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Abstract
In this work, we present a model, based on rough hard-sphere theory, for the tracer 
diffusion coefficients of gaseous solutes in non-polar liquids. This work extends an 
earlier model developed specifically for carbon dioxide in hydrocarbon liquids and 
establishes a general correlation for gaseous solutes in non-polar liquids. The sol-
utes considered were light hydrocarbons, carbon dioxide, nitrogen and argon, while 
the solvents were all hydrocarbon liquids. Application of the model requires knowl-
edge of the temperature-dependent molar core volumes of the solute and solvent, 
which can be determined from pure-component viscosity data, and a temperature-
independent roughness factor which can be determined from a single diffusion coef-
ficient measurement in the system of interest. The new model was found to cor-
relate the experimental data with an average absolute relative deviation of 2.7  %. 
The model also successfully represents computer-simulation data for tracer diffusion 
coefficients of hard-sphere mixtures and reduces to the expected form for self-diffu-
sion when the solute and solvent become identical.

Keywords  Diffusion coefficient · Gases · Hard-sphere theory · Hydrocarbon liquids · 
Viscosity

1  Introduction

The diffusion coefficient is one of the key transport properties controlling many nat-
ural and industrial processes such as transport though membranes, interfacial mass 
transfer and pore-scale processes in hydrocarbon reservoirs. In recent years, the dif-
fusion coefficients of light gases in hydrocarbon liquids have received significant 
attention, especially in connection with enhanced oil recovery (EOR) and geological 
carbon dioxide storage (GCS) [1, 2]. In EOR, natural gas, nitrogen or carbon dioxide 
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is injected into an oil reservoir to maintain pressure, reduce oil viscosity and sweep 
the oil towards the production wells [3, 4]. In GCS, carbon dioxide is injected into, 
for example, a depleted hydrocarbon reservoir where it may dissolve into the res-
ervoir fluids (brine and residual hydrocarbons). The rate of gas dissolution is con-
trolled in part by diffusion and the diffusion coefficients are relevant parameters for 
modelling the process [5]. The diffusion coefficients for binary gas–liquid systems 
have been studied by means of experimental and computational methods. Due to 
the scarcity of experimental measurements under high-pressure conditions, correla-
tions based on hydrodynamic and kinetic theories have been adopted to estimate the 
diffusion coefficients [6]. Several attempts have been made to develop a universal 
correlation based on kinetic theory but, to date, the available methods are restricted 
in scope. Therefore, the objective of the present work was to extend a kinetic the-
ory-based model to cover a wide range of solutes (inorganic and light hydrocarbon 
gases) and solvents (the broad class of hydrocarbon liquids) at infinite dilution.

2 � Existing Modelling Approaches

Numerous theoretical and empirical models have been developed for the estimation 
of binary diffusion coefficients for both the general case and for gas–liquid systems 
in particular. The two most common approaches incorporating elements of theory 
are the hydrodynamic approach and the methods based on the theory of rough hard-
spheres. Both of these approaches are developed for the case in which one of the 
components is present at infinite dilution, corresponding to the so-called tracer dif-
fusion coefficient.

2.1 � Hydrodynamic Theory

The hydrodynamic theory is based on the Stokes–Einstein formula for the diffusivity 
of spherical particles in a continuum fluid and expresses the diffusion coefficient in 
terms of the thermal energy and the viscosity of the medium as follows: 

Here, kB is Boltzmann’s constant, nSE is the Stokes–Einstein number determined by 
the boundary condition at the surface of the spherical particles, η is the viscosity 
of the fluid and a is the radius of the spherical particles. For a no-slip boundary 
condition, nSE = 6 [7] while, for a ‘no-stick’ boundary condition, nSE = 4 [8]. When 
applied to non-spherical particles, a becomes the effective hydrodynamic radius.

Although based on hydrodynamic theory for macroscopic particles, the 
Stokes–Einstein equation is readily applied to molecular solutes in molecular sol-
vents, usually with the assumption that nSE = 4. The model then permits the diffusion 
coefficients of dilute solutes to be correlated with the viscosity of the solvent with 
a treated as an adjustable parameter. To obtain a good correlation, either a becomes 
temperature-dependent or the viscosity is raised to an empirical power [9].

(1)D =
kBT

nSE��a
.
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This model is easily applied to correlate the diffusion coefficients of gaseous sol-
utes in many different solvents as a function of temperature at constant pressure. 
When pressure is also a variable, matters are more complex and the observed behav-
iour is not captured well by making the hydrodynamic radius a function of tempera-
ture alone even when the pressure-dependence of the viscosity is included correctly. 
Cadogan et al. [10] and Taib et al. [11] found that a good correlation could be estab-
lished in many cases by expressing the hydrodynamic radius as a function of the sol-
vent density. However, such an approach was found to breakdown for highly viscous 
solvents such as squalane [10].

2.2 � Kinetic Theory

The kinetic theory of dilute gases was extended to dense pure fluids by Enskog 
under the assumption of hard spherical molecules [8]. Thermophysical properties 
of real liquids can be estimated using hard-sphere models because the repulsive part 
of the intermolecular potential dominates the properties at high densities [9]. The 
smooth-hard-sphere (SHS) theory [12] can be applied to correlate the dimensionless 
viscosity, thermal conductivity and self-diffusion coefficients of pure fluids obtained 
from molecular simulations as functions of reduced volume V*. Here, V* is defined 
as V/V0, where V is molar volume and V0 is the molar core volume which, for hard-
sphere of diameter σ, is NA�

3∕
√

2 , where NA is Avagadro’s constant. As an exam-
ple, the dimensionless self-diffusion coefficient D∗

11
 is defined by

where D11 is the self-diffusion coefficient, n is number density, and 
[nD11]0 = (3∕8�2)(RT ∕�M)1∕2 is the kinetic-theory expression for the dilute-gas 
limit of nD11. This dimensionless self-diffusion coefficient is correlated as a func-
tion of V* only:

where F11(V*) is a universal function [13, 14]. The same theory can be applied to 
real spherical molecules when V0 is treated as a weakly temperature-dependent 
parameter. It is found that both molecular simulation data for smooth hard-spheres 
and experimental data for real monatomic gases conform to this model.

Non-spherical molecules have internal energy that may be exchanged in collisions 
and such systems are treated as rough hard-spheres (RHS) [15]. In the RHS theory, 
an additional temperature- and density-independent ‘roughness factor’ appears such 
that, for example, the dimensionless self-diffusion coefficient is defined by

(2)D∗
11

=
[nD11]

[nD11]0

�

V

V0

�2∕3

=
�

2NA

�1∕3 8
√

�

3

�

M

RT

�1∕2
�

D11

V1∕3

�

,

(3)D∗
11

= F11(V
∗),

(4)D∗
11

=
�

2NA

�1∕3 8
√

�

3A11

�

M

RT

�1∕2
�

D11

V1∕3

�

,
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where A11 is the roughness factor and 0 ≤ A11 ≤ 1. The universal function F11 remains 
the same and experimental data for a given substance are correlated by determining 
the optimal values of A11 and of a small set of parameters that describe V0 as a func-
tion of T.

The tracer diffusion coefficients D12 for RHS systems can be treated theoretically 
in a similar way [12]. The method has been further developed and applied to real 
systems by Cadogan et al. [10] in terms of a dimensionless tracer diffusion coeffi-
cient D∗

12
 for solute 1 in solvent 2 defined as follows:

here, A12 is the corresponding roughness factor, M12 = M1M2∕(M1 +M2) 
is the reduced molar mass, V0,2 is the molar core volume of the solvent, 
V0,12 = (V

1∕3

0,1
+ V

1∕3

0,2
)3∕8 , and V0,1 is the molar core volume of the solute.

For hard spherical molecules, D∗
12

 is rigorously a function of the reduced volume 
V* and of the two ratios V0,2∕V0,1 and M2∕M1 where V0,i = Na�

3
i
∕
√

2 and σi is the 
diameter of molecule of type i. However, analysis of the tracer diffusion coefficient 
data for smooth hard-sphere mixtures, obtained by molecular dynamics simulations 
[16], showed that D∗

12
 can be represented by a function of just two variables: the 

reduced volume V∗ = V ∕V0,2 and the ‘asymmetry’ ratio χ defined by [10]

Therefore, in general, we have

where F12(V∗,�) is a universal function to be determined. An attractive feature of 
Eqs. 5 and 7 is that they treat tracer diffusion in binary systems in a similar way to 
the RHS theory for the transport properties of pure substances. In particular, the 
approach reduces to the established RHS correlation for the self-diffusion coefficient 
when the solute and solvent become identical.

The molar core volumes V0,i(T) in Eq. 5 are expected to be identical with those 
determined from the pure-component properties. As discussed in the literature, these 
are weak functions of temperature and may be obtained by analysis of the trans-
port properties of each pure substance in the high-density region where the rough 
hard-sphere theory is valid. Proceeding on this basis, Cadogan et al. [10] analysed 
their experimental mutual diffusion coefficient data for dilute solutions of CO2 in 
various hydrocarbon liquids. These systems were characterised by a nearly constant 
asymmetry ratio χ = 2.1 and, for that class of mixtures, the data were represented by 
means of a simple polynomial:

(5)D∗
12

=
�

2NA

�1∕3 8
√

�

3A12

�

2M12

RT

�1∕2�V0,12

V0,2

�2∕3� D
12

V1∕3

�

.

(6)� = M1V0,2∕(M2V0,1).

(7)D∗
12

= F12(V
∗,�),

(8)F12(V
∗,� = 2.1) =

3
∑

i=0

ai(V ∗)i.
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The model therefore required just one system-dependent parameter, A12, and four 
universal constants ai, in addition to the molar core volumes of the pure compo-
nents. The purpose of the present work is to extend this methodology to encompass 
a wider range of non-polar solutions and to obtain the dependence of F12 on both V* 
and χ.

The RHS theory for tracer diffusion in binary systems has also been studied by 
Akgerman and co-workers in a series of papers published between 1987 and 1997 
[17–20]. The models derived in that work corresponds to an assumption that F12 is 
a linear function of V* and that the dependence upon χ can be absorbed into a pre-
factor. The final form of their model is very simple:

where VD is a close-packed molar volume (generally different to V0) at which diffu-
sion effectively ceases and β is a scaling parameter. In an attempt to make the model 
predictive, β and VD have been correlated in various forms. For example, Eaton 
et al. [20] correlated β and VD with the critical constants of the solute and solvent in 
terms of universal constants which were adjusted by comparison with experimental 
data for the diffusion coefficient of 1-octene in supercritical alkane solvents. When 
compared with more than 1500 data points from the literature for other binary sys-
tems, the average absolute relative deviation (∆AARD) was found to be approximately 
15 %. However, it turns out that experimental data (e.g. for CO2 in squalane) do not 
conform to the linear dependence upon V embodied in Eq. 9. Therefore, we prefer 
the more general representation offered by Eq. 7.

3 � Basis of the New Correlation

To extend the RHS model, we considered experimental data for the tracer diffusion 
coefficients of a range of gaseous solutes in hydrocarbon solvents, together with 
molecular dynamics simulations for systems of smooth hard-spheres. The simulation 
data anchor the correlation because, for these SHS systems, A12 = 1 by definition.

3.1 � Experimental Data

Table 1 summarises the data retrieved from the literature for the solute–solvent sys-
tems that were used in this study, including the temperature and pressure ranges, the 
number of data points, the measurement techniques and the estimated uncertainty 
of the measurements. Most of the systems were studied using the Taylor dispersion 
method which is generally a reliable technique with relative uncertainties of between 
1 and 3 %. Higher uncertainties were found for systems studied using capillary cells 
and Mach–Zehnder interferometers. The most well studied systems are solutions of 
CH4 and CO2 in hydrocarbon liquids, with data extending over substantial ranges 
of temperature and pressure. The other systems present data mainly at atmospheric 
pressure.

(9)D12

�
√

T = �(V − VD),
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In order to analyse the experimental data, we required correlations for the molar 
core volumes as functions of temperature. These were mostly obtained from the litera-
ture and, for ease of reference, the relevant equations are reproduced in Table 2. New 

Table 1   Summary of experimental diffusion coefficients data from the literature, where T is temperature, 
p is pressure, N is number of data points and Ur is expanded relative uncertainty (k = 2)

TD Taylor dispersion, CAR​ cylindrical acoustic resonance, MZI Mach–Zehnder interferometer, CC capil-
lary cell

Solute Solvent T/K p/MPa N Method 102 Ur Ref.

CH4 Hexane 298 0.3 1 TD  < 3 [21]
Heptane 323–398 1–63 19 TD 2.3 [11]
Octane 298–403 0.1 3 TD 1 [22]

281–312 1.7 4 CAR​ 0.2 [23]
304–435 1.72 6 TD 1 [24]

Nonane 281–312 1.7 4 CAR​ 0.2 [23]
Decane 298 0.3 1 TD 1.4 [21]

298–433 0.1 3 TD 1 [22]
281–312 1.7 4 CAR​ 0.2 [23]

Dodecane 298 0.1 1 CC 3 [25]
Methylbenzene 323–398 1–65 20 TD 2.3 [11]

C2H6 Hexane 298 0.1 1 CC 14 [26]
303 0.1 1 CC 3 [27]

Heptane 303–313 0.1 2 CC 3 [27]
298 0.1 1 CC 14 [26]

Octane 304–435 1.72 6 TD 1 [24]
298 0.1 1 CC 14 [26]

Dodecane 298 0.1 1 CC 14 [26]
C3H8 Hexane 298 0.1 1 CC  < 5 [28]

Heptane 298 0.1 1 CC  < 5 [28]
Octane 298 0.1 1 CC  < 5 [28]

335–435 1.72 6 TD 1 [24]
CO2 Hexane 298–423 1.2–66 16 TD 2.6 [10]

Heptane 298–423 1–68 30 TD 2.6 [10]
Octane 298–423 0.9–69 30 TD 2.6 [10]
Decane 298–423 1.1–68 16 TD 2.6 [10]
Dodecane 298–423 1.3–63 15 TD 2.6 [10]
Hexadecane 298–423 1–69 27 TD 2.6 [10]
Squalane 298–423 1–67 30 TD 2.6 [10]
Methylbenzene 298–423 1–68 30 TD 2.6 [10]

Ar Hexane 298 0.3 1 TD  < 3 [21]
Octane 298–373 0.1 3 TD 1 [22]
Decane 298–333 0.1 2 TD 1 [22]

N2 Octane 303–399 15 4 MZI 10 [29]
Decane 298–422 7.5–15 11 MZI 10 [29]
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correlations for V0(T) were developed for nitrogen and argon in a form that presents 
reasonable extrapolation behaviour at high temperatures. For these components, it was 
found that the available viscosity data could be represented by the extended hard-sphere 
mode of Ciotta et al. using a simple-three-parameter model for V0(T) as follows:

The development of these V0 correlations is detailed in the Supplementary 
Information.

3.2 � Molecular Simulation Data

Table 3 summarises the available molecular dynamics (MD) data for self- and mutual-
diffusion coefficients in hard-sphere systems. Only three studies report data for mutual 
diffusion coefficients of binary SHS systems and, among these, the results of Easteal 
and Woolf [36] are the most comprehensive and accurate. The MD data are reported in 
the form of the ratio

where n is number density, [nD12]E is given by Enskog’s expression,

(10)V0 = a − b exp(−T∕c),

(11)C12 =
[nD12]

[nD12]E
,

(12)[nD12]E =
[nD12]0

g12(�12)
,

Table 2   Correlations for the  molar core volume for different compounds as functions of temperature, 
where θ = T/K and C = carbon number

*Eq. 12 in reference [35] is missing a term + 12.163C [Assael, personal communication]

Compound Correlation for V0/(cm3 mol−1) Ref.

(C1 to C4) alkanes 45.822 − 6.1867 θ1/2 + 0.368 79 θ − 0.007 273 θ 
3/2  + C (2.178 71 θ 1/2 − 0.185 198 θ + 0.004 00369 
θ 3/2)  + C2 (6.951 48 − 52.6436 θ −1/2) + Cn

3 
(− 7.801 897  + 42.244 93 θ −1/2 + 0.447 6523 θ 
1/2 − 0.009 573 512 θ)

[30, 31]

(C6 to C12) alkanes 117.874 + 0.15 (− 1)C − 0.252 75 θ + 0.000 548 θ 
2 −  4.246 × 10–7 θ 3 + (C − 6) (1.27 − 0.0009 θ) 
(13.27 + 0.025 C)

[30, 31]

Hexadecane 276.144 − 0.2384 θ + 0.000 169 83 θ 2 [32]
Squalene 631.293 − 0.9545 θ + 0.000 903 51 θ 2 [33, 34]
Methylbenzene 92.929 − 0.109 30 θ + 0.000 120 23 θ 2 [35]*
CO2 25.802 − 0.025 251 θ + 0.000 017 948 θ 2 [33, 34]
Argon 7.823 + 12.520·exp(− θ/325.78) This work
Nitrogen 12.545 + 13.298·exp(− θ/171.27) This work
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[nD12]0 = (3∕8�2
12
)(RT ∕2�M12)

1∕2 is the value of nD12 in the dilute-gas limit, 
�12 =

1

2
(�1 + �2) , and g12(σ12) is the value of the unlike radial distribution function at 

contact. Hence, in terms of C12 the dimensionless tracer diffusion coefficient is given 
by

In order to recover D∗
12

 we obtained g12(σ12) from the relation

where � = �n�3
2
∕6 = �

√

2∕(6V∗) is the solvent packing density [37, 38].

4 � Results and Discussion

For the chosen combinations of solutes and solvents, the asymmetry ratio χ covers 
a range from approximately 0.8 to 3.1. These ratios are only weak functions of tem-
perature and this is illustrated in Fig. 1 for five solutes (CH4, C3H8, N2, CO2 and Ar) 
in octane.

For a given solute, the values of χ in different alkane solvents are very similar, 
although the corresponding values in the aromatic solvent methylbenzene are about 
15 % smaller. For the hard-sphere systems, the data set of Easteal and Woolf was 
limited to combinations of σ1/σ2 ≤ 1 and M1/M2 ≤ 1, representative of ‘light’ solutes 
in ‘heavy’ solvents. Figure 2 shows the simulation data for SHS as a function of χ 
for three different values of reduced volume. From this we deduced that the depend-
ence upon χ is approximately linear. Therefore, the trial function for F12(V∗,�) was 
a simple extension of Eq. 8:

(13)D∗
12

=
C12

g12(�12)

(

V

V0

)2∕3

.

(14)g12(�12) =
1

1 − �
+

3�

(1 + �2∕�1)(1 − �)2
+

�2

(2�2∕�1)(1 − �)3
,

(15)F12(V
∗,�) =

∑3

i=0
ai(V

∗)i + b0� .

Table 3   Molecular dynamics simulation data for the self- and mutual-diffusion coefficients of smooth 
hard-sphere systems, where σi is the diameter and mi the mass for molecules of type i, V is the molar vol-
ume, V0,i = Na�

3
i
∕
√

2 , N is the number of data points and Ur is the expanded relative uncertainty (k = 2)

Authors V/V0,2 σ2/σ1 m2/m1 N 102 Ur Ref.

Easteal and Woolf (1990) 1.5–2 1–2 0.6–10 360 2–3 [16]
Alder et al. (1974) 1.5–3 1–4 1–5625 48 Not specified [38]
Herman and Alder (1972) 1.6–3 1 0.25–5625 10 Not specified [39]
Woodcock (1981) 1.3–1.5 1 1 15 Not specified [40]
Easteal et al. (1983 &1984) 1.5–4 1 1 54 2–3 [36, 41]
Alder et al. (1970) 1.5–100 1 1 24 Not specified [42]
Erpenbeck et al. (1991) 1.6–25 1 1 10 Not specified [43]
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For hard-spheres, A12 = 1 by definition while, for real fluids, A12 is a constant for 

each solute–solvent pair. The parameters ai (i = 0, 3) and b0 together with the rough-
ness factor for each real-fluid solute–solvent pair were then adjusted in a non-linear 
optimisation. The objective function to be minimised was the un-weighted sum of 
the squares of the relative deviations of the data from the model. Because of the lim-
ited range of validity of the correlations for V0(T), the data in n-alkane solvents up to 
dodecane were limited to a maximum temperature of 411 K.

This simple model proved to provide a good account of the data as illustrated 
in Figs. 3 and 4 with deviations mostly within ± 5 %. Figure 3 compares the data 
for different solutes with the model as functions of the reduced volume V* of the 
solvent, where the model curve is plotted for the mean value of χ applicable to each 
solute gas. Figure 4 shows the relative deviations of the data from the model as func-
tions of T, V*, M1/M2 and χ. The comparison shows mostly good agreement but 
some evidence of systematic deviations for larger values of V*. However, generally, 
the deviation plots do not suggest that additional parameters in the universal func-
tion would improve the overall representation. In Fig. 3, the SHS data are for self-
diffusion (χ = 1), while all of the SHS data considered are included in Fig. 4.

Table 4 reports the values of the universal coefficients determined in the fit, while 
Table 5 lists the roughness factors obtained and the values of the average absolute 

Fig. 1   Asymmetry ratios χ for 
five solutes in octane as func-
tions of temperature T

Fig. 2   Dimensionless tracer 
diffusion coefficients of SHS 
systems as a function of the 
asymmetry ratio χ for various 
reduced volumes:  V* = 1.5;  
V* = 1.7;  V* = 1.9 [16]
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relative deviation (ΔAARD) and the maximum absolute relative deviation (ΔMARD). 
Entries without values of ΔAARD and ΔMARD are for systems with only a single data 
point available from which A12 was determined.

Fig. 3   Dimensionless tracer diffusion coefficients D12
* or self-diffusion coefficients D11

* as function of 
the reduced volume V* of the solvent for different solutes. Experimental data for different solvents:  
hexane;  heptane;  octane;  nonane;  decane;  dodecane;  hexadecane;  squalane;  methylb-
enzene.  Molecular simulation data for the self-diffusion coefficients of smooth hard-spheres (SHS). 
——— RHS theory plotted for a representative value of χ for each solvent system; - - - - - - correlation 
for the dimensionless self-diffusion coefficient of SHS [13]
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Application of the model to a new compound requires at least one experimental 
value of the tracer diffusion coefficient and sufficient pure-component data to deter-
mine V0(T). The model is only correlative because we presently have no means of pre-
dicting the roughness factors. Figure  5 shows some of the roughness factors deter-
mined for different solutes in alkane solvents. For CO2 as the solute, there is a clear 

Fig. 4   Relative deviations (Dexp − DRHS)/Dexp of experimental or simulated tracer diffusion coefficients 
from the RHS model as function of temperature T, reduced volume V/V0,2, molar mass ratio M1/M2 and 
asymmetry ratio χ, where 1 denotes solute and 2 denotes solvent. Symbols indicate solutes: × CO2;  
CH4;  C2H6;  C3H8;  N2;  Ar;  smooth hard-sphere

Table 4   Values of the 
parameters ai and b0 in the 
universal curve for tracer 
diffusion coefficients, together 
with the average absolute 
relative deviation (ΔAARD) and 
the maximum absolute relative 
deviation (ΔMARD) for the fit

Parameter Value

a0 1.6874
b0 0.0341
a1 − 4.0605
a2 2.8478
a3 − 0.5621
∆AARD 2.7 %
∆MARD 11.6 %
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trend with carbon number but the same cannot be said for CH4 or C2H6. It is possible 
that new experimental data might result in smoother trends but, for now, the evidence 
is that A12 does not depend systematically upon the carbon number of the solvent for 
alkane-alkane systems. On the other hand, the smooth trend for CO2-alkane systems 
suggest that the diffusion coefficients for CO2 in other alkanes could be predicted.

Although the model has been developed for hydrocarbon solvents with inorganic 
and light hydrocarbon solutes, the method might be expected to apply to other non-
polar solute–solvent systems. As presented, the correlation is restricted to light solutes. 
Preliminary investigation suggests that a more complex form of the universal function 
would be required to encompass also ‘heavy’ solutes in ‘light’ solvent and this might 
be developed using available experimental data for large molecular solutes in light 
supercritical solutes and also the molecular simulation data that were excluded from 
the present analysis (those with σ1/σ2 > 1 and/or M1/M2 > 1).

Table 5   Roughness factors 
A12 for different systems with 
absolute average relative 
deviations ∆AAD and maximum 
absolute relative deviations 
∆MAD for the diffusion 
coefficient

Solute Solvent A12 ∆AAD (%) ∆MAD (%)

CH4 Hexane 0.771 0.4 0.4
Heptane 0.647 3.2 6.2
Octane 0.765 5.0 11.6
Nonane 0.898 0.2 5.7
Decane 0.779 0.0 0.0
Dodecane 0.731 6.1 8.7
Benzene 1.079
Methylbenzene 0.858 2.8 6.6

C2H6 Hexane 0.732 1.5 1.5
Heptane 0.800 2.2 3.2
Octane 0.792 0.5 1.4
Dodecane 0.749

C3H8 Hexane 0.788
Heptane 0.827
Octane 0.845 0.4 0.8

CO2 Hexane 0.942 2.2 8.3
Heptane 0.915 3.1 7.8
Octane 0.871 2.3 6.4
Decane 0.788 4.0 6.3
Dodecane 0.750 2.6 7.6
Hexadecane 0.706 3.3 6.0
Squalane 0.514 1.5 4.0
Methylbenzene 1.161 1.9 6.0

Ar Hexane 0.763
Octane 0.760 2.0 2.1
Decane 0.653 4.1 4.3

N2 Octane 0.761 4.4 8.2
Decane 0.761 3.8 7.1

SHS SHS 1.000 2.9 10.2
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5 � Conclusions

The model presented in this paper allows tracer diffusion coefficients to be ration-
alised within the well-established hard-sphere theory used to correlate and pre-
dict the transport properties of pure substances. To model a particular system one 
requires the molar core volume of both the solute and the solvent, as determined 
from pure-component transport properties, and the value of the roughness factor 
A12 specific to the solute–solvent pair. Once A12 is known, the model may be used 
to predict tracer diffusion coefficient over wide ranges of temperature and den-
sity. The method has been tested for non-polar systems comprising a light solute 
in a heavier solvent at reduced densities 1/V* ≥ 0.5. For CO2 in alkane solvents, 
the roughness factor shows a clear systematic dependence upon the carbon num-
ber of the solvent but generally no clear relationship between A12 and the nature 
of the solute and solvent emerges. We note that the available experimental data 
against which to test the model is quite restricted and that new measurements 
over extended ranges of temperature and pressure would be helpful. Future work 
might also focus on extending the model to wider ranges of size and mass ratios.
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Fig. 5   Roughness factors A12 
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