Skip to main content

Advertisement

Log in

Thermal Conductivity Estimation of Carbon-Nanotube-Dispersed Phase Change Material as Latent Heat Storage Material

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This paper reports the results of a comparative evaluation of the measured and theoretical thermal conductivity values of a carbon nanotube-dispersed phase change material (PCM), in which multiwalled carbon nanotubes (MWCNTs) with extremely high thermal conductivity are dispersed in a latent heat storage material. The temperature range to be examined encompasses the temperatures corresponding to the solid-to-liquid phase, including the melting point of the latent heat storage material (PCM). The thermal conductivity of the MWCNT-dispersed PCM was measured using the wire-heating method with mass composition ratio and temperature as the parameters. The ratio of the thermal conductivity of the dispersoid to that of the continuous phase of this test sample was unprecedentedly large—a range that has never been evaluated in other studies. The test MWCNT had a very thin and long shape and was considered to be dispersed in the continuous phase in a deformed and interlaced state. The measured values of the thermal conductivity of the MWCNT-dispersed water were in good agreement with the values estimated using the columnar arrangement (Rayleigh) model formula, in which the heat flow was perpendicular to the axis. However, the measured thermal conductivity of the MWCNT-dispersed latent heat storage material was larger than that estimated by the Rayleigh model. Therefore, calculations were performed using the layer parallel model to determine the thermal conductivity estimation conditions. The estimation conditions enable the thermal conductivity estimation of the MWCNT-dispersion PCM and provide useful information for the design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

q :

Calorific value per unit length (W·m−1)

t :

Time (s)

x :

Values that include the shape of the dispersoid (–)

V d :

Volume fraction of the dispersoid (–)

λ :

Thermal conductivity (W·m−1·K−1)

ρ :

Density (kg·m−3)

θ :

Temperature (°C)

Δθ :

Temperature difference (K)

φ :

Mass composition ratio, mass %

1:

Initial

2:

Final

c:

Continuous phase

d:

Dispersoid

dp:

Parallel direction dispersoid

ex:

Experiment

R:

Rayleigh model

RP:

Rayleigh + parallel model

sa:

Anionic surfactant

sn:

Nonionic surfactant

t:

Tetracosane

th:

Theoretical

References

  1. P. Kim, L. Shi, A. Majumdar, P.L. McEuen, Phys. Rev. Lett. 87, 215502 (2001)

    Article  ADS  Google Scholar 

  2. M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe, T. Shimizu, Phys. Rev. Lett. 95, 065502 (2005)

    Article  ADS  Google Scholar 

  3. Q. Li, C. Liu, X. Wang, S. Fan, Nanotechnology 20, 145702 (2009)

    Article  ADS  Google Scholar 

  4. A.A. Balandin, Nat. Mater. 10, 569–581 (2011)

    Article  ADS  Google Scholar 

  5. New Energy and Industrial Technology Development Organization, All about carbon nanotubes, (The Nikkan Kogyo Shimbum, Ltd.), 6–18 (in Japanese)

  6. E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Nano Lett. 6, 96–100 (2006)

    Article  ADS  Google Scholar 

  7. Y. Ding, H. Alias, D. Wen, R.A. Williams, Int. J. Heat Mass Transf. 49, 240–250 (2006)

    Article  Google Scholar 

  8. J. Hone, M.C. Llaguno, N.M. Nemes, A.T. Johnson, J.E. Fischer, D.A. Walters, M.J. Casavant, J. Schmidt, R.E. Smalley, Appl. Phys. Lett. 77, 666–668 (2000)

    Article  ADS  Google Scholar 

  9. P. Gonnet, Z. Liang, E.S. Choi, R.S. Kadambala, C. Zhang, J.S. Brooks, B. Wang, L. Kramer, Curr. Appl. Phys. 6, 119–122 (2006)

    Article  ADS  Google Scholar 

  10. I. Ivanov, A. Puretzky, G. Eres, H. Wang, Z. Pan, H. Cui, R. Jin, J. Howe, D.B. Geohegan, Appl. Phys. Lett. 89, 223110 (2006)

    Article  ADS  Google Scholar 

  11. M.E. Itkis, F. Borondics, A. Yu, R.C. Haddon, Nano Lett. 7, 900–904 (2007)

    Article  ADS  Google Scholar 

  12. A.N. Volkov, L.V. Zhigilei, Appl. Phys. Lett. 101, 043113 (2012)

    Article  ADS  Google Scholar 

  13. M. Wan, R.R. Yadav, G. Mishra, D. Singh, J. Matthey, Technol. Rev. 59, 199–206 (2015)

    Google Scholar 

  14. S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, E.A. Grulke, Appl. Phys. Lett. 79, 2252 (2001)

    Article  ADS  Google Scholar 

  15. T. Kumada, JSME 41, 1209–1218 (1975). ((in Japanese))

    Article  Google Scholar 

  16. Japan Society of Thermophysical Properties, Thermophysical Properties Handbook (2008), 527–538 (in Japanese)

  17. The Japan Society of Mechanical Engineers, JSME Data Book: Heat Transfer, 5th edn. (2008), 291–293 (in Japanese)

  18. L. Qiu, N. Zhu, Y. Feng, E.E. Michaelides, G. Żyła, D. Jing, X. Zhang, P.M. Norris, C.N. Markides, O. Mahian, Phys. Rep. 843, 1–81 (2020)

    Article  ADS  Google Scholar 

  19. L. Qiu, X. Zhang, Z. Guo, Q. Li, Carbon 178, 391–412 (2021)

    Article  Google Scholar 

  20. E. Yamasue, M. Susa, H. Fukuyama, K. Nagata, J. of Cryst. Growth 234, 121–131 (2002)

    Article  ADS  Google Scholar 

  21. X. Yan, Y. Feng, L. Qiu, X. Zhang, Energy 233, 121158 (2021)

    Article  Google Scholar 

  22. X. Yan, H. Zhao, Y. Feng, L. Qiu, L. Lin, X. Zhang, T. Ohara, Composite B 228, 109435 (2022)

    Article  Google Scholar 

  23. S. Morita, F. Irie, K. Hirano, Y. Hayamizu, T. Yamada, A. Horibe, Netsubussei 33, 151–158 (2019). ((in Japanese))

    Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP18K03999. We would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Shin-ichi Morita, Toshihiro Haniu, and Kazunori Takai. The first draft of the manuscript was written by Shin-ichi Morita, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shin-ichi Morita.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morita, Si., Haniu, T., Takai, K. et al. Thermal Conductivity Estimation of Carbon-Nanotube-Dispersed Phase Change Material as Latent Heat Storage Material. Int J Thermophys 43, 70 (2022). https://doi.org/10.1007/s10765-022-02996-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-02996-0

Keywords

Navigation