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Abstract
Decreasing the time required for accurate thermodynamic property measurements 
is extremely desirable for model development that can respond to the needs of sci-
ence and industry within a short time frame. Here, we demonstrate the application 
of optimal experimental design to measurements of thermodynamic properties. The 
technique is explored using the fitting of a Schilling-type equation from published 
(p, �,T)-measurements of ethylene glycol and propylene glycol. The analysis shows 
that a fixed-exponent fit using (p, T)-measurements along the five most informative 
isotherms produces models of relative density errors comparable to those obtained 
using the data along all investigated isotherms, i.e., eight or nine. It is also argued 
that a calculation of optimal isotherms prior to the measurement series can further 
increase the precision at no additional experimental effort.

Keywords  Correlation · Density · Ethylene glycol · Measurement · Optimal 
experimental design

1  Introduction

For scientific, but particularly for industrial applications, it is absolutely valuable to 
provide equations of state (EOS) that accurately describe the thermodynamic behav-
ior of the concerned fluid substances within a narrow time frame. However, accurate 
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thermodynamic models are usually based on reliable experimental data, thus, the 
development can require quite a long time since accurate measurements over wide 
temperature and pressure ranges are typically a time-consuming endeavor. Here, we 
demonstrate the advantages of applying optimal experimental design (OED) in the 
process of planning measurement series for thermodynamic properties with the goal 
to deliberately reduce the experimental effort, thus, decreasing the overall time for 
model development. Therefore, the issue with typical experimental design and the 
approach of OED will be explained using our density data of ethylene glycol pub-
lished by Yang et al. [1] and the density data of propylene glycol measured with the 
same instrument published by Sampson et al. [2].

The (p, �, T) behavior of ethylene glycol was investigated over the temperature 
range from T = (283.3 to 393.1) K at pressures from p = (4.8 to 100.1) MPa uti-
lizing a high-pressure vibrating-tube densimeter; as shown in Fig. 1 , a total of 89 
(p, �, T) data points were studied with a combined expanded uncertainty ( k = 2 ) 
of 1.57 kg·m−3 (equivalent to a max. relative uncertainty of 0.151 %). To model 
the experimental data, Yang et al. [1] fitted two empirical Schilling-type corre-
lation equations [3]: one of the same form (same number of terms, same expo-
nents) as for propylene glycol in the work of Sampson et al. [2], and one using 
the “artificial intelligence powered” software tool Eureqa [4, 5]. Eureqa is one of 
many tools that perform machine learning-based symbolic regression. It simulta-
neously finds the functional form of a model and identifies the model parameters. 
The first approach was motivated by the assumed thermodynamic similarity of 
both substances, and the second approach served to investigate the applicability 
of symbolic regression and machine learning for the optimization of correlation 
equations. Section 2 of the present paper provides a small overview of different 

Fig. 1   Experimental densities (symbols) and interpolated densities (dashed lines) measured by Yang et 
al. [1]. , T ≈  283.32 K; , T ≈  293.14K; , T ≈  293.14 K; , T ≈  298.18 K; , T ≈  313.13 K; , 
T ≈ 333.09 K; , T ≈ 353.13 K; , T ≈ 373.22 K; , T ≈ 393.09 K
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types of correlation models for liquid-phase densities to support the understand-
ing of their characteristics.

In the present study, we illustrate how OED could have been used for the plan-
ning of the measurement series conducted by Yang et al. [1] in order to reduce 
the amount of density measurements of ethylene glycol needed to reliably adjust 
the parameters of a Schilling-type equation. To confirm our results regarding the 
benefits of OED, the calculations were also applied to measured densities of pro-
pylene glycol (combined expanded uncertainty ( k = 2 ): 1.78 kg·m−3) [2]. In spite 
of its capabilities to select measurements with the highest information content, 
OED is seldom applied in the field of thermodynamic property research. We con-
jecture that the primary reasons for this are:

–	 a lack of knowledge about OED technologies,
–	 the lack of software tools for easy application of OED,
–	 the requirement to specify the underlying model beforehand.

For a detailed overview of the use of OED in different areas of chemical and ther-
mal engineering research, we refer the reader to Francheschini and Macchietto 
[6]. With respect to thermodynamic property research, we point out the work of 
Bardow and colleagues [7, 8], which deals with the experimental characterization 
of liquid–liquid equilibria utilizing OED. In contrast to those investigations, the 
present work focuses on the temperature and pressure values for density meas-
urements, with the aim to minimize the parameter variance of the correlation 
model. The method described here can be used equivalently for measurements of 
other thermodynamic and transport properties (e.g., speed of sound, specific heat 
capacity, viscosity, etc.).

When changing the isotherm in a usual measurement series, establishing ther-
mal equilibrium with a typical (p, �, T) apparatus is rather time-consuming com-
pared to setting new pressures along an isotherm. For this reason, we decided 
to use OED to select a subset of the most informative isotherms. OED can be 
imagined as an in situ tool for linear or nonlinear modeling. In the latter, case, the 
following sequential workflow is employed: 

(a)	 choose an initial set of (p, T) state points to be studied (e.g., two isotherms with 
five pressure values each),

(b)	 conduct the measurements (e.g., density),
(c)	 fit the model (e.g., the Schilling-type model),
(d)	 answer the following questions:

–	 Can the model reproduce the measured data with sufficient accuracy (e.g., 
within the experimental uncertainty)?

–	 Can a significant amount of information be gained from additional measure-
ments?

(e)	 If the latter is not the case, the experiment is terminated. Otherwise, select the 
next most relevant isotherm using OED (3) and proceed with 1.
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 In this paper, we utilize in a first step, linear OED to select a subset of isothermal 
experiments from two given sets of measurements, which are already available. 
We use the measurements selected to create new models for ethylene glycol and 
propylene glycol based on the same functional forms as used before. The results 
are compared to the existing models (4).

2 � Modeling Approach

For simulations in process engineering, accurate and easily applicable models that 
describe the real fluid behavior are needed. Considering the lack of knowledge about 
more complex compounds at the molecular level, empirical equations of state have 
become an established way of modeling thermodynamic behavior. In industrial appli-
cations, the empirical Tait equation (1888) is still widely used to model densities of liq-
uids [9]. However, a contemporary approach to model liquid-phase densities was devel-
oped by Schilling et al. [3] (Table 1). This is an equation in form of polynomial terms; 
this type of terms is also used within fundamental equations of state.

For the modeling of fundamental equations of state, which provide the possibility 
to derive all thermodynamic properties by differentiation of these equations, func-
tional forms such as polynomial and exponential terms are involved [10, 11]. In 1989, 
within the scope of developing fundamental equations, Setzmann and Wagner [10, 12] 
established the modeling tool OPTIM, which combines a modified step-wise regres-
sion analysis based on a “bank of terms” with elements of evolutionary optimization 
methods. Nowadays, this tool is mostly unused. However, it was applied to model the 
density of liquid n-heptane, n-nonane, 2,4-dichlorotoluene and bromobenzene in the 
temperature range from 233.15 to 473.15 K at pressures up to 30 MPa by Schilling et 
al. [3]. Due to its good representation of liquid-phase experimental data, further works, 
e.g., of Sommer et al. [13], Sampson et al. [2] and Yang et al. [1], also relate to this 
equation. Table  4 (M1 and M1.1) contains the characteristics and Table  5 (M1 and 
M1.1) provides the parameter values of the published models for ethylene glycol and 
propylene glycol, which are used in this work. The so-called Schilling-type equation 
has the following functional form:

The parameters � and � represent the reduced temperature and the reduced pressure, 
respectively, while T0 , p0 and �0 are chosen by the measured values and IPol defines 
the number of terms. In Sampson et al. [2], the parameters were set to T0 = 150 K, 
p0 = 100 MPa and �0 = 1000 kg·m−3, and nj , tj and pj were fitted to the experimen-
tal data of propylene glycol setting the number of terms IPol 8. With this model, the 
measured densities for propylene glycol can be reproduced within a maximum error 
of �R = 0.015% . Due to the similarity between both substances, the same setup was 

(2.1)
�

�0

=

IPol
∑

j=1

nj �
tj�

pj

(2.2)� = (T∕T0 − 1) and � = (p∕p0 + 1)
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used to fit the parameters nj for ethylene glycol in Yang et al. [1], keeping the expo-
nents tj and pj fixed (see Tables 4 (M1) and 5). The experimental data of ethylene 
glycol is represented within a maximum error of �R = 0.025%.

Most current modeling approaches, especially for nonlinear models, have a high 
development effort and the requirement of thorough background knowledge in com-
mon. In the work of Yang et al., also a new approach utilizing Eureqa (Table 1) was 
employed to investigate the suitability of machine learning-based symbolic regres-
sion for nonlinear EOS modeling [4, 5]. The form of terms was chosen as polynomi-
als to create a Schilling-type equation 2.1 and 2.2 equivalent to the existing model, 
while the aim was to reduce the number of terms, to fit the exponents and to stay 
within an adequate uncertainty (for model characteristics see Table 4 (M1.1) and for 
model parameters see Table 5 (M1.1)). This model is included in the evaluation, on 
the one hand to better interpret the deviations between modeled and measured densi-
ties and on the other hand to better illustrate the influence of the functional form on 
the extrapolation behavior. In addition to the less complex functional form, a lower 
maximum error of �R = 0.020% and a better extrapolation behavior are achieved.

3 � Background on Optimal Experimental Design

Optimal experimental design is a technique to select experiments which are most 
informative about the unknown parameters of a given model. We refer the interested 
reader to Pázman, Uciński and Atkinson et al. [14–16] for a comprehensive back-
ground. We wish to emphasize that OED differs from the statistical design of experi-
ments, where one seeks, e.g., space-filling experiments by latin hypercube sam-
pling. Here, we use OED to reduce the experimental effort required to identify the 
parameters nj , j = 1,… , IPol , in Eqs. 2.1 and 2.2 with exponents tj and pj fixed. In 
this case, the dependent variable �∕�0 is a linear function of the parameters, which 
simplifies the subsequent description. To be specific, we deduce from Eqs.  2.1 
and 2.2 that each triple of measured data (pi, �i, Ti) , after conversion to reduced 

Table 1   Features of different EOS modeling approaches for liquid-phase densities (Tait equation [9], 
Schilling-type equation [3], Eureqa modeling [4, 5])

EOS type Features

Tait Well-established model, widely used for liquid densities
Predefined model form
Requires custom fitting algorithm

Schilling User-specified number of terms
Reduces to linear fitting when exponents are fixed
Requires custom fitting algorithm when exponents are unknown

Eureqa Intuitive software handling
Symbolic regression based on genetic algorithms
Comparing complexity and uncertainty
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quantities (�i, �i∕�0, �i) , contributes a prediction of the form �i ≈ �0 j(�i, �i) n , where 
n = (n1,… , n8)

T ∈ ℝ
8 denotes the parameter vector and

(a)

(b)

Fig. 2   Selection of the best isotherms ∙ from the measured isotherms and  from a free choice a) for eth-
ylene glycol between T = (283 to 393) K and b) for propylene glycol between T = (273 to 393) K, within 
a raster of 2 K using the A-criterion (Eq. 3.2) to minimize the parameter uncertainty
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is the so-called elementary Jacobian associated with the ith measurement. 
Following the theory of OED, the information content of a single measure-
ment is expressed through the elementary Fisher information matrix (FIM) 
Ii = j(�i, �i)

Tj(�i, �i) ∈ ℝ
8×8 . Each elementary FIM is a symmetric, positive semi-

definite rank–1 matrix. Moreover, since we can assume individual measurements 
to be statistically independent, the FIM associated with a series of experiments is 
obtained as I =

∑

i Ii.
It is common to apply a scalar objective function, which converts the FIM asso-

ciated with any collection of experiments into a single number and, thus, allows a 
comparison with any other collection of experiments. We utilize here the A-criterion

where �j is the jth eigenvalue of I. Clearly, at least eight individual measurements 
are required to render the FIM positive definite and the criterion ΨA(I) finite. In this 
case, the value of ΨA(I) is proportional to the sum of the squared semi-axes of con-
fidence ellipsoids in the 8-dimensional parameter space. Consequently, we seek to 
minimize ΨA(I) , possibly subject to constraints on the experimental budget, in order 
to maximize the information content of the collection of experiments selected and 
simultaneously minimize parameter variation in the face of measurement errors.

As we argued in the introduction, it is advantageous from a practical point of 
view to take measurements along an isotherm. In the following section, we will 
therefore optimize over experiments each of which comprises several measurements 
obtained by varying the pressure along an isotherm.

4 � Numerical Results

The approach described in Sect.  3 is used to optimize the measurement series by 
maximizing the information contained in a set of eight isothermal measurements 
at approximate temperatures T = (283, 293, 298, 313, 333, 353, 373, 393) K drawn 
from the experiments conducted by Yang et al. [1]. The measurement plan for each 
isotherm consisted of nine pressure values, approximately p =  (5, 10, 15, 20, 30, 
50, 70, 90, 100) MPa. Table 2 and Fig. 2a show the most informative selection of 
isotherms (black dots) to fit the parameters n1,… , n8 using a varying number of 
isotherms. As expected, the value of the objective (Eq. 3.2) decreases as we allow 
more isotherms to be included. However, when transitioning from five to six iso-
therms, the further decrease in the objective is small compared to the previous steps. 
For propylene glycol, measured at approximate temperatures T =  (273, 283, 293, 
298, 313, 333, 353, 373, 393) K, Fig. 2b and Table 3 show a similar selection of 
best isotherms and for the decay of the objective function values. In this case, the 

(3.1)j(�i, �i) =
[

�
t1
i
�
p1
i

⋯ �
t8
i
�
p8
i

]

(3.2)ΨA(I) = trace (I−1) =

8
∑

j=1

1

�j

,
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measurement plan for each isotherm consisted of eight pressure values, approxi-
mately at p = (5, 10, 15, 20, 30.5, 50.5, 71, 91) MPa.

We aim to compare the accuracies of the existing models, see Table 4 (M1), with 
new models of the same functional form, where the parameter n1,… , n8 of Eqs. 2.1 
and 2.2 are fitted using only the five best isotherms, see Table 4 (M2). To this end, 
we show in Fig. 3a and c the relative deviations of calculated densities from experi-
mental values as a function of pressure along all eight isotherms. It can be seen that 
using only five out of eight isotherms for the fitting process yields a greatest devia-
tion only larger by approximately 0.003% . The same approach is used to fit a new 
model for propylene glycol to the best five isotherms, see the lower part of Table 5 
(M2). With an absolute difference in the greatest deviation of 0.0015% for propyl-
ene glycol between the models M1 and M2 (Fig. 4a and b), the result for OED is 
even more promising than for ethylene glycol.

Next, we investigate the information gain obtained by allowing the temperatures 
of the isothermal experiments to be chosen freely within the interval from T = 283K 
to T = 393K for ethylene glycol and T = 273K to T = 393K for propylene glycol. 
To this end, we introduce an equidistant grid of possible temperature values with a 
spacing of 2 K; the pressure values for each group of isothermal experiments are the 
same as measured. The optimal selections of up to five isotherms can be found in 
Fig. 2a and the bottom half of Table 2 for ethylene glycol as well as in Fig. 2b and 
the bottom half of Table 3 for propylene glycol.

By comparing both selection approaches, the similarity of temperatures for the 
best two and three isotherms as well as the difference between those for the four and 
five best isotherms are noticeable. This leads us to expect an improvement of the 
model with a fit to the free best five isotherms. However, due to the missing meas-
ured values, no comparable model can be developed for this case.

Table 2   Selection of the best isotherms for different numbers of isotherms and the objective value (when 
fitted to that number of isotherms) for ethylene glycol

No. of iso-
therms

Selection from the pool of measured isotherms / K Objective value

2 393.09, 283.32 23782.87
3 393.09, 283.32, 353.13 120.32
4 393.09, 283.32, 353.13, 373.22 94.40
5 393.09, 283.32, 353.13, 373.22, 333.09 78.82
6 393.09, 283.32, 353.13, 373.22, 333.09, 293.14 73.07
7 393.09, 283.32, 353.13, 373.22, 333.09, 293.14, 313.13 68.36
8 393.09, 283.32, 353.13, 373.22, 333.09, 293.14, 313.13, 298.18 65.77

No. of iso-
therms

Free selection of isotherms within the investigated temperature range 
/ K

Objective value

2 283.00, 393.00 23113.13
3 283.00, 347.00, 393.00 119.83
4 283.00, 345.00, 391.00, 393.00 85.98
5 283.00, 349.00, 351.00, 391.00, 393.00 69.22
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Instead, we investigate the importance of the functional form by fitting a new 
model to the best five measured isotherms, where also the exponents are optimized, 
see Fig.  3d, Tables  4(M3) and 5(M3). Here, even with five isotherms, the maxi-
mum deviations can be reduced significantly. However, for propylene glycol, the 
model M3 shows large deviations for the isotherms not selected (greatest devia-
tion 0.0431% ) compared to the deviation of the selected isotherms (greatest devia-
tion 0.0046% ) (Fig.  4c) and compared to the model published by Sampson et al. 
[2] (Tables 4 and 5, propylene glycol - M1). This behavior is in conjunction with 
the conclusion of Yang et al. [1] concerning the Eureqa model (Fig.  3b), which 
demonstrates the importance of a comprehensive model optimization including the 
functional form. When fitting the exponents, the model is not linear in the param-
eters anymore, which affects the selection of the best isotherms. To further exploit 
the potential of free exponent modeling, we plan to employ the sequential OED 
approach, described at the end of Sect.  1, for calculating the necessary isotherms 
based on nonlinear models in future work.

For a more comprehensive model examination between the modeling approaches, 
the extrapolation behavior was investigated taking the example of ethylene glycol; 
this was first done with an optimization of the functional form utilizing Eureqa, as 
shown in Table 4 with model M1.1, and second with parameter identification for a 
given functional form, as shown in Table 4 with models M1, M2 and M3. There-
fore, the models were compared to an unpublished fundamental equation of state in 
form of the Helmholtz energy as implemented in REFPROP version 10.0 [17]. This 
model is valid within the following limits:

Table 3   Selection of the best isotherms for different numbers of isotherms and the objective value (when 
fitted to that number of isotherms) for propylene glycol

No. of 
isotherms

Selection from the pool of measured isotherms / K Objective value

2 272.73, 392.95 37026.60
3 272.73, 392.95, 352.99 145.84
4 272.73, 392.95, 373.34, 333.05 107.35
5 272.73, 392.95, 352.99, 373.34, 333.05 90.86
6 272.73, 392.95, 352.99, 373.34, 333.05, 313.12 83.26
7 272.73, 392.95, 352.99, 373.34, 333.05, 313.12, 283.18 78.56
8 272.73, 392.95, 352.99, 373.34, 333.05, 313.12, 283.18, 298.12 75.55
9 272.73, 392.95, 352.99, 373.34, 333.05, 313.12, 283.18, 298.12, 293.18 73.47

No. of 
isotherms

Free selection of isotherms within the investigated temperature range / K Objective value

2 273.00, 393.00 35604.70
3 273.00, 343.00, 393.00 144.11
4 273.00, 339.00, 391.00, 393.00 98.78
5 273.00, 345.00, 347.00, 391.00, 393.00 80.83
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–	 temperature: T = 260.6 to 750.0 K,
–	 pressure: up to p = 100 MPa,
–	 density: up to � = 1136.5 kg·m−3,
–	 vapor-liquid saturation line.

The vapor-liquid saturation line defines the limit for extrapolation up to the maxi-
mum temperature and the minimum pressure. To calculate the liquid densities with 
the different models at the saturation line, the corresponding temperatures and pres-
sures from REFPROP Fig. 5 are used. As already shown in the paper from Yang 
et al. [1], the M1.1 Fig. 5 shows the best extrapolation behavior within ±2% up to 
p = 4.5 MPa and T = 655 K with � ≈ 740 kg·m−3. The graphs for models M1 and 
M2 in Fig. 5 are similar to each other, while the model M3 shows the largest devia-
tions from the densities calculated with the fundamental equation in REFPROP. It 
is important to note that none of the models reproduces the curvature of densities 
calculated from the fundamental equation in REFPROP, which means that they are 
all strictly limited to the calculation of liquid-phase densities.

Many technical applications (e.g., heating and cooling processes, polymer produc-
tion and solvation in process technology)work at pressures below 5 MPa. For this rea-
son, we have extrapolated the measured isotherms to ambient pressure. All models 
reproduce the values obtained by the fundamental equation as available in the current 
version of REFPROP within relative deviations of − 0.28 to − 0.1 %. Each model 
shows the largest deviation at the 393 K isotherm, and again, the Eureqa model yields 
the best result with a maximum deviation of − 0.20 %. We aim to consider boundary 
conditions, such as the extrapolation behavior, in further investigations.

Table 4   Characteristics of the different Schilling type equations 2.1 and 2.2 (models M1, M1.1, M2 and 
M3) for ethylene glycol and propylene glycol used in this work

Source Development Data points

M1 Ethylene glycol: 
Yang et al. [1]; 
propylene glycol: 
Sampson et al. [2]

8 terms; ethylene glycol: fitting of 
coefficients; exponents same as 
for propylene glycol; propylene 
glycol: fitting of coefficients and 
exponents (integers)

All data points, incl. reference 
measurements; ethylene glycol: 
8 isotherms 9 pressures each; 
propylene glycol: 9 isotherms, 
8 pressures each

M1.1 Yang et al. [1] 
(only for ethylene 
glycol)

Symbolic regression with Eureqa 
(optimized number of terms 
(7); parameter identification for 
linear coefficients and exponents 
(integers))

All data points, incl. reference meas-
urements; 8 isotherms, 9 pressures 
each

M2 Developed within 
the scope of this 
work

Number of terms and exponents 
same as M1, fitting of coef-
ficients

5 most informative isotherms; 
ethylene glycol: 9 pressures each; 
propylene glycol: 8 pressures each

M3 Developed within 
the scope of this 
work

Number of terms same as for M1, 
fitting of coefficients and expo-
nents (real numbers)

5 most informative isotherms; 
ethylene glycol: 9 pressures each; 
propylene glycol: 8 pressures each
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5 � Conclusions

To decrease the time and even financial expenditure for accurate thermodynamic 
property modeling, it is necessary to gather suitable experimental data with respect 
to accuracy and information content. Therefore, we investigated the application of 

(a)

(b)

(c)

(d)

Fig. 3   Relative deviations of ethylene glycol densities calculated with the different models in Table  4 
from experimental values, (a) M1, (b) M1.1, (c) M2, best five measured isotherms (bold marker), (d) M3, 
best five measured isotherms (bold marker). , T ≈ 283.32 K; , T ≈ 293.142 K; , T ≈ 293.140 K; 
, T ≈ 298.18 K; , T ≈ 313.13 K; , T ≈ 333.09 K; , T ≈ 353.13 K; , T ≈ 373.22 K; , T ≈ 393.09 K
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OED to liquid-phase densities of ethylene glycol by calculating the information con-
tent of existing experiments along different isotherms. With our resulting model M3 
fitted to the most informative five isotherms, we reproduce the measured data with 
a maximum relative deviation of 0.02542  %. Compared to the maximum relative 
deviation of the model involving all eight isotherms M1 of 0.02243 %, this is a very 
promising result. These results are confirmed using the measured data of propylene 
glycol 0.01571  % compared to 0.01434  %). The smaller deviations for propylene 
glycol can be explained by the model development originally based on these data. 
By fitting two new models (M2 for ethylene glycol and propylene glycol) using the 
best calculated selection of isotherms, we demonstrate that, with OED, sufficiently 
accurate models can be developed with fewer experiments than traditionally used.

Due to the limitation to already measured data, we are not able to compare these 
results with a model fitted to the best five freely selected isotherms. At this point, new 

(a)

(b)

(c)

Fig. 4   Relative deviations of propylene glycol densities calculated with the different models in Table 4 
from experimental values, (a) M1, (b) M2, best five measured isotherms (bold marker), (c) M3, best 
five measured isotherms (bold marker). , T ≈  272.73  K; , T ≈  283.18  K; , T ≈  293.18  K; , 
T ≈ 298.12 K; , T ≈ 313.12 K; , T ≈ 333.05 K; , T ≈ 352.99 K; , T ≈ 373.34 K; , T ≈ 392.95 K
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Table 5   Parameters of Eqs. 2.1 and 2.2 for the models M1 to M3 in Table 4 for ethylene glycol and pro-
pylene glycol

i 1 2 3 4

Ethylene glycol
M1 ni 1.212 −1.159 × 10−1 −2.295 × 10−3 1.680 × 10−2

ti 0.0 1.0 4.0 2.5
pi 0.0 −0.5 −2.5 −4.0

M1.1 ni 1.074 2.633 × 10−2 4.291 × 10−2 −3.898 × 10−3

ti 0.0 0.0 −1.0 −1.0

pi 0.0 1.0 0.0 −1.0

M2 ni 1.212 −1.159 × 10−1 −2.532 × 10−3 1.721 × 10−2

ti 0.0 1.0 4.0 2.5
pi 0.0 −0.5 −2.5 −4.0

M3 ni 1.130 −3.078 × 10−2 −3.178 × 10−4 1.007 × 10−2

ti −4.741 × 10−2 2.164 3.902 3.519
pi 2.173 × 10−2 −1.048 −2.492 −4.442

Propylene glycol
M1 ni 1.140 × 101 −1.174 × 10−1 −2.3745 × 10−3 1.03 × 10−2

ti 0.0 1.0 4.0 2.5
pi 0.0 −0.5 −2.5 −4.0

M2 ni 1.140 −1.174 × 10−1 −2.458 × 10−3 1.104 × 10−2

ti 0.0 1.0 4.0 2.5
pi 0.0 −0.5 −2.5 −4.0

M3 ni 5.796 −4.775 −1.433 × 10−3 4.104 × 10−3

ti 2.859 × 10−1 3.739 × 10−1 3.813 2.257
pi −2.941 × 10−2 −4.560 × 10−2 −2.687 −4.140

5 6 7 8

Ethylene glycol
M1 −6.42 × 10−3 3.197 × 10−3 −5.626 × 10−5 −1.045 × 10−4

3.0 −0.5 3.5 5.5
−6.0 2.0 2.5 0.5

M1.1 2.540 × 10−3 −1.008 × 10−2 −2.544 × 10−2 -
2.0 2.0 2.0 -
1.0 −1.0 0.0 -

M2 −6.458 × 10−3 3.291 × 10−3 −8.070 × 10−5 −6.647 × 10−5

3.0 −0.5 3.5 5.5
−6.0 2.0 2.5 0.5

M3 −3.721 × 10−3 2.005 × 10−3 −4.649 × 10−5 −1.510 × 10−4

4.460 −3.598 × 10−1 3.492 4.829
−6.173 2.412 2.476 6.854 × 10−1

Propylene glycol
M1 −3.074 × 10−3 3.834 × 10−3 −2.591 × 10−5 −1.835 × 10−4

3.0 −0.5 3.5 5.5
−6.0 2.0 2.5 0.5



	 International Journal of Thermophysics (2021) 42:96

1 3

96  Page 14 of 16

measurements become necessary to compare the models with the best five measured 
and the best five freely selected isotherms, where we are confident to achieve even bet-
ter results. Finally, the comparison of the model M3, where also the exponents were 
fitted, shows a significant improvement for ethylene glycol compared to the model M1. 
However, this is not the case for propylene glycol, where the model M3 shows large 
deviations regarding the not selected isotherms. This result highlights the importance 
of the sequential optimal experimental design described at the end of Sect. 1 to select 
experiments for nonlinear models and the fundamental choice of the functional form. 
The investigation of the extrapolation behavior underlines this even more, where the use 
of different thermodynamic criteria beyond the actual measurement data are crucial.

Considering the typical temperature range of thermodynamic measurement 
devices such as the high-pressure vibrating tube densimeter used in our previous 
studies, i.e., (273 to 473) K, numerical studies have shown that isotherms near the 
ambient temperature are often selected last. From an experimental point of view 
this is advantageous because these are measurements with larger uncertainty since 
a thermostating task at ambient temperature is often tricky (e.g., a circulating ther-
mostat has to switch between heating and cooling against the ambient temperature).

Our next steps are:

–	 Measuring the free calculated isotherms, fit the data to the new model and com-
pare the results to the existing models.

–	 Defining different objective functions in addition to those describing the parameter 
uncertainty.

–	 Developing methods to include thermodynamic criteria as boundaries for the model 
(e.g., extrapolation behavior).

–	 Using OED based on the nonlinear model (with free exponents) using the sequen-
tial process described in Sect. 1.

–	 Investigating the influence of the number of terms to deal with the problem of over-
fitting.

With these next steps, we aim to create the basis for an OED setup specialized for the 
measurement of thermodynamic properties. The data for this paper and the calculations 
performed are provided in the supporting information.

Table 5   (continued)

5 6 7 8

M2 −3.480 × 10−3 3.894 × 10−3 −1.886 × 10−5 −1.833 × 10−4

3.0 −0.5 3.5 5.5

−6.0 2.0 2.5 0.5
M3 −1.073 × 10−3 4.485 × 10−3 5.140 × 10−3 −4.790 × 10−4

2.783 −6.576 × 10−1 3.840 6.984
−6.082 1.646 3.534 × 10−1 2.583 × 10−1
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Supplementary Information  The online version contains supplementary material available at https://​doi.​org/​
10.​1007/​s10765-​021-​02827-8.
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