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Abstract
Equations of state for n-hexadecane  (C16H34) and n-docosane  (C22H46) have been 
developed as functions of the Helmholtz energy with independent variables of tem-
perature and density. The equations were developed based on experimental values of 
density, speed of sound, isobaric heat capacity, and vapor pressure. With these equa-
tions, all thermodynamic properties of n-hexadecane and n-docosane can be calcu-
lated. For n-hexadecane, the uncertainty in vapor pressure is 0.5 %. The uncertainty 
of the saturated liquid density is 0.05 % from the triple point up to 400 K, and 0.2 % 
at higher temperatures. The uncertainty in densities is within 0.5 %. The speed of 
sound and isobaric heat capacity can be calculated within 0.25 %. The uncertainties 
of the properties calculated with the equation for n-docosane are 5 % for vapor pres-
sure, 0.1 % for saturated liquid density, 1 % for density, 0.5 % and 1 % for speed of 
sound at atmospheric pressure and higher pressures, respectively, and within 3 % for 
heat capacity.

Keywords Equations of state · Helmholtz energy · n-hexadecane · n-docosane · 
Thermodynamic properties

1 Introduction

n-Hexadecane  (C16H34) and n-docosane  (C22H46) are normal alkanes of inter-
est in the petroleum industry for multiple applications. They are generally used as 
constituents in mixtures for fuel, especially for aviation. In this work, fundamen-
tal equations of state, in terms of the Helmholtz energy, are presented for both liq-
uids. The equations of state are valid over the whole fluid region, and through them 
all thermodynamic properties can be calculated. Measurements of vapor pressure, 
density, speed of sound, and heat capacity are available in the literature for both 
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n-hexadecane and n-docosane. Although the amount of data available for n-hexa-
decane is quite large, n-docosane is less studied, as with other heavy alkanes. The 
experimental data (reported in references 1–84) were used to develop the equations 
of state and estimate their uncertainties.

2  Critical and Triple Point Values

The critical values are among the most important parameters in the development 
of equations of state, such as for use as the reducing parameters in the equations. 
In the work of Lemmon and Goodwin [85], equations for the critical temperatures 
and pressures of normal alkanes, as functions of the carbon number, were deter-
mined. In the present work, the critical temperature values calculated by Lemmon 
and Goodwin were adopted for both fluids; the critical densities ρc were determined 
during the fitting process of the equations of state. The critical pressures pc were 
calculated from the final equations of state as a fixed point at the critical temperature 
and density.

The values of the critical point determined in this work for n-hexadecane are

The triple point temperature of n-hexadecane is 291.329 K, and its molar mass is 
226.441 g·mol−1 [86].

The critical values of n-docosane are

The triple point temperature of n-docosane is 587.6  K and its molar mass is 
310.601 g·mol−1 [86].

3  Ancillary Equations

The boundaries between the liquid and vapor phases are defined by saturation states 
that can be estimated through the use of ancillary equations. These give close estimates 
for the pressures and densities required in the iterative process to find the saturation 

Tc = 722.1K,

pc = 1.4799MPa,

�c = 1.000 mol ⋅ dm
−3
.

Tc = 792.2K,

pc = 1.1740MPa,

�c = 0.723 mol ⋅ dm
−3
.
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states. The ancillary equations were developed by fitting calculated values of the satura-
tion states (determined with the application of the Maxwell criteria applied to the equa-
tions of state) [87].

3.1  Ancillary Equations for n‑hexadecane

The ancillary form for the vapor pressure pσ is

where � = 1 −
T

Tc
 , N1 =  − 10.4856, N2 = 3.8226, N3 =  − 8.6727, N4 =  − 4.1440, 

N5 = 0.8801, and N6 =  − 5.7224.
The saturated liquid density ρ’ can be calculated by the following ancillary equation

where N1 = 3.43, N2 =  − 4.008, N3 = 8.4779, N4 =  − 7.894, and N5 = 3.4824.
The ancillary equation that represents the saturated vapor density ρ’’ is

where N1 =  − 5.0096, N2 = 0.9061, N3 =  − 15.2865, N4 =  − 61.4138, 
N5 =  − 143.5222, and N6 =  − 369.0229.

3.2  Ancillary Equations for n‑docosane

The ancillary form representing the vapor pressure pσ is

where N1 =  − 12.3834, N2 = 2.8818, N3 =  − 11.6292, N4 =  − 2.7357, N5 =  − 7.3103, 
and N6 = 1188.9117.

The saturated liquid density ρ’ can be calculated with

where N1 = 6.6254, N2 =  − 11.0123, N3 = 13.6452, N4 =  − 8.8244, and N5 = 3.1241.
The ancillary equation that represents the saturated vapor density ρ″ is

(1)ln

(
pσ

pc

)

=
Tc

T

[
N1� + N2�

1.5 + N3�
2.8 + N4�

6.7 + N5�
8.9 + N6�

15.5
]
,

(2)
��

�c
= 1 + N1�

0.39 + N2�
0.84 + N3�

1.27 + N4�
1.72 + N5�

2.26,

(3)ln

(
���

�c

)

= N1�
0.44 + N2�

2.32 + N3�
1.75 + N4�

4.4 + N5�
9.97 + N6�

20.9,

(4)ln

(
pσ

pc

)

=
Tc

T

[
N1� + N2�

1.5 + N3�
2.7 + N4�

5.5 + N5�
14.1 + N6�

52.1
]
,

(5)
��

�c
= 1 + N1�

0.5 + N2�
0.8 + N3�

1.2 + N4�
1.8 + N5�

2.5,

(6)ln

(
���
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= N1�
0.5 + N2�

24.0 + N3�
1.7 + N4�

4.2 + N5�
10.3 + N6�

10.6,
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where N1 =  − 5.9790, N2 =  − 586.6421, N3 =  − 14.3725, N4 =  − 71.0676, 
N5 =  − 213.3123, and N6 = 15.7901.

4  Equation of State

The form of the equation of state presented in this work is based on the Helm-
holtz energy as a function of density and temperature a(ρ,T), which is the most 
commonly used form for the calculation of thermodynamic properties of pure flu-
ids and mixtures with low uncertainties. All thermodynamic properties can be 
estimated as derivatives of the Helmholtz energy, for example, pressure is calcu-
lated as

The derivatives of the Helmholtz energy required to calculate other thermody-
namic properties not reported are given elsewhere, e.g., [88].

The functional form for the reduced Helmholtz energy α, as a function of the 
dimensionless density and temperature, is

where δ = ρ/ρc, τ = Tc/T, and R is the molar gas constant equal to 
8.314462618 J·mol−1·K−1 [89].

The reduced Helmholtz energy α is the contribution from the ideal gas con-
tribution α0, which represents the ideal gas properties, and the residual or real 
Helmholtz energy αr that accounts for the interactions between molecules.

4.1  Properties of the Ideal Gas

The ideal gas Helmholtz energy has the following form [90]:

where the coefficients for n-hexadecane and n-docosane are given in Tables 1 and 2, 
respectively.

(7)p = �2
(
�a

��

)

T

.

(8)
a(�, T)

RT
= �(�, �) = �0(�, �) + �r (�, �),

(9)�0 = ln� +
(
c0 − 1

)
ln� +

2∑

k=1

ak�
ik +

2∑

k=1

vkln
[
1 − e

−uk�

Tc

]
,

Table 1  Coefficients and 
exponents of the ideal gas 
Helmholtz energy equation for 
n-hexadecane

c0 k ak ik vk uk

23.03 1 45.96 0 18.91 420
2  − 26.19 1 76.23 1860
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In order to calculate thermodynamics properties, a model for the ideal gas iso-
baric heat capacity is necessary. The expression for the ideal gas isobaric heat 
capacity cp

0 used in this work that is required to derive the ideal gas Helmholtz 
energy is

The uk coefficients contained in the Einstein functions used in this equation 
give the proper shape of the ideal gas heat capacity similar to that derived from 
statistical mechanical models.

The values of ak, vk, and uk are given in Table 1 for n-hexadecane and in Table 2 
for n-docosane.

4.2  Properties of the Real Gas

The functional form often used till about the year 2000 for the residual Helmholtz 
energy equation was

A form containing additional Gaussian bell-shaped terms is now typically used, 
including those for n-hexadecane and n-docosane in this work, and is expressed as

where the coefficients and exponents are reported in Table 3 for n-hexadecane and in 
Table 4 for n-docosane and the values of k1, k2, and k3 for the equations in this work 
are 5, 10, and 15. The Gaussian terms are useful in the determination of the fluid 
properties in the critical region.

(10)
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p

R
= c0 +
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]2 .
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N
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N
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+
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N
k
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[
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(
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k
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(
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k
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,

Table 2  Coefficients and 
exponents of the ideal gas 
Helmholtz energy equation for 
n-docosane

c0 k ak ik vk uk

33.9 1 66.73 0 61.6 1000
2  − 44.17 1 77.7 2400
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5  Fitting Constraints

In order to develop the equations of state, several constraints were used to control 
the shape of the thermodynamic surface. In Table 5, a list of the main constraints 
for n-hexadecane is given. The table shows the properties for which a constraint was 
needed, the kind of constraint imposed, and the range over which it was applied. 
Because the thermodynamic behavior of n-hexadecane and n-docosane is, for the 
most part, the same when viewed on a reduced basis (such as with τ and δ), the 

Table 3  Coefficients of 
the equation of state for 
n-hexadecane; coefficients not 
listed are zero

k Nk tk dk lk ηk βk γk εk

1 0.03965879 1 4
2 1.945813 0.224 1
3  − 3.738575 0.91 1
4  − 0.342167 0.95 2
5 0.3427022 0.555 3
6  − 2.519592 2.36 1 2
7  − 0.8948857 3.58 3 2
8 0.10760773 0.5 2 1
9  − 1.297826 1.72 2 2
10  − 0.048332312 1.078 7 1
11 4.245522 1.14 1 0.641 0.516 1.335 0.75
12  − 0.31527585 2.43 1 1.008 0.669 1.187 1.616
13  − 0.7212941 1.75 3 1.026 0.25 1.39 0.47
14  − 0.2680657 1.1 2 1.21 1.33 1.23 1.306
15  − 0.7859567 1.08 2 0.93 2.1 0.763 0.46

Table 4  Coefficients of the 
equation of state for n-docosane

k Nk tk dk lk ηk βk γk εk

1 0.04239455 1 4
2 2.370432 0.224 1
3  − 4.30263 0.91 1
4  − 0.4039603 0.95 2
5 0.4005704 0.555 3
6  − 2.643419 2.36 1 2
7  − 0.9199641 3.58 3 2
8 0.1394402 0.5 2 1
9  − 1.448862 1.72 2 2
10  − 0.0547678 1.078 7 1
11 4.579069 1.14 1 0.641 0.516 1.335 0.75
12  − 0.3534636 2.43 1 1.008 0.669 1.187 1.616
13  − 0.8217892 1.75 3 1.026 0.25 1.39 0.47
14  − 0.2604273 1.1 2 1.21 1.33 1.23 1.306
15  − 0.7618884 1.08 2 0.93 2.1 0.763 0.46
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constraints used for n-hexadecane can be applied directly to the fitting of n-doc-
osane after the temperature and density ranges of the constraints have been properly 
adjusted, and thus they are not reported here.

As an example, the rectilinear diameter (the average of the vapor and liquid satu-
rated densities) was constrained to be linear by imposing zero curvature from 650 K 

Table 5  Constraints for n-hexadecane

Property Constraint Range

Speed of sound Negative slope and 3rd derivative
Positive curvature and 4th deriva-

tive

1 MPa, (35–115) K

Isochoric heat capacity Negative slope and 3rd derivative
Positive curvature and 4th deriva-

tive

3 MPa, (430–625) K

Rectilinear diameter Zero curvature Liquid saturation line, from 650 K 
to Tc

Phase identification parameter Negative curvature 1000 K, (1.08–1.85) mol·dm−3

Phase identification parameter Zero curvature 725 K, (0.80–0.95) mol·dm−3

Phase identification parameter Positive derivatives 1 MPa, (200–420) K
Phase identification parameter Positive derivatives Liquid saturation line, (580–650) K
4th virial coefficient Positive values (1300–3000) K
4th virial coefficient Negative slope (1000–1200) K
Ideal curve Zero curvature (0.02–2.00) mol·dm−3

Joule inversion curve Positive curvature (0.05–2.50) mol·dm−3

Joule–Thomson inv. curve Positive curvature (0.1–2.0) mol·dm−3

Fig. 1  Temperature as a function of density for n-hexadecane along several isobars: the straight line is 
the rectilinear diameter
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to the critical temperature; it results in the behavior shown in Fig. 1. In preliminary 
fits, the fourth virial coefficient was negative around 1500 K to 2500 K, thus it was 
forced to give positive values in the temperature range between 1300 K and 3000 K, 
as presented in Fig. 2.

The phase identification parameter (PIP) [91] required many constraints. An 
example is the constraint acting on the isobar at 1 MPa over the temperature range 
from 200 K to 420 K that forced the slope, curvature, and third and fourth deriva-
tives to all be positive. A further constraint was used to obtain negative curvature 

Fig. 2  Virial coefficients for n-hexadecane, with units of  dm3·mol−1 for the second virial coefficient B, 
units of  dm6·mol−2 for the third virial coefficient C, and units of  dm9·mol−3 for the fourth virial coef-
ficient D 

Fig. 3  Phase identification parameter (PIP) as a function of density for n-hexadecane along isotherms 
from 100 K to 1000 K
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of the isotherm at 1000 K between 1.08 mol·dm−3 and 1.85 mol·dm−3 (see Fig. 3). 
More details about the phase identification parameter and the fourth virial coeffi-
cient are reported in the following section.

6  Comparison to Experimental Data

The experimental data used for this work are summarized in Table 6 for n-hexade-
cane and in Table 7 for n-docosane. The experimental data were converted to kel-
vins (ITS-90) for temperatures, megapascals for pressures, and moles per cubic deci-
meter for densities.

In order to estimate the uncertainties of the equations of state, all available 
experimental data are considered. The uncertainties are estimates of the combined 
expanded uncertainties with a coverage factor of two. The accuracy of the equations 
of state were determined by statistical comparisons between the properties calcu-
lated from the equations of state and the experimental values.

Tables 6 and 7 show the average absolute deviations (AAD) for any generic prop-
erty X, as follows:

where n is the number of data and ΔX is defined as

6.1  Comparison to n‑hexadecane Experimental Data

In Fig.  4, the deviations of experimental vapor pressures from the equation are 
shown. The measurements cover a range of temperatures between 298 K and 600 K. 
Most of the experimental data show scatter within 2 %. The data of Morgan and 
Kobayashi [49], Viton et al. [74], and Camin et al. [17] are best represented. The 
three data sets overlap between 460 K and 470 K, and the data show deviations on 
average within 0.1 %. Above 460 K, the Morgan and Kobayashi and Camin et al. 
data agree with the equation within 0.2 %. The data of Morgan and Kobayashi were 
carried out for temperatures up to 583  K, and the equation maintains deviations 
below 0.2 %. For temperatures lower than 460 K, the data of Morgan and Kobayashi 
show deviations from the equation below 0.6 %.

The deviations of saturated liquid densities for n-hexadecane are shown in Fig. 5. 
Most of the data have deviations lower than 0.1 % between 273 K and 373 K. In the 
temperature range between 303 K and 373 K, the data of Bolotnikov et al. [15], Prak 
et al. [63, 64] show deviations lower than 0.05 %. The measurements of Plebanski 
et al. [62] were performed over a wide range of temperature (from about 300 K to 

(13)AAD =
1

n

∑n

i=1
|
|ΔXi

|
|,

(14)ΔX = 100 ⋅

(
Xdata − Xcalc

Xdata

)

.
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490 K), with a maximum deviation of 0.07 % from the equation and better than 0.02 % 
between 340 K and 420 K.

All of the density data available are represented by the equation with deviations 
lower than about 1.5 % and most are within 0.3 %, as shown in Fig. 6. The data of 
Banipal et  al. [10] are represented by the equation within 0.1 % for temperatures 
between 318 K and 373 K, and at pressures up to 10 MPa. At ambient pressure, the 
deviation is reduced to 0.05 %. The deviations of the data of Snyder and Winnick 
[70] are below 0.1 % at 298 K. Between 0.6 MPa and 28 MPa, the data are within 
0.1 %. The measurements performed by Outcalt et al. [54] agree with the equation 
of state within 0.2 %, but the deviations are consistently negative.

The deviations in speed of sound data from the equation are shown in Fig. 7. The 
only available measurements at temperatures higher than 473  K are those in the 
work of Neruchev et al. [52]. The data show good agreement with the equation and 
are less than 0.5 % for temperatures up to 693 K. At pressures between 10 MPa and 

Table 7  Experimental data for n-docosane

Authors # Pnts Temperature range 
(K)

Pressure range 
(MPa)

Density range 
(mol·l−1)

AAD (%)

Vapor pressure
 Chickos and Hanshaw 

(2004)
[19] 11 298–575 0–0.021 7.18

 Francis and Wood 
(1926)

[33] 8 462–509 0–0.004 21.3

 Grenier-Loustalot et al. 
(1981)

[38] 4 379–434 3.16

 Morgan and Kobayashi 
(1994)

[49] 12 453–573 0–0.021 0.459

 Piacente et al. (1991) [60] 115 341–489 28.4
 Piacente et al. (1994) [59] 23 372–410 26.4
 Sasse et al. (1988) [67] 16 353–462 3
 Young (1928) [81] 3 494–519 0.001–0.004 5.44

Saturated liquid density
 Melaugh et al. (1976) [45] 1 323 2.5 0.088
 Queimada et al. (2005) [66] 3 323–343 2.45–2.49 0.057
 Dutour et al. (2001) [23] 8 323–393 2.34–2.49 0.053
 Neruchev et al. (1967) [53] 15 333–473 2.17–2.48 0.059

Density
 Peters et al. (1988) [57] 48 323–368 2.05–16.1 2.38–2.51 0.945

Heat capacity
 Durupt et al. (1996) [22] 6 373–473 0.101 5.23
 Atkinson et al. (1969) [6] 8 320–450 0.101 0.255

Speed of sound
 Dutour et al. (2001) [23] 126 323–393 0.101–150 0.559
 Neruchev et al. (1967) [53] 15 333–473 0.1 0.064
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Fig. 4  Comparisons of  C16H34 vapor pressures pσ calculated with the equation of state and experimental 
data

Fig. 5  Comparisons of  C16H34 saturated liquid densities ρ’ calculated with the equation of state and 
experimental data
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Fig. 6  Comparisons of  C16H34 densities ρ calculated with the equation of state and experimental data
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50 MPa, the data of Ball and Trusler [9], Nascimento et al. [51], Khasanshin and 
Shchemelev [39], and Boelhouwer [14] are fitted to within 0.4 %. Above 50 MPa, 
the measurements of Boelhouwer, which were carried out up to 120 MPa, spread no 
more than 0.3 %. For the other available data above 50 MPa (Ball and Trusler), the 
deviations increase at higher pressures. The deviations become increasingly negative 
down to − 3.2 % at 100 MPa. The speed of sound data at ambient pressure between 
290 K and 373 K are represented by the equation within 0.2 %.

Fig. 7  Comparisons of  C16H34 speeds of sound w calculated with the equation of state and experimental 
data
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For the isobaric heat capacity, there are fewer experimental data than those of 
the properties previously discussed. The measurements, shown in Fig. 8, are within 
6 % from the equation. The work with the largest number of measurements is that 
of Banipal et al. [10]. They are well represented by the equation of state; the devia-
tions are not higher than 0.3 % in the temperature range from 318 K to 373 K. At 
298 K, the measurements of Benson et  al. [12] deviate from the equation by less 
than 0.02 %. The deviations of their data increase to 0.5 % for higher temperatures 
(up to 358 K), and all of them are negative.

6.2  Comparison to n‑docosane Experimental Data

For n-docosane, there are significantly fewer data points than for n-hexadecane. The 
vapor pressure is the most studied property for this fluid, covering a wide range of 
temperature (see Fig.  9). The data set of Morgan and Kobayashi [49] is best rep-
resented by the equation at high temperatures, between 453 K and 573 K, with an 
average deviation of 0.5 %. The data given in Sasse et al. [67] show different behav-
iors depending on the temperature. Between 393 K and 423 K, the data spread about 
the equation within 2 %. Below 393 K, they all show deviations between − 4 % and − 8 %. 
Above 423 K the data differ with the equation consistently around 2 %. The data of 
Chickos and Hanshaw [19] show deviations consistently around − 2 % at tempera-
tures higher than 450 K, while the data and equation differ more as the temperature 
decreases.

All the experimental saturated liquid densities deviate from the equation of state 
within ± 0.2 %, as shown in Fig. 10. The measurements of Dutour et al. [23] deviate 

Fig. 8  Comparisons of  C16H34 heat capacities cp calculated with the equation of state and experimental 
data
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more from the equation as the temperature increases, starting from − 0.001 % at 
323.15 K to − 0.12 % at 393.15 K. Queimada et  al. [66] measured three saturated 
liquid density points, which deviate from the calculated values by around − 0.06 %. 
The measurements of Neruchev et al. [53] cover a wider range of temperature, from 
333 K to 473 K; all of them agree with the equation of state within ± 0.15 %.

Fig. 9  Comparisons of  C22H46 vapor pressures pσ calculated with the equation of state and experimental 
data

Fig. 10  Comparisons of  C22H46 saturated liquid densities ρ’ calculated with the equation of state and 
experimental data
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Peters et al. [57] published the only pvT data reported for n-docosane, with tem-
peratures from 323 K to 368 K and pressures up to 16 MPa. As shown in Fig. 11, the 
data show a systematic average deviation of − 1 % from the equation of state. The 
data at pressures near ambient differ from the saturated liquid density data by this 
amount. The data show a consistent offset from the equation at all pressures.

The measurements of Neruchev et al. [53] and Dutour et al. [23] are the only 
available data for n-docosane for the speed of sound as shown in Fig. 12. Between 
353 K and 373 K the two sets overlap, and the deviations from the equation and 

Fig. 11  Comparisons of  C22H46 densities ρ calculated with the equation of state and experimental data

Fig. 12  Comparisons of  C22H46 speeds of sound w calculated with the equation of state and experimental 
data



1 3

International Journal of Thermophysics (2022) 43: 146 Page 21 of 30 146

both sets are lower than 0.2 % at ambient pressure. Over their whole temperature 
range (from 333 K to 473 K) the Neruchev data are accurately represented by the 
equation of state, with a maximum deviation of 0.2 %. The data presented by Dut-
our et al. deviate from the equation of state within 1 %, but for the measurements 
performed at ambient pressure, the maximum deviation is less than 0.3 %.

For the isobaric heat capacity, just two sets of data are available: Atkinson 
et  al. [6] and Durupt et  al. [22]. The two data sets show substantial differences 
at the higher temperatures as shown in Fig. 13. The deviations of the Atkinson 
et al. data are within 0.05 % and − 0.5 %, while the deviations of the Durupt et al. 
data increase with increasing temperatures, from 2.2 % at 273 K and up to 8 % at 
473 K.

6.3  Virial Coefficients

One of the most important validation tests in the development of equations of 
state comes from the analysis of its virial coefficients.

In Fig. 2, a plot of the second, third, and fourth virial coefficients is given as 
a function of temperature. The third virial coefficient C for n-hexadecane has a 
maximum value of 1.849  dm6·mol−2 at 486.3 K, and is always positive above a 
temperature of 367.14 K. The maximum value of the fourth virial coefficient D is 
1.120  dm9·mol−3 at 489.3 K, has a minimum positive value at 1304 K, and a sec-
ond maximum around 7536 K (for any temperature between 1304 K and above). 

(15)Z(T , �) = 1 + B(T)� + C(T)�2 + D(T)�3 + …

Fig. 13  Comparisons of  C22H46 heat capacities cp calculated with the equation of state and experimental 
data
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These values and the shape of the function were achieved through the use of the 
constraints reported in Table 5 and explained in the section “Fitting constraints.”

Fig. 14  Phase identification parameter (PIP) as a function of temperature for n-hexadecane along isobars 
from 0.5 MPa to 3 MPa

Fig. 15  Phase identification parameter (PIP) as a function of temperature for n-docosane along isobars 
from 0.5 MPa to 3 MPa
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7  Extrapolation Behavior

The REFPROP software [92] was used to generate diagrams for inspection of 
the extrapolation behavior. One of the most important parameters used to verify 
the correct behavior of the equations is the phase identification parameter (PIP) 
defined in the work of Venkatarathnam and Oellrich [90]; this is an extremely 
sensitive property from which small inconsistencies can be seen that are not vis-
ible with other properties.

In Fig.  14, the PIP for n-hexadecane as a function of temperature is shown, 
along isobars and at saturation states. The plot shows positive curvature in the 
PIP over most of the liquid region, except for the region between 150 K and about 
200  K. At very low temperatures (below 20  K), the curvature is still negative. 
This behavior of the PIP is also present in the plots for R-1234ze(E) reported in 
the work of Thol and Lemmon [93] and for R-245ca reported in Zhou and Lem-
mon [94].

Similar behavior is observed in the plot of the PIP versus temperature for 
n-docosane, shown in Fig. 15. The curvature is almost always positive over the 
liquid region, although it becomes slightly negative between 175 K and 205 K. 
The PIP for n-docosane, even at temperatures lower than 15  K, has positive 
curvature.

The validation of the equations can also be done by checking the behavior 
of other properties such as density, speed of sound, heat capacity, and the ideal 
curves. All of these properties show the expected trends as explained in other 
publications on equations of state, such as the work for the equation of state of 
propane [88] or R-125 [95].

The ideal curves are curves along which one property of a real fluid is equal 
to the hypothetical ideal gas. This definition can refer to any property, but usually 
the ideal curves of the compressibility factor, Z(T, ρ), and its derivatives are only 
considered, as follows:

Ideal curve:

Boyle curve:

Joule–Thomson curve:

Joule inversion curve:

Z = 1

(
�Z

��

)

T

= 0

(
�Z

�T

)

p
= 0

(
�Z

�T

)

�
= 0
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The ideal curves are used to judge the behavior of the equation of state. Even if 
the curves do not provide numerical information, reasonable shapes of the curves, 
such as the plots for propane [88], indicate correct extrapolation behavior of the 

Fig. 16  Ideal curves for n-hexadecane

Fig. 17  Ideal curves for n-docosane
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equation of state extending to high pressures and temperatures far in excess of the 
likely thermal stability of the fluid. Consequently, the behavior of the ideal curves 
should always be analyzed and checked during the equation development process. 
Figures 16 and 17 show the plots of the ideal curves obtained for n-hexadecane 
and n-docosane, which have the expected shape, giving confidence in the proper 
extrapolation behavior at high temperatures and pressures.

8  Conclusions

Fundamental equations of state for n-hexadecane and n-docosane were developed 
and presented here. The equations can be used to calculate all the thermodynamic 
properties of these alkanes over the entire fluid region.

For n-hexadecane, the uncertainty in vapor pressure is 0.5 %. For saturated liq-
uid density, the uncertainty is 0.05 % for temperatures up to 400 K and increases 
to 0.2 % at higher temperatures. The estimated uncertainty in densities is 0.1 % 
from the triple point to 450 K for pressures below 50 MPa. Outside this range, the 
uncertainty is 0.5 %. The speed of sound has an uncertainty of 0.25 %. The uncer-
tainty in isobaric heat capacity is estimated to be 0.25 %.

For n-docosane, the uncertainty in vapor pressure is about 5 % and the uncer-
tainty in saturated liquid density is 0.1 %. At pressures up to 20 MPa, the uncer-
tainty in density is about 1 %; no estimation can be provided at higher pressures. 
For speed of sound, the uncertainty is less than 0.5 % at ambient pressure and 
increases to 1 % at higher pressures. The uncertainty in heat capacity is 3 %.

9  Supplementary Information

The files containing the parameters of the equations of state for n-hexadecane and 
n-docosane are available for the use in REFPROP [92], TREND [96], and Cool-
Prop [97].
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