(1 − �bn)

T(1 + �bn)5
]
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Note that for � = 0, the values of �(N) , S�, and k�2 of the model (21) coincide with 
the corresponding results obtained in [21].

To study the critical behavior of the particle number fluctuations close to the CP, 
we rewrite Eqs. (34), (35), and (36) in terms of the reduced parameters Pr = P∕Pc , 
nr = n∕nc, and Tr = T∕Tc . By solving the cubic quation of Eq. 21 (using the method 
of Sect. 3), one obtains the critical point

The results obtained from Eq. 37 coincide with the critical properties of vdW EoS 
( � = 0 ) [1], NB EoS ( � = 1∕

√

3 ) [17], and � = 1 [22].
Using Eq. 37, we can rewrite Eqs. 34, 35, and 36 in the reduced form

and

The scaled variance (38) as a function of nr and different values of � (0, 0.5, and 1) 
is plotted in Fig. 1. We notice that �(N) → 1 as nr → 0 (this corresponds to the ideal 

(37)nc =
N

Vc

=
1

(3 + 2�)b
, kBTc =

8a

27(1 + �)b
, Pc =

a

27(1 + �)2b2
.

(38)�(N) =
1

(3 + 2�)2

[

1
(

3 + 2� − nr
)2

−
27(1 + �)nr

4Tr
(

3 + 2� + �nr
)3

]−1

,

(39)

S� =
1

(3 + 2�)2

[

1
(

3 + 2� − nr
)2

−
27(1 + �)nr

4Tr
(

3 + 2� + �nr
)3

]−2

×
[ 3 + 2� − 3nr
(

3 + 2� − nr
)3

−
81�(1 + �)n2

r

4Tr
(

3 + 2� + �nr
)4

]

,

(40)
k�2 =3(S�)2 − 2�(N)S� − 6(3 + 2�)2(�(N))3n2r

[ 1
(3 + 2� − nr)4

+ 27�(1 + �)
(3 + 2� − �nr)

4Tr(3 + 2� + �nr)5
]

(a) (b)

Fig. 1   The scaled variance �(N) (38) as a function of n
r
 for �=0, 0.5, and 1 at (a) T

r
= 1.7 and (b) T

r
= 1
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gas), �(N) → 0 as nr → 3 + 2� (this corresponds to the liquid with the highest pos-
sible density), and �(N) → ∞ at CP ( Tr = nr = 1).

For the skewness, it is clear from (39) that S𝜎 > 0 at nr <
3+2𝛽

3
 (the gas phase), 

S𝜎 < 0 at nr >
3+2𝛽

3
 (the liquid phase), and S� = 0 at nr =

3+2�

3
 . We notice also, that 

S� → 1 as nr → 0 and S� → 0 as nr → 3 + 2� (see Fig. 2).
Equation 40 shows that at Tr < 1, the kurtosis has a large positive value (lepto-

kurtic) for both nr <
3+2𝛽

3
 (the gas phase) and nr >

3+2𝛽

3
 (the liquid phases) (Fig. 3a). 

We notice also, that the kurtosis has a negative value (platykurtic) at Tr > 1 and 
nr =

3+2�

3
 (Fig. 3b).

6 � Conclusions

Here, a generalization of the two-parameter vdW model is presented by setting 
three parameters r1, r2, and k to the attractive term. The cubic equation is calculated 
exactly (see (5)) and solved analytically for 0 ≤ k ≤ 2 , through which the critical 
properties of the generalized vdW model are determined .

The Grand canonical ensemble formulation of one family of the generalized 
vdW equation is derived (see (30)). The particle fluctuations are characterized by 
three quantities scaled variance �(N) , skewness S�, and kurtosis k�2 . An analytical 
expressions for these quantities are derived in terms of the reduced variables ( nr, Tr) 
for general value � (see (38)–(40)) and analyzed in a vicinity of the critical point . 

(a) (b)

Fig. 2   The skewness S� (39) as a function of n
r
 for �=0, 0.5, and 1 at (a) T

r
= 0.7 and (b) T

r
= 1.7

(a) (b)

Fig. 3   The kurtosis k�2 (40) as a function of n
r
 for �=0, 0.5, and 1 at (a) T

r
= 0.7 and (b) T

r
= 1.7
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The results for � = 0 in the present work are consistent with the results obtained in 
[21].

As seen from Fig.  1, the scaled variance is a positive quantity, approaches the 
ideal gas in the limit of small densities, i.e., �(N) ≅ 1 , as n → 0 and corresponds 
to the highest possible density ( �(N) → 0 ) as nr → 3 + 2� . From Fig. 2, it is seen 
that the skewness is positive at nr <

3+2𝛽

3
 (gas phase) and negative (liquid phase) at 

nr >
3+2𝛽

3
 for all values of Tr . Also, the skewness S� → 0 as nr →

3+2�

3
(n = nc line), 

and this line is the transition line from gas to liquid phase. From Fig. 3a, it is noticed 
that the kurtosis is positive at T > Tc for both nr <

3+2𝛽

3
 and nr >

3+2𝛽

3
 and close to 

the CP, the kurtosis changes rapidly from positive to negative values at T > Tc (see 
Fig. 3b).

Finally, it is noticed from the calculations and the figures that the three quantities 
�(N) = S� = k�2 = 1 when the reduced critical density nr → 0 , i.e., the vdW EoS 
corresponds to the ideal gas and the distribution approaches the Poisson distribution. 
Also, it is found that the fluctuations have a singular behavior close to the critical 
point where the three quantities ( �(N) , S�, and k�2 ) diverge at the critical point.
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