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Abstract
When applied to asymmetric binary mixtures (e.g., methane + pentane or heavier 
alkanes, hydrogen-containing mixtures), the GERG equation of state (GERG-2004 
or GERG-2008) predicts critical curves with physically unreasonable temperature 
maxima above the critical temperature of the heavier component. These maxima are 
associated with physically impossible vapor–liquid equilibria. The phenomenon is 
probably caused by corrections for critical anomalies that were built into the empiri-
cal pure-fluid equations of state forming the foundation of the GERG model. These 
corrections ensure that the model represents thermodynamic data of pure fluids 
quite well even close to their critical points. For mixtures, however, the corrections 
can cause artifacts.

Keywords Asymmetric fluid mixtures · Critical curves · GERG equation of state · 
Vapor–liquid equilibria

Symbols
A  Helmholtz energy
BX  Critical amplitude for property X
Cp , CV  Isobaric, isochoric heat capacity
c, w, pk  Parameters of critical-anomaly correction
kij  Adjustable parameter in mixing rule Eq. (6)
N  Number of components
p  Pressure
R  Gas constant
S  Entropy
T  Temperature
T∗  Characteristic temperature

 * Ulrich K. Deiters 
 ulrich.deiters@uni-koeln.de

1 Institute of Physical Chemistry, University of Cologne, Greinstr. 4–6, 50939 Cologne, Germany
2 Applied Chemicals and Materials Div., National Institute of Science and Technology, Boulder, 

CO 80305, USA

http://orcid.org/0000-0001-7669-5847
http://orcid.org/0000-0003-1091-9080
http://crossmark.crossref.org/dialog/?doi=10.1007/s10765-020-02743-3&domain=pdf


 International Journal of Thermophysics (2020) 41:169

1 3

169 Page 2 of 19

umin  Eigenvector associated with �min

v∗  Characteristic volume
x  Vector of mole fractions, x = (x1,… , xN)

�,… , �  Critical exponents
�r  Dimensionless residual Helmholtz energy ( �r

0i
 : of component i, �r

ij
 : of 

component pair ij within the departure function)
�p  Isobaric thermal expansivity
�X,ij , �X,ij  GERG parameters for the reducing property Xr ( X = T ,V)
�T  Isothermal compressibility
�min  Lowermost eigenvalue of �
�  Molar density
�  Vector of molar concentrations, � = �x

�  Reciprocal reduced temperature
Ψ  Helmholtz energy density, Ψ = �Am

�  Hessian matrix of Ψ(�)
�  Reduced density

1 Introduction

In 1989 Wagner and Setzmann published an equation of state for methane [1] 
that had an exceptionally wide range of validity and was able to represent almost 
all existing experimental data on methane within the error of the experiments. It 
became not only the reference equation for methane, but also the template for the 
reference equations of several other substances. Later Wagner, Span, and Lemmon 
generated simplified equations of state [2–5], to be used when computing speed was 
important or the experimental data were too scarce to permit the construction of a 
full reference equation.

The GERG-2004 equation of state and its upgrade GERG-2008 extended these 
pure-fluid equations to mixtures [6, 7]. We shall henceforth use the name “GERG” 
when referring to GERG-2008 or to features common to both versions. At the core 
of the GERG concept there is a “multifluid approach” that makes it possible to make 
use of pure-fluid equations of state even if they have different numbers of param-
eters, or even different mathematical structures. The GERG equation allows consist-
ent and remarkably accurate calculations of natural gas properties, from single-phase 
properties like volumetric data or speed of sound to vapor–liquid phase equilibria.

A difficulty with the GERG equation is that its underlying pure-fluid equations 
of state have—or may have—density and temperature ranges where they return 
unphysical values. This makes it difficult to apply algorithms for the calculation of 
phase equilibria or particularly critical curves which need to scan ranges of thermo-
dynamic states. Fortunately it was possible to develop algorithms for critical curves 
that avoid this difficulty, for instance the method of Bell and Jäger [8] or, more 
recently, the method of Deiters and Bell [9]. The latter uses differential equations 
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to express the critical conditions, and then obtains critical curves by integrating the 
resulting initial-value problem.

It is therefore possible to calculate critical curves of mixture with the GERG 
equation. Systematic studies, however, revealed a peculiar problem that will be 
described in the next section.

2  The Problem

Figure 1 shows pT projections of the critical curves of mixtures of methane with 
ethane, propane, pentane, heptane, or decane, all calculated with the GERG model. 
The systems (methane + propane), (methane + butane) and (methane + pentane) 
exhibit an uninterrupted vapor–liquid critical curve connecting the pure-compo-
nent critical points; they belong to phase diagram Class I according to the classi-
fication of van Konynenburg and Scott [10], or Class 1P according to the rational 
nomenclature of Bolz et al. [11]. The other two systems belong to Class III or 1C1Z , 
respectively.

A close inspection of the region close to the critical point of the heavier compo-
nent (Fig. 2) reveals an unusual feature: The predicted critical curves of (methane + 
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Fig. 1  Critical curves of the mixtures ( CH4 + CnH2n+2 ) with n = 3 , 4, 5, 7, 10, calculated with the GERG 
model.   critical curve,  vapor pressure curve, ◦ pure-component critical point, + experimental 
data [12–15], parameter: carbon number n 
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pentane) to (methane + decane) originate at the critical point of the second compo-
nent with a positive slope and pass through a temperature maximum. This is also the 
case for (methane + butane), but here the maximum is too close to the critical point 
to be visible at the resolution of the diagram. The behavior is not in agreement with 
experimental data [12–15], which clearly exhibit a negative slope.

This is a rather surprising result. Vapor–liquid equilibria above the critical tem-
perature of the less volatile component are possible, in principle, but merely in two 
cases, namely

• Negative azeotropy:
  This usually requires large negative deviations from Raoult’s Law. Such devia-

tions are caused by strong attractive cross interactions between the mixture com-
ponents, like, e.g., in the system ( H2 O + HBr). Jaubert and Privat [16] showed 
that positive deviations from Raoult’s Law can cause negative azeotropy, too, but 
then the excess Gibbs energy (as a function of composition) must have regions 
where its slope varies very strongly, and this usually requires dominant chemical 
interactions.

  But neither large negative nor strongly varying positive excess Gibbs energies 
can be expected for mixtures where the components have similar chemical con-
stitutions.
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Fig. 2  Critical curves of the mixtures ( CH4 + CnH2n+2 ) with n = 3 , 4, 5, 7, 10, calculated with the GERG 
model; enlargement of the region of the critical point of the second component.  critical curve,  
vapor pressure curve, ◦ pure-component critical point, parameter: carbon number n 
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• Gas–gas equilibria of the 1st kind:
  Such equilibria exist in mixtures in which the components have rather weak 

cross interactions. A famous example is the system (He + Xe) [17].
  Again, such weak cross interactions are untypical for alkane mixtures. Fur-

thermore, in gas–gas equilibria of the 1st kind, the critical curve originating a 
the critical point of the less volatile component has a positive slope (in a pT dia-
gram) and does not pass through a temperature maximum.

The calculation of critical curves of fluid mixtures from an equation of state is 
known to be a rather demanding task, and one might therefore wonder if the unusual 
shape of the critical curve is a numerical artifact or perhaps even caused by a pro-
gramming error. In such a case it is advisable to inspect the object functions of the 
underlying mathematical problem. These are the critical conditions, expressed in the 
formalism of isochoric thermodynamics [9, 18],

Here �min denotes the lowermost eigenvalue of � , the Hessian matrix of the Helm-
holtz energy density Ψ(�,T) ≡ �Am(�,T),

and umin the associated eigenvector. The second criterion may be regarded as a 
directional derivative of �min in the direction of this eigenvector. � is the vector of 
molar concentrations, with �i = �xi (total molar density times mole fraction of com-
ponent i).

The critical conditions Eq.  (1) were originally proposed by Quiñones-Cisneros, 
although for a slightly differently defined Hessian matrix [19, 20]. This approach 
offers advantages over the commonly used formulation of the critical conditions 
with determinants, which creates additional, unstable solutions.

Figure 3 shows the behavior of �min of the (methane + decane) system close to 
the decane critical point. The �x1 diagram (a) shows that the locus of the first critical 
condition forms a closed loop (already a rather peculiar phenomenon!) and inter-
sects the locus of the second criterion twice—and that above the critical temperature 
of decane. The �T  diagram (b) reveals that the locus of the second criterion exhibits 
a rather surprising indentation. The unexpected shape of the critical curve is there-
fore not an artifact of the program that solves the critical conditions but a property 
of the Ψ(�,T) function of the GERG model.

A second, independent way of ascertaining that the predicted critical curve is not 
an artifact of the critical-curve calculator is the prediction of phase envelopes, which 
is done by a different program and a different algorithm. Figure 4 shows isothermal 
phase envelopes for the (methane + decane) system at 600 K (slightly below the critical 
point of decane) as well as 620 K (between the critical temperature of decane and the 

(1)
�min(�, T) = 0
d�min(�+�umin,T)

d�
= 0.

(2)� =

⎛⎜⎜⎝

Ψ11 … Ψ1N

⋮ ⋱ ⋮

ΨN1 … ΨNN

⎞⎟⎟⎠
with Ψij =

�
�2Ψ(�,T)

��i ��j

�

T

,
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Fig. 3  Critical conditions of the (methane + decane) system, calculated with the GERG model. Back-
ground color: value of �min , — locus of �min = 0 , –.– locus of d�min∕d� = 0 (cf. Eq. (1))
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temperature maximum of the critical curve). The 600 K isotherm exhibits the typical 
loop shape of systems having one supercritical component. The 620 K isotherm has a 
similar shape, but does not touch the left ordinate. Liquid and vapor branch of the phase 
envelope come together at x1 ≈ 0.024 , and this intersection point has mathematically 
the properties of a critical point.

It is evident that neither negative azeotropy nor a gas–gas equilibrium can be the 
cause of such a phase envelope, and we must conclude that the shape, and ultimately 
the existence, of the 620 K isotherm is physically not reasonable.

3  Searching for an Explanation

First of all, we must point out that the unphysical temperature maximum along the criti-
cal curve is not affecting the (methane + decane) system only: it appears for methane 
mixtures with butane, pentane, or heptane, too. The phenomenon appears to get more 
pronounced as the chain length of the heavier alkane gets longer.
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Fig. 4  Isothermal phase envelopes of the (methane + decane) system, calculated with the GERG model, 
at 600 and 620 K.  phase envelope, ∙ binary critical point
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3.1  Are the Unphysical Temperature Maxima Typical for Mixtures in Which 
Methane is the Light Component?

Figure  5 shows that this not not the case. Mixtures with hydrogen as the light 
component show the same unphysical behavior. Again, the experimental data for 
the mixtures shown here, (hydrogen + methane) [21, 23] and (hydrogen + ethane) 
[22] do not show any unusual behavior.

A temperature maximum along the critical curve was also observed for the 
(ethane + decane) system (diagram not shown here).

3.2  Are the Unphysical Temperature Maxima Caused by an Inferior Equation 
of State for Methane?

The GERG model makes use of pure-fluid equations of state for the mixture 
components. The multifluid approach, which the GERG model uses, permits 
combining equations of state with different numbers of terms, or even different 
structures.
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Fig. 5  Critical curves of the mixtures ( H2 + CH4 ) and ( H2 + C2H6 ), calculated with the GERG model 
 critical curve,  vapor pressure curve, ◦ pure-component critical point, +,× experimental data 

[21–23], parameter: carbon number n 
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The original GERG models contain a simplified equation of state for meth-
ane [2]. One might therefore wonder if a better methane equation would make 
the unphysical maximum vanish. We therefore substituted the methane reference 
equation of Wagner and Setzmann [24] for the simplified equation and repeated 
the calculations of the critical curves for (methane + decane) and for (hydrogen 
+ methane).

It turned out that this substitution did not change the critical curve of the (methane 
+ decane) system perceptibly. For the (hydrogen + methane) system the changes are 
negligible, too, except in the immediate vicinity of the critical point of methane. The 
unphysical temperature maximum was not affected by the substitution.

We must therefore conclude that using the simplified equations of state instead of 
reference equations is not responsible for the unphysical temperature maximum.

3.3  Is the Departure Function Responsible?

The GERG model obtains the dimensionless residual Helmholtz energy 
( �r = Ar

m
∕(RT) ) of a mixture from

where �r
0i
(�, �) is the dimensionless residual Helmholtz energy of the pure compo-

nent i and �r
ij
(�, �) the so-called departure function of the ij pair of components. The 

latter can be fitted to experimental data, if enough are available; otherwise it can be 
turned off by setting the switch parameter Fij to zero. � and � are the mean reduced 
density and the mean reduced inverse temperature, respectively.

In many of our calculations the departure function had been turned off, but it did not 
solve the problem. We must therefore conclude that the unphysical temperature max-
ima are not caused by the departure function.

3.4  Are the Asymmetric Mixing Rules in the GERG Model Responsible?

The reduced density and the reduced temperature appearing in Eq. (3) are defined as

where � and T are the molar density and the temperature of the mixture. The reduc-
ing properties �r and Tr are functions of composition and the pure-fluid critical 
properties,

(3)�r(�, �, x) =

N∑
i=1

xi�
r
0i
(�, �) +

N∑
i=1

N∑
j=i+1

xixjFij�
r
ij
(�, �) ,

(4)� =
�

�r
and � =

Tr

T
,
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As a first test we replaced this pair of mixing rules by van der Waals mixing rules,

The adjustable parameter kij was set to 0.18 for the (methane + decane) system.
As a second test we used the Peng–Robinson equation of state [25, 26] and 

replaced its usual mixing rules with the GERG asymmetric rules, keeping the mix-
ing rule parameters. As the Peng–Robinson a and b parameters (energy parameter 

(5)

1

�r
=

N∑
i=1

x2
i

�c,i
+

N∑
i=0

N∑
j=i+1

2xixj�V ,ij�V ,ij(xi + xj)

�2
V ,ij

xi + xj
⋅

1

8

(
�
−1∕3

c,i
+ �

−1∕3

c,j

)3

,

Tr =

N∑
i=1

x2
i
Tc,i +

N∑
i=0

N∑
j=i+1

2xixj�T ,ij�T ,ij(xi + xj)

�2
T ,ij

xi + xj
⋅

√
Tc,iTc,j .

(6)

�r =

N∑
i=1

xi�c,i

Tr�r =

N∑
i=1

N∑
j=1

1

2
xixj(1 − kij)

√
Tc,iTc,j(�c,i + �c,j)
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Fig. 6  Critical curve of the (methane + decane) system (high-temperature portion).  original GERG-
2008, –  –  –modified GERG with van der Waals mixing rules, − ⋅ − ⋅ −Peng–Robinson equation with 
asymmetric mixing rules, − ⋅ ⋅ − ⋅⋅Peng–Robinson equation with van der Waals mixing rules,  vapor 
pressure curve of decane, ◦ decane critical point
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and covolume) are proportional to Tc�c and �c , respectively, the conversion between 
a, b and Tc, �c parameter sets is easily accomplished.

The results are presented in Fig. 6. It turns out that the unphysical temperature 
maxima appear irrespective of the mixing rule whenever the GERG pure-fluid equa-
tions of state are used. We must therefore conclude that the asymmetric mixing rules 
are not the cause of those maxima.

4  Critical Anomalies

At this point it appears that the unwanted behavior can be traced to the pure-fluid 
equations built into the GERG model. These are either reference equations of the 
Wagner–Setzmann type [1] or simplified versions developed by Wagner, Span, and 
Lemmon [2–5]. This is surprising, because these equations of state can represent all 
thermodynamic properties of pure fluids with surpassing accuracy.

But perhaps this accuracy is at the root of the problem. It is known that, close to a 
critical point, density fluctuations cause the so-called critical anomalies—departures 
of thermodynamic functions which are often described with power laws in which 
exponents with non-classical values appear. It is known in particular that the fun-
damental equation of a fluid must be non-analytical at the critical point, and that no 
analytical equation can accurately represent the behavior of fluids. The equations 
of state underlying the GERG model are analytic, but because of their clever struc-
ture and the many adjustable parameters they can account for the critical anomalies 
rather well, except for a tiny region around the critical point—the critical point of a 
pure fluid. The critical states of mixtures, however, obey different rules. They are not 
characterized by a divergence of the isothermal compressibility (except for critical 
azeotropy). Instead, the criticality of a mixture is related to the vanishing local cur-
vature of the Helmholtz energy density surface as a function of the concentrations of 
the components, and the critical anomalies are caused by density fluctuations of all 
components.

It is therefore conceivable that the empirical corrections for critical anomalies, 
which were built into the equations of the state underlying the GERG model, are not 
merely superfluous, but even noxious for mixtures.

This is of course merely a conjecture. But unexpected side-effects of the empiri-
cal corrections for critical anomalies have been observed before, name in the shape 
of isentropic expansion curves [27, Figs. 17–18].

4.1  The Influence of Pure‑Fluid Critical Corrections on the Critical Curves Of 
Mixtures

At this point it is necessary look at the way how the behavior of a pure fluids near 
to its critical point are usually described. In this region the thermodynamic func-
tions can be approximated by power laws, for instance

(7)CVm = RBC|𝛿T̃|−𝛼
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for the isochoric heat capacity along the critical isochore1,

for the orthobaric densities ( � = liquid ∣ vapor ) along the vapor–liquid phase enve-
lope ( T ≤ Tc),

for the isothermal compressibility along the critical isochore, and

along the critical isotherm. Here 𝛿T̃ ≡ (T − Tc)∕Tc denotes a dimensionless temper-
ature deviation, and BC , B� , B� , and Bp are the so-called critical amplitudes. Eqs. (7) 
and (9) can also be used for subcritical temperatures if proper averages of the heat 
capacities or compressibilities, respectively, of the coexisting phases are used. In 
principle one should distinguish between critical amplitudes for T < Tc and T > Tc , 
but they are usually assumed to be the same, unless very unusual symmetry condi-
tions exist [28].

Cubic equations of state invariably yield the classical values for the critical 
exponents, namely � = 0 , � =

1

2
 , � = 1 , and � = 3 . Experiments, however, yield 

� ≈ 0.1 , � ≈ 0.34 , � ≈ 1.2 , and � ≈ 4.2 . The pure-fluid equations of state within 
the GERG equation represent the experimental data quite well. Therefore they 
exhibit the same non-classical critical exponents—except for a very narrow 
region around the critical point, where they must revert to the classical behavior. 
An example is shown in Fig. 7, a double-logarithmic plot of the pressure and den-
sity deviations from the critical point along the critical isotherm: The slopes of 
the linear regions approximately amount to 4.2, the expected nonclassical value 
of the critical exponent �.

It suggests itself to turn off terms of a Wagner–Setzmann or Wagner–Span 
equation one by one and to check whether this eliminates the unphysical behav-
ior. Unfortunately, all the terms of such equations depend upon each other, so that 
such a course is not feasible.

As an alternative we construct a simple equation of state in which the near-
critical corrections are separated from the rest. We give here the equations for the 
residual Helmholtz energy and the compression factor,

(8)|𝜌𝜙 − 𝜌c| = ±B𝜌𝜌c(−𝛿T̃)
𝛽

(9)|𝜅−1
T
| = B𝜅RTc𝜌c|𝛿T̃|𝛾

(10)|p − pc| = BpRTc�c
||||
� − �c

�c

||||
�

1 Recent studies indicate that the divergence of C
V
 is logarithmic, i.e., � = 0 while C

V
 is no longer an 

intensive property. But the distinction is not relevant for this work.
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This is an extended van der Waals equation. The first term on the right-hand side is 
the repulsive term that is common to all cubic equations of state. The first part of 
the attractive term contains the parameter c (first introduced by Fuller [29]), which 
makes it possible to match the critical temperature, pressure, and density of a sub-
stance. The remainder of the attraction term is a polynomial centered on the critical 
density and multiplied with a log-normal distribution, which serves as a damping 
function.

(11)

Ar
m

RT
= − ln(1 − �) −

8T∗

T

[
1

c
ln(1 + c�) +

1

��
exp

(
−(w ln ��)2

) kmax∑
k=4

pk(Δ�
�)k

]

p

�RT
=

1

1 − �
−

8T∗

T

[
�

1 + c�
+ exp

(
−(w ln ��)2

) kmax∑
k=4

pk
(
k(Δ��)k−1

−
1 + 2w2 ln ��

��
(Δ��)k

)]

with � = v∗�, �� = Vmc�, and Δ�� = �� − 1 .
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Fig. 7  Pressure deviations |p − pc| vs. density deviations |� − �c| along the critical isotherm of methane, 
calculated from the methane reference equation of Setzmann and Wagner [24]. + reference equation, 

 linear approximation (blue: liquid, red: vapor branch)
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For our tests we calculated critical curves of the (hydrogen + methane) system, 
which is known to belong to phase diagram class III (rational nomenclature 1C1Z ) 
[21, 30]. The parameters were obtained as follows:

• The parameters of pure methane were fitted to the critical isotherm (obtained 
from the methane reference equation [24]), using state points from the linear 
range in Fig. 7, and of course the critical point. Parameter sets were computed 
for various values of kmax , namely 0 (i.e., without the Gaussian term), 4, 6, and 8.

• For hydrogen we fitted merely T∗ and v∗ to its critical temperature and pressure, 
and adopted the methane results for the remaining parameters, which is equiva-
lent to a corresponding-states approach.

• For mixtures we used van der Waals mixing rules, 

 where i and j represent the mixture components and xi, xj their mole fractions. 
The characteristic temperature of the cross interaction was obtained from the 
Berthelot rule, 

 As no quantitative modeling of the (hydrogen + methane) system was intended, 
no attempt was made to optimize T∗

ij
.

(12)

T∗v∗ =
∑
i

∑
j

xixjT
∗
ij
v∗
ij

v∗ =
∑
i

xiv
∗
i
,

(13)T∗
ij
=
√

T∗
ii
T∗
jj
.

Table 1  Parameters of the equation of state Eq. (11)

kmax 0 4 6 8

Methane
T
∗
⋅ K

−1 204.816535 204.865410 204.966907 204.965915

v
∗
⋅ cm−3

⋅mol
−1 17.9985080 17.9957587 17.9901196 17.9901751

c 3.69778623 3.69934884 3.70268257
w 1.95327250 0.144489799 0.742822019
p4 − 0.00389354071 0.00308448370 0.00479901118
p5 − 0.00433154314 − 0.00473229504
p6 − 0.00827940452 − 0.0158992309
p7 − 0.00259676851
p8 0.0132045635
Hydrogen
T
∗
⋅ K

−1 35.6238306 35.6321636 35.6501026 35.6499400

v
∗
⋅ cm−3

⋅mol
−1 11.1080159 11.1057029 11.1007273 11.1007724

c,w, p4…8 Same as for methane
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The parameters are listed in Table 1.
Figure 8 shows the critical curves of the (hydrogen + methane) system obtained 

with this equation of state. With kmax = 0 , i.e., without the damped sum, the equa-
tion gives a very reasonable prediction of the critical curve; the phase diagram class 
is correct. For kmax = 4 the predicted phase diagram class is correct, too, but the crit-
ical curve exhibits a weird wriggle. For kmax = 6 a Class I phase diagram is wrongly 
predicted (rational classification: 1P ). For kmax = 8 the critical curve turns unstable at 
about 90 K, which is physically unreasonable.

Incidentally, the equation of state could represent our pVT data set along the criti-
cal isotherm with an r.m.s. deviation of about 1.3 % for kmax = 0 or 4. With kmax = 6 
a deviation of 0.1 % could be achieved, with kmax = 8 even 0.01 %. Therefore it turns 
out that the equation of state starts to predict wrong phase diagram classes as soon 
as it achieves a quantitative representation of the critical isotherm (which has an 
critical exponent of � ≈ 4.2).

4.2  Widom Curves

Some thermodynamic properties, e.g., the isothermal compressibility, are infinite 
at the critical point of a pure fluid. Above the critical temperature, such properties 
exhibit maxima that become broader and dwindle with increasing temperature. 
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Other thermodynamic properties have inflection points at the critical point which 
can be observed at supercritical temperatures, too. The locus of such maxima or 
inflection points, respectively, on the Tp or T� plane is called a Widom curve. 
Evidently, there is more than one Widom curve, namely one for each thermody-
namic property. All Widom curves, however, must originate at the critical point, 
and it turns out that—particularly in pT diagrams—they stay close to each other 
for some range of temperature.

The Widom curves can be used to distinguish regions of more liquid-like 
behavior from regions of gas-like behavior of supercritical fluids, and are there-
fore of some technical importance [31, 32]. Losey and Sadus used Widom curves 
for testing and comparing reference equations of state for Mie n–6 fluids [33]. 
Here we apply their method to the GERG equation.

Figure 9 shows some Widom curves for decane, calculated with the Peng–Rob-
inson and the GERG-2008 equations of state. The PR equation yields a too low 
critical density, therefore its curves appear shifted to the left. The Widom curves 
of the isobaric expansivity, �p , and the isobaric heat capacity, Cp , remain close to 
each other, as expected, whereas the curve of the isothermal compressibility, �T , 
veers off towards lower densities with a concave curvature. There is no Widom 
curve for the isochoric heat capacity, CV , because cubic equations of state must 
have classical critical exponents (in this case � = 0).
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Fig. 9  Widom curves of decane on the temperature–density plane, calculated with the Peng–Robinson 
and the GERG equations of state. Red: isothermal compressibility �T , green: isobaric expansivity �p , 
blue: isobaric heat capacity Cp , magenta: isochoric heat capacity CV
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In contrast to this, the GERG equation does have a CV Widom curve—but it 
does not originate at the critical point. This is clearly an artifact. The �T Widom 
curve is left of the other two, as expected—but its curvature is convex, not con-
cave. In other words: the GERG equation exhibits unphysical behavior in a very 
sensitive region.

5  Conclusion

When critical curves of binary fluid mixtures are calculated with the present 
GERG models—GERG-2004 and GERG-2008—there is often a distortion in the 
vicinity of the critical point of the less volatile component. Particularly, if the 
critical temperatures of the mixture components differ much, this distortion can 
become so large that the critical curve develops a temperature maximum. Iso-
thermal px diagrams calculated in the vicinity of the maximum exhibit impos-
sible shapes of the phase envelopes. In other words: the GERG model can predict 
physically unreasonable phase equilibria.

Test calculations with an extended van der Waals equation of state capable of 
approximating the critical isotherm of a real fluid showed that wrong phase dia-
gram classes, or even unphysical shapes of the mixture critical curves resulted 
as soon as enough correction terms were activated to achieve a quantitative 
agreement.

We therefore conjecture that a GERG equation-like method for predicting ther-
modynamic properties of mixtures should be built with simpler pure-fluid equa-
tions of state exhibiting classical critical exponents, and that corrections for criti-
cal anomalies—which are different for pure fluids and for mixtures—should be 
introduced at a later stage.

Funding Open Access funding enabled and organized by Projekt DEAL.

Availability of data and materials Not applicable.Code availability ThermoC 
thermodynamic program package, available from the corresponding author upon 
request.

Compliance with Ethical Standards 

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 



 International Journal of Thermophysics (2020) 41:169

1 3

169 Page 18 of 19

not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen 
ses/by/4.0/.

References

 1. U. Setzmann, W. Wagner, Int. J. Thermophys. 10, 1103 (1989). https ://doi.org/10.1007/BF005 00566 
 2. R. Span, W. Wagner, Int. J. Thermophys. 24, 1 (2003). https ://doi.org/10.1023/A:10223 90430 888
 3. R. Span, W. Wagner, Int. J. Thermophys. 24, 41 (2003). https ://doi.org/10.1023/A:10223 10214 958
 4. R. Span, W. Wagner, Int. J. Thermophys. 24, 111 (2003). https ://doi.org/10.1023/A:10223 62231 796
 5. E.W. Lemmon, R. Span, J. Chem. Eng. Data 51, 785 (2006). https ://doi.org/10.1021/je050 186n
 6. O. Kunz, R. Klimeck, W. Wagner, M. Jaeschke, The GERG-2004 wide-range reference equation of state 

for natural gases. GERG (Groupe Européen de Recherches Gazières) Technical Monographs, vol. 15 
(VDI-Verlag, Düsseldorf) (2007)

 7. O. Kunz, W. Wagner, J. Chem. Eng. Data 57, 3032 (2012). https ://doi.org/10.1021/je300 655b
 8. I.H. Bell, A. Jäger, Fluid Phase Equilib. 433, 159 (2017). https ://doi.org/10.1016/j.fluid .2016.10.030
 9. U.K. Deiters, I.H. Bell, Ind. Eng. Chem. Res. 2020. https ://doi.org/10.1021/acs.iecr.0c036 67
 10. P.H. van Konynenburg, R.L. Scott, Philos. Trans. R. Soc. A 298, 495 (1980). https ://doi.org/10.1098/

rsta.1980.0266
 11. A. Bolz, U.K. Deiters, C.J. Peters, T.W. de Loos, Pure Appl. Chem. 70, 2233 (1998). https ://doi.

org/10.1351/pac19 98701 12233 
 12. H.H. Reamer, B.H. Sage, W.N. Lacey, J. Chem. Eng. Data 43, 29 (1956). https ://doi.org/10.1021/i4600 

01a00 7
 13. H.C. Wiese, H.H. Reamer, B.H. Sage, J. Chem. Eng. Data 15, 75 (1970). https ://doi.org/10.1021/je600 

44a01 8
 14. H.C. Wiese, J. Jacobs, B.H. Sage, J. Chem. Eng. Data 15, 82 (1970). https ://doi.org/10.1021/je600 44a02 

1
 15. T.C. Chu, R.J.J. Chen, P.S. Chappelear, R. Kobayashi, J. Chem. Eng. Data 21, 41 (1976). https ://doi.

org/10.1021/je600 68a01 2
 16. J.N. Jaubert, R. Privat, Ind. Eng. Chem. Res. 45, 8217 (2006). https ://doi.org/10.1021/ie060 874f
 17. J. de Swaan Arons, G.A.M. Diepen, J. Chem. Phys. 44, 2322 (1966). https ://doi.org/10.1063/1.17270 43
 18. U.K. Deiters, T. Kraska, High-Pressure Fluid Phase Equilibria-Phenomenology and Computation, in 

Supercritical Fluid Science and Technology, vol. 2, ed. by E. Kiran (Elsevier, Amsterdam, 2012)
 19. S.E. Quiñones-Cisneros, Critical behavior in fluid mixtures. Ph.D. thesis, University of Minnesota (1992)
 20. S.E. Quiñones-Cisneros, Phys. Chem. Chem. Phys. 6, 2307 (2004). https ://doi.org/10.1039/b3161 23d
 21. C.Y. Tsang, P. Clancy, J.C.G. Calado, W.B. Streett, Chem. Eng. Commun. 6, 365 (1980). https ://doi.

org/10.1080/00986 44800 89125 43
 22. A. Heintz, W.B. Streett, J. Chem. Eng. Data 27, 465 (1982). https ://doi.org/10.1021/je000 30a02 9
 23. J.J. Hong, R. Kobayashi, Research report no. 46: Vapor liquid equilibrium study of the H 

2
–CH

4
 system 

at low temperatures and elevated pressures. Tech. rep., Gas Processors Accociation (1980)
 24. U. Setzmann, W. Wagner, J. Phys. Chem. Ref. Data 20, 1061 (1991)
 25. D.Y. Peng, D.B. Robinson, Ind. Eng. Chem. Fundam. 15, 59 (1976). https ://doi.org/10.1021/i1600 57a01 

1
 26. D.B. Robinson, D.Y. Peng, GPA Res. Rep. RR–28, 1 (1978)
 27. A.R. Imre, S.E. Quiñones-Cisneros, U.K. Deiters, Ind. Eng. Chem. Res. 53, 13529 (2014). https ://doi.

org/10.1021/ie502 2688
 28. V. Privman, P.C. Hohenberg, A. Aharony, in Phase Transitions and Critical Phenomena, vol. 14, ed. by 

C. Domb, J.L. Lebowitz (Academic Press, London, 1991), pp. 1–134
 29. G.G. Fuller, Ind. Eng. Chem. Fundam. 15, 254 (1976). https ://doi.org/10.1021/i1600 60a00 5
 30. W.B. Streett, C. Tsang, U. Deiters, J.C.G. Calado, in Proc. 2nd International Conference on Phase Equi-

libria and Fluid Properties in the Chemical Industry, EFCE publication series, vol. 11 (DECHEMA, 
Frankfurt am Main, 1980), pp. 39–44

 31. A.R. Imre, U.K. Deiters, T. Kraska, I. Tiselj, Nucl. Eng. Des. 252, 179 (2012). https ://doi.org/10.1016/j.
nucen gdes.2012.07.007

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/BF00500566
https://doi.org/10.1023/A:1022390430888
https://doi.org/10.1023/A:1022310214958
https://doi.org/10.1023/A:1022362231796
https://doi.org/10.1021/je050186n
https://doi.org/10.1021/je300655b
https://doi.org/10.1016/j.fluid.2016.10.030
https://doi.org/10.1021/acs.iecr.0c03667
https://doi.org/10.1098/rsta.1980.0266
https://doi.org/10.1098/rsta.1980.0266
https://doi.org/10.1351/pac199870112233
https://doi.org/10.1351/pac199870112233
https://doi.org/10.1021/i460001a007
https://doi.org/10.1021/i460001a007
https://doi.org/10.1021/je60044a018
https://doi.org/10.1021/je60044a018
https://doi.org/10.1021/je60044a021
https://doi.org/10.1021/je60044a021
https://doi.org/10.1021/je60068a012
https://doi.org/10.1021/je60068a012
https://doi.org/10.1021/ie060874f
https://doi.org/10.1063/1.1727043
https://doi.org/10.1039/b316123d
https://doi.org/10.1080/00986448008912543
https://doi.org/10.1080/00986448008912543
https://doi.org/10.1021/je00030a029
https://doi.org/10.1021/i160057a011
https://doi.org/10.1021/i160057a011
https://doi.org/10.1021/ie5022688
https://doi.org/10.1021/ie5022688
https://doi.org/10.1021/i160060a005
https://doi.org/10.1016/j.nucengdes.2012.07.007
https://doi.org/10.1016/j.nucengdes.2012.07.007


1 3

International Journal of Thermophysics (2020) 41:169 Page 19 of 19 169

 32. A.R. Imre, C. Ramboz, U.K. Deiters, T. Kraska, Environ. Earth Sci. 73, 4373 (2015). https ://doi.
org/10.1007/s1266 5-014-3716-5

 33. J. Losey, R.J. Sadus, J. Phys. Chem. B 123, 8268 (2019). https ://doi.org/10.1021/acs.jpcb.9b054 26

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

https://doi.org/10.1007/s12665-014-3716-5
https://doi.org/10.1007/s12665-014-3716-5
https://doi.org/10.1021/acs.jpcb.9b05426

	Unphysical Critical Curves of Binary Mixtures Predicted with GERG Models
	Abstract
	1 Introduction
	2 The Problem
	3 Searching for an Explanation
	3.1 Are the Unphysical Temperature Maxima Typical for Mixtures in Which Methane is the Light Component?
	3.2 Are the Unphysical Temperature Maxima Caused by an Inferior Equation of State for Methane?
	3.3 Is the Departure Function Responsible?
	3.4 Are the Asymmetric Mixing Rules in the GERG Model Responsible?

	4 Critical Anomalies
	4.1 The Influence of Pure-Fluid Critical Corrections on the Critical Curves Of Mixtures
	4.2 Widom Curves

	5 Conclusion
	References




