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Abstract
The framework of irreversible thermodynamics is fundamental in development of
constitutive models. One of the important aspects of the extended irreversible thermo-
dynamics is the relationship between the entropy flux and the heat flux, especially for
phenomena far from equilibrium. In this paper, we demonstrate that the assumption
that Lagrange multiplier conjugated to the energy balance equation (in the expression
for the second law of thermodynamics) is a function of temperature Λε � Λε(θ )
is a sufficient condition to derive the entropy flux–heat flux relation for all isotropic
materials as well as for a number of crystal classes including transverse isotropy,
orthotropy, triclinic systems and rhombic systems. For all considered crystal classes,
the entropy flux–heat flux relation was derived explicitly. Further, we demonstrate that
for some crystal classes heat flux is nonzero even when temperature gradient vanishes
(as stated by Eringen). The anisotropic functions, with respect to the symmetry groups
of the crystal classes, were expressed in terms of isotropic functions. The proposed
procedure is very general in the sense that it can be used with nonlinear constitutive
relations as demonstrated here. The presented results confirm that the all crystal elastic
bodies considered are hyperelastic.

Keywords Anisotropy · Constitutive models · Entropy flux · Heat flux · Isotropic
functions · Symmetry groups

1 Introduction

One of the important problems in thermodynamics is the relationship between the
entropy flux and the heat flux for phenomena far from equilibrium.
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The entropy principle based on the Clausius–Duhem inequality

ρη̇ + div
q
θ

− ρ
r

θ
≥ 0, (1)

whereρ is density,η is the specific entropy density,q the heat flux and r the heat supply,
has been widely adopted in the development of modern rational thermodynamics after
the fundamental work of Coleman and Noll [1]. The main assumptions, motivated
by the result of classical thermostatics, are that the entropy flux � and the entropy
supply s are proportional to the heat flux and the heat supply, respectively. Moreover,
both constants of proportionality are assumed to be the reciprocal of the absolute
temperature, i.e.,

�κ � 1

θ
qκ , s � 1

θ
r . (2)

Thesemain assumptions,while tacit in the classical theory of continuummechanics,
do not hold particularly well for materials in general. In fact, it is known that they are
inconsistent with the kinetic theory of ideal gases and are also found to be inadequate
to account for the thermodynamics of diffusion. Further, Sellitto et al. [2] demonstrated
that the proportionality relations (2) do not hold for nonlocal heat transfer at nanoscale
and provide an illustrative example of cylindrical nanodevice connected to a graphene
layer.

There is an extended formulation of the second law of thermodynamics which has
been applied to nonequilibrium thermodynamics by Serrin [3] and Silhavy [4] and
summarized by Truesdell and Bharatha [5]. See also Muschik [6], Müller [7] and
Domínguez-Cascante and Jou [8]. A comprehensive review of the related literature
and detailed derivations can be found in Lebon et al. [9] and Jou et al. [10, 11].

The extended form of the second law, usually called the entropy inequality, seems
to be the most general formulation of the continuous second law of thermodynamics
proposed so far. In this theory, the assumptions given by Eq. (2) were abandoned and
the entropy flux � and the heat flux vector q are treated as independent constitutive
quantities and hence leaving the entropy inequality in its general form

ρη̇ + div� − ρs ≥ 0. (3)

Liu [12] proposed a method, reminiscent of the classical method of Lagrange mul-
tipliers, for expanding the inequality (3). Instead of this inequality restricting the
solution of field equations, he considered solutions of an extended inequality which
should hold for all fields. This can be done if one considers the field equations as
constraints on solutions of the energy inequality.

Further, Liu [13] analyzed the thermodynamic theory of viscoelastic bodies and
proved that for isotropic viscoelastic materials the results are identical to the classical
results given by Eq. (2). In the same paper, he also proved that the body is hyperelastic
because of the Lagrange multiplier Λε � Λ(θ ).

However, for anisotropic elastic materials in general, the validity of the classical
entropy flux relation is yet to be demonstrated.
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The first contribution in this direction has been given by Liu [14, 15], who proved
by considering transversely isotropic elastic bodies and transversely isotropic rigid
heat conductors that the classical entropy flux relation (2) need not be valid in general.

Three years later, Bargmann et al. [16] considered the energy influx–entropy influx
relation in the Green–Naghdi type III theory of heat conduction and showed that the
entropy influx and the energy influx are proportional via the absolute temperature if
heat conduction is isotropic. Further, they demonstrated that influx proportionality
cannot be postulated in general by giving counterexample of transversely isotropic
conduction. Their proof is based on a representation formula for isotropic vector-
valued mappings of two vector arguments where Lagrange multiplier is assumed to
have the following general form: Λ � Λ̄(|u|, |v|,u · v). Using Green–Naghdi, set
of internal variables S{α, α̇,∇α,∇α̇} where α is thermal displacement they showed,
through an algebraic analysis, that the multiplier Λ � Λ̄(α, α̇) is at least propor-
tional to coldness (the inverse of absolute temperature and does not depend on the
thermal displacement gradient ∇α nor on the temperature gradient ∇α̇) for isotropic
conduction.

Podio–Guidugli [17] considered energy and entropy inflows in the theory of heat
conduction and demonstrated proportional via the absolute temperature for isotropic
conduction using similar procedure.

We do not see the possibility for the Bargmann et al. procedure to be generalized
and extended to conduction in continuum with other symmetry types.

In this paper, we investigate the functional dependence of the Lagrange multiplier
conjugated to the energy balance equation Λε � Λ(θ ), irrespective of whether the
classical entropy flux relation is valid. This enables derivation of the entropy flux–heat
flux relations for a number of crystal classes including transverse isotropy, orthotropy,
triclinic systems, monoclinic systems and rhombic systems.

The paper is organized as follows: In Sect. 2, the basic ideas and formulas typically
used in this field are given as a starting point of our investigation. In Sect. 3, the
entropy flux relation for viscoelastic bodies and transverse isotropic elastic materials
is reconsidered assuming the Lagrange multiplier dependency on temperature, i.e.,
Λε � Λ(θ ). In Sect. 4, the procedure introduced in Sect. 3 is extended for the derivation
of the entropy flux relation of anisotropic elasticmaterials defined by the crystal classes
listed above. In Sect. 5, the entropy inequality for anisotropic bodies is examined
further. Conclusions related to the outcome of this work are given in Sect. 6.

2 The Entropy Principle

In this section, the basic framework of the entropy principle for viscoelastic materials
is presented. The balance laws of mass, linear momentum and energy can be stated in
current configuration as:

ρ̇ + ρdivẋ � 0,

ρẍ − divT � ρb,

ρε̇ + divq − T · grad ẋ � ρr (4)
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where T is the Cauchy stress tensor, b is external body force and r is external heat
supply.

Note that for solid bodies, it is more convenient to use a referential description.
Also, since constitutive relations do not depend on external supplies, it suffices to
consider only supply-free bodies. Consequently, the balance laws can be rewritten as:

ρ � J−1ρκ,

ρκ ẍ − divTκ � 0,

ρκ ε̇ + Divqκ − Tκ · Ḟ � 0, (5)

and the entropy inequality

ρκ η̇ + Div�κ ≥ 0.

Here, the first Piola–Kirchhoff stress tensor Tκ , the material heat flux vector qκ

and the material entropy flux vector �κ are related to the Cauchy stress tensor T, the
heat flux vector q and the entropy flux vector � by

Tκ � JTF−T , qκ � JF−1q, �κ � JF−1�, (6)

where F is the deformation gradient in referential coordinates and J � |det F|. “Div”
is the divergence operator with respect to the referential coordinates.

It is well known that the entropy principle imposes severe restrictions on constitu-
tive functions and the exploitation of such restrictions based on the Clausius–Duhem
inequality and is relatively easy. For elastic materials, in general, the thermodynamic
restrictions can be easily obtained by the well-known Coleman–Noll procedure [1].

The derivation of the relation between the entropy flux and the heat flux based on
the entropy principle, referred to as entropy flux relation, is a typical problem in this
new theory.

Here, we outline the consideration for isotropic viscoelasticmaterials with isotropic
elasticity as a special case within the framework of continuum mechanics. The ther-
modynamics of the continua sufficiently close to equilibrium so that the principle of
equipresence can be used. Consequently, the local constitutive relations for viscoelas-
tic materials can be written as functions of the state variables

(
F, Ḟ, θ, gκ

)
, (7)

i.e.,

Tκ � T̂κ

(
F, Ḟ, θ, gκ

)
,

qκ � q̂κ

(
F, Ḟ, θ, gκ

)
,

ε � ε̂
(
F, Ḟ, θ, gκ

)
,

η � η̂
(
F, Ḟ, θ, gκ

)
,

�κ � fl̂κ

(
F, Ḟ, θ, gκ

)
, (8)
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where Ḟ is time derivative of the deformation gradient, ε is the specific internal energy,
gκ � ∇θ is temperature gradient, θ is an empirical temperature, which is some
convenient measure of the hotness (or coldness) of the thermodynamic state. Note
that the density field ρ(X, t) is completely determined by the motion x(X, t) and the
density ρκ(X) in the reference configuration. Therefore, the thermodynamic process
is defined as the solution

{x(X, t), θ(X, t)} (9)

of the field equations (the balance laws of the linear momentum and energy) and
integration of the constitutive relations for Tκ , qκ and ε.

The determination of the restrictions imposed on the constitutive functions by the
entropy principle is one of themajor objectives inmodern continuum thermodynamics.

2.1 Method of LagrangeMultipliers

According to the entropy principle, there exist Lagrange multipliers Λv conjugated to
the momentum balance equation and Λε conjugated to the energy balance equation
which depend on the state variables, such that the inequality

ρκ η̇ + Div�κ − Λv · (ρκ ẍ − DivTκ) − Λε
(
ρκ ε̇ + Divqκ − Tκ · Ḟ) ≥ 0 (10)

is valid under no additional constraints, i.e., valid for any field x(X, t), θ(X, t).
Further, we invoke the condition ofmaterial objectivity,which implies the following

reduced constitutive equations for viscoelastic materials

Tκ � T̂κ

(
C, Ċ, θ, gκ

)
,

qκ � q̂κ

(
C, Ċ, θ, gκ

)
,

ε � ε̂
(
C, Ċ, θ, gκ

)
,

η � η̂
(
C, Ċ, θ, gκ

)
,

�κ � �̂κ

(
C, Ċ, θ, gκ

)
, (11)

where C � FT F is the right Cauchy–Green tensor.
Since the inequality (10) must hold for any x(X, t) and θ(X, t), the values of{

θ, gκ , C, Ċ
}
and

{
θ̇ , ẍ, ġκ , C̈, ∇gκ , ∇C, ∇Ċ

}
in (10) can have arbitrary values

at any point and any instant.
First, note that (10) is linear with respect to ẍ. Consequently, ρκΛv the coefficient

of ẍ must be equal to zero, i.e.,

Λv � 0. (12)

Thus, (10) becomes

ρκ η̇ + Div�κ − Λερκ ε̇ + ΛεDivqκ − ΛεTκ · Ḟ ≥ 0 (13)
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Next, we consider terms in

η̇ − Λεε̇ �
(

∂η

∂θ
− Λε ∂ε

∂θ

)
θ̇ +

(
∂η

∂gκ

− Λε ∂ε

∂gκ

)
· ġκ

+

(
∂η

∂C
− Λε ∂ε

∂C

)
· Ċ +

(
∂η

∂Ċ
− Λε ∂ε

∂Ċ

)
· C̈ (14)

Div�κ − ΛεDivqκ �
(

∂�κ

∂θ
− Λε ∂qκ

∂θ

)
· gκ +

(
∂�κ

∂gκ

− Λε ∂qκ

∂gκ

)
· ∇gκ

+

(
∂�κ

∂C
− Λε ∂qκ

∂C

)
· ∇C +

(
∂�κ

∂Ċ
− Λε ∂qκ

∂Ċ

)
· ∇Ċ (15)

Note that the term
(

∂�κ

∂gκ

− Λε ∂qκ

∂gκ

)
· ∇gκ

in component form reads as
(

∂�κ

∂gκ

− Λε ∂qκ

∂gκ

)
· ∇gκ �

(
∂ΦκK

∂θ,L
− Λε ∂qκ

∂θ,L

)
θ,LK .

The other terms in the Eq. (15) have equivalent component forms.
After substituting (14) and (15) into (13), by inspection, we conclude

that this inequality is also linear with respect to the following derivatives{
θ̇ , ẍ,

.
g
κ
, C̈, ∇gκ , ∇C, ∇Ċ

}
.

As the inequality must hold for arbitrary fields, we have eliminated the constraints
imposed by the field equations. The coefficients of the above derivatives must vanish
identically. Otherwise, we could choose the fields in such a way that one negative term
would dominate all others and the inequality would be violated. Hence, we obtain the
following equations

Λv � 0

∂η

∂θ
− Λε ∂ε

∂θ
� 0

∂η

∂gκ

− Λε ∂ε

∂gκ

� 0

∂η

∂Ċ
− Λε ∂ε

∂Ċ
� 0 (16)

(
∂�κ

∂gκ

− Λε ∂qκ

∂gκ

)

sym
� 0

∂�κ

∂C
− Λε ∂qκ

∂C
� 0

∂�κ

∂Ċ
− Λε ∂qκ

∂Ċ
� 0 (17)
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Then, the entropy inequality (13) reduces to
(

∂�κ

∂θ
− Λε ∂qκ

∂θ

)
· gκ + ρκ

(
∂η

∂C
− Λε ∂ε

∂C

)
· Ċ + ΛεTκ · Ḟ ≥ 0 (18)

Making use of second Piola–Kirchhoff tensor Sκ � F−1Tκ � J F−1TF−T and
the right Cauchy–Green tensor Ċ � ḞT F+FT Ḟ � 2

(
ḞT F

)
sym (which are symmetric

tensors), the inequality (18) can be written in a more compact form as:

σ �
(

∂�κ

∂θ
− Λε ∂qκ

∂θ

)
· gκ + ρκ

(
∂η

∂C
− Λε ∂ε

∂C
+

1

2ρκ

ΛεSκ

)
· Ċ ≥ 0 (19)

where σ is entropy production density. Moreover, from (16) we obtain

dη

dt
− Λε dε

dt
�

(
∂η

∂C
− Λε ∂ε

∂C

)
· dC
dt

dη � Λε dε +

(
∂η

∂C
− Λε ∂ε

∂C

)
· dC (20)

which has the form of the thermostatic Gibbs relation.

3 Entropy Flux Relation for Viscoelastic Materials

For further evaluation of the consequences of the entropy principle, particularly in
connection with relations (17), we invoke the material symmetry condition that has
to be satisfied by {ε, Tκ , qκ , �κ , η} for isotropic viscoelastic bodies. For instance,
this condition for heat flux can be expressed as:

q̂κ

(
QCQT , QĊQT , θ, Qgκ

)
� Qq̂κ

(
C, Ċ, θ, gκ

)
, ∀Q ∈ O (21)

where O is the full orthogonal group. Note that q̂κ is an isotropic vector-valued
function of

{
C, Ċ, θ, gκ

}
and that (21) imposes restriction on its form. After a

lengthy calculation starting from (15), Liu [13] proved that the following entropy flux
relation holds

�κ � Λε
(
C, Ċ, θ, gκ

)
qκ (22)

Further, based on (22) and (17), I-Shih Liu concluded that Λε must be independent
of C, Ċ and gκ . Thus,

Λε � Λε(θ ). (23)

Accordingly, (20) becomes

dη � Λε dε +
∂

∂C

(
η − Λεε

) · dC
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or

dη � Λε

(
dε − ∂ψ

∂C
· dC

)

where

ψ � ε − η/Λε (24)

By comparison with the classical Gibbs relation in thermostatics, the function Λε

can be identified as the reciprocal of the absolute temperature θ , i.e.,

Λε � 1

θ
(25)

which leads to the classical entropy flux relation (2).
Consequently, one can come to the conclusion that, following I-Shih Liu’s proce-

dure for viscoelastic bodies outlined above, that for isotropic elastic materials with
state variables (F, θ, gκ) the relation (25) holds.

3.1 Entropy Flux of Anisotropic Elastic Materials

In this subsection, the derivation of the relation between the entropy flux and the heat
flux for anisotropic materials with state variables (F, θ, gκ) is considered. In this case,
the requirements (16) and (17) reduce to (26) and (27), respectively.

∂η

∂θ
− Λε ∂ε

∂θ
� 0,

∂η

∂gκ

− Λε ∂ε

∂gκ

� 0, (26)

(
∂�κ

∂gκ

− Λε ∂qκ

∂gκ

)

sym
� 0,

∂�κ

∂C
− Λε ∂qκ

∂C
� 0. (27)

In addition, the material symmetry condition for anisotropic elastic bodies has to
be satisfied by {ε, Tκ , qκ , �κ , η}.

The first paper considering entropy flux for transversely isotropic elastic bodies,
was published by Liu [14], which relies on his paper [18]. In this, anisotropic materials
properties in preferential directions were characterized by a number of unit vectors
m1, . . . ,ma and tensors M1, . . . ,Mb. Ig g is a group of transformations which pre-
serve these characteristics, i.e.,

g �
{
Q ∈ G; Qm � m, QMQT � M

}
,
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where G is a subgroup of O the full orthogonal group, m � (m1, . . . ,ma) and M �
(M1, . . . ,Mb).

In other words, g is characterized by the set (m, M) and the group G ∈ O , i.e.,

g � (G; m, M). (28)

Theorem 1 A function f (v, A) is invariant to g if and only if it can be represented by

f (v, A) � f̂ (v, A, m, M), (29)

where f̂ (v, A, m, M) is invariant relative to G.

Here, v is a vector, A is a second-order tensor and f is either scalar-valued,
vector-valued or tensor-valued function. Particularly, if f̂ (v, A, m, M) is an isotropic
function then:

• for a scalar-valued function

f̂ (Qv, QAQT ,Qm, QMQT ) � f̂ (v, A, m, M),

• for a vector-valued function

Q f̂ (v, A, m, M) � f̂ (Qv, QAQT , Qm, QMQT ),

• and for a tensor-valued function

Q f̂ (v, A, m, M)QT � f̂ (Qv, QAQT , Qm, QMQT ).

In the same paper, I-Shih Liu gives a list of 14 such groups g for some crystal
classes. He uses the following notation:

ni , i � 1, 2, 3 where ni are orthonormal vectors, i.e.,

ni · n j � δi j . (30)

Ni are skew-symmetric tensors defined by

Ni � ei jkn j ⊗ nk, i, j, k � 1, 2, 3. (31)

In order to write the exact form of the constitutive functions used in our further
investigation, we need several functional relations particularly amongni andNi . These
basic relations are given in “Appendix.”

Liu [14] considered only two different classes of transversally isotropic bodies

g2 � (O; Qn1 � n1),

g5 �
(
O; Qn1 ⊗ n1QT � n1 ⊗ n1

)
,
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where n1 is the preferred direction of transverse isotropy.
In applying the isotropic representation of constitutive functions, instead of the

Cauchy–Green strain tensor C, he used the Green–St. Venant strain tensor E, i.e.,

E � 1

2
(C − I)

which vanishes when there is no deformation and considers constitutive functions qκ

and �κ of (E, θ, gκ) up to bilinear terms in E and gκ , i.e.,

qκ � (a1 + a2 trE + a3n · En)gκ + a4Egκ

+ (b1 + b2 trE + b3n · En)(n ⊗ n)gκ + b4(n ⊗ En)gκ + b5(En ⊗ n)gκ

+ (c1 + c2 trE + c3n · En)n + c4En,

�κ � (α1 + α2 trE + α3n · En)gκ + α4Egκ

+ (β1 + β2 trE + β3n · En)(n ⊗ n)gκ + β4(n ⊗ En)gκ + β5(En ⊗ n)gκ

+ (γ1 + γ2 trE + γ3n · En)n + γ4En,

where all the material coefficients are functions of the temperature θ only.
For the class of transversally isotropic bodies defined by

g2 � (O; Qn1 � n1),

he was able to prove that Λε is a function of the temperature only, i.e.,

Λε � Λε(θ ) � 1

θ
.

Further, he obtained the entropy flux and the heat flux relation as:

�κ � 1

θ
qκ + k(θ )n1. (32)

Therefore, for this class of transversally isotropic bodies, the classical result does
not hold in general.

For the class of transversally isotropic bodies defined by

g5 �
(
O; Qn1 ⊗ n1QT � n1 ⊗ n1

)
,

he obtained

Λε � 1

θ
, �κ � 1

θ
qκ , (33)

which is identical to the classical result (2).
For these cases, a functional form of Λε had to be found first to determine the

relation between entropy flux and heat flux. It appears that Λε � Λε(θ ) holds in
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all these cases, i.e., Λε � Λε(θ ) is a necessary condition for the determination of a
relation between the entropy flux and the heat flux.

This is where we pose the question whether this is sufficient condition? Having this
in mind, we proceed first by re-examining the above cases.

This assumption differs substantially from Green and Laws [19], as well as from
Hutter [20] and Bargmann and Steinmann [21]. In Green and Laws [19], the entropy
flux and heat flux relationships are defined as �κ � 1

ϕ
qκ , where ϕ is a constitutive

function which reduces to the absolute temperature θ in equilibrium. Hutter [20]
postulated the classical entropy flux heat flux relation. In their contribution, Bargmann
and Steinmann [21] adopted the Green and Naghdi approach for non-classical theory
of thermos-elasticity for isotropic materials and to obtain the entropy flux–heat flux
relation (4).The consequence of the assumption that Lagrange multiplier conjugated
to the energy balance equation is function of temperature only Λε � Λε(θ ).

Eringen stated [22] that “it is always possible to express the entropy change as a
sum of entropy flux and entropy source as”

� � 1

θ
q + �1 (34)

where �1 is the entropy change due to all other effects except heat input.
In our consideration,wedonot useEringen’s postulate anddonotmake any assump-

tion about the entropy flux relation. The only assumption used in our derivation is that
Lagrange multiplier Λε is a function of temperature θ only, i.e., Λε � Λε(θ ). The
implication of this assumption for isotropic viscoelastic bodies is considered first. In
this, the starting point is the set of Eq. (17) which are restated below

(
∂�κ

∂gκ

− Λε ∂qκ

∂gκ

)

sym
� 0

∂�κ

∂C
− Λε ∂qκ

∂C
� 0

∂�κ

∂Ċ
− Λε ∂qκ

∂Ċ
� 0 (35)

Let us introduce a newvariablek � �κ−Λεqκ .Recall that �κ � fl̂κ

(
C, Ċ, θ, gκ

)

and qκ � q̂κ

(
C, Ċ, θ, gκ

)
, consequently k � k̂

(
C, Ċ, θ, gκ

)
. Using k, Eq. (35) can

be written as:

(
∂kκ

∂gκ

)

sym
� 0

∂kκ

∂C
� 0

∂kκ

∂Ċ
� 0 (36)
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Thus, k � k̂(θ, gκ ) and the set of Eq. (36) reduces to
(

∂k
∂gκ

)

sym
� 0 (37)

For clarity reasons, the following few steps are written in index notation or com-
ponent notation. Equation (37) when written in component form is ∂ki

∂g j
+

∂k j
∂gi

� 0,
where ki and gi are components of vectors k and gκ , respectively. Differentiation of
(37) with respect to gκ yields

∂2kp
∂gr∂gq

+
∂2kq

∂gr∂gp
� 0

The remaining two relations obtained by cyclic index permutation are

∂2kq
∂gp∂gr

+
∂2kr

∂gp∂gq
� 0

∂2kr
∂gq∂gp

+
∂2kp

∂gq∂gr
� 0

From them, we have

∂2kp
∂gr∂gq

� 0

The solution of this simple set of differential equations is

kp � Apq (θ )gq + ap(θ ), A(pq) � 0

This solution can be rewritten, using symbolic notation, as:

k(θ, gκ ) � A(θ)gκ + a(θ ) (38)

whereA(θ ) is skew symmetric. Sincewe are dealingwith isotropic viscoelastic bodies,
k(θ, gκ ) must be a vector-valued isotropic function. Thus

Qk(θ, gκ ) � k(θ,Qgκ ) (39)

must hold for all Q ∈ O and an arbitrary gκ . Equivalently, (39) can be restated as:

QA(θ)gκ +Qa(θ ) � A(θ)Qgκ + a(θ ) (40)

Particularly, for the case of Q � −I, it follows that a(θ ) � 0 and consequently
(40) reduces to

QA(θ)gκ � A(θ)Qgκ (41)
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which can be rewritten as:

QA(θ )QTQgκ � A(θ )Qgκ (42)

Since (42) must hold for all Q ∈ O and an arbitrary gκ , we have that

QA(θ )QT � A(θ ) (43)

since A(θ ) is skew symmetric, only A(θ ) � 0 satisfies (43), and

k � �κ − Λεqκ � 0 (44)

This result is identical to Liu’s [13] for isotropic viscoelastic bodies, which validates
the new procedure and led to its application to the anisotropic materials considered
below. It is important to observe that the assumption Λε � Λε(θ ) significantly sim-
plifies and shortens the procedure.

3.2 Entropy Flux Relation for Anisotropic Elastic Materials in General

This section considers anisotropic bodies characterized with

g �
{
Q ∈ O; Qm � m, QMQT � M

}
. (45)

In other words, g comprises the set (m, M) and the group O , i.e., g � (O; m, M).
Consequently,

k � k̂(θ, gκ , m, M) � A(θ, m, M)gκ + a(θ, m, M) (46)

is isotropic vector-valued function, i.e.,

Qk(θ, gκ , m, M) � k(θ, Qgκ , Qm, QMQT ), (47)

or

QA(θ, m, M)gκ +Qa(θ, m, M) � A(θ, Qm, QMQT )Qgκ + a(θ, Qm, QMQT )
(48)

which must hold for all Q ∈ O and arbitrary gκ . Particularly, for gκ � 0, we have

Qa(θ, m, M) � a(θ, Qm, QMQT ), (49)

i.e., a(θ, m, M) is vector-valued isotropic function of its arguments. Moreover,

QA(θ, m, M)gκ � A(θ, Qm, QMQT )Qgκ (50)

or
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QA(θ, m, M)QTQgκ � A(θ, Qm, QMQT )Qgκ .

This must hold for all Q ∈ O , and hence

QA(θ, m, M)QT � A
(
θ, Qm, QMQT

)
, (51)

i.e.,A(θ, m, M) is skew-symmetric tensor-valued isotropic function of its arguments.
For vector-valued and skew-symmetric tensor-valued isotropic functions in R3 see

Smith [23] and Spencer [24]. All groups of crystal classes given by Liu [18] are
considered below.

3.3 Transversally Isotropic Material Bodies

In this section, we consider transversely isotropic material bodies divided into four
cases. The cases (a) characterized by g2 � (O; n1) and the case (b) characterized by
g5 � (O; n1 ⊗ n1) were selected in order to validate the proposed procedure against
the results obtained by Liu [14] for the same materials. The results for the cases (c)
characterized by g1 � (O; n1, N1) and d) characterized g1 � (O; n1, N1) are new
and, to the best of our knowledge, not available in the published literature.

(a) transversally isotropic bodies with group symmetry g2 � (O; n1).
In this case,

k � k̂(θ, gκ , n1) � A(θ, n1)gκ + a(θ, n1) (52)

where the following must hold

Qa(θ, n1) � a(θ, Qn1), (53)

i.e., a(θ, n1) is vector-valued function which can be expressed as

a(θ, n1) � λ(θ)n1 (54)

where λ(θ ) is an arbitrary scalar function. Further,

QA(θ, n1)QT � A(θ, Qn1) (55)

Thus, A(θ, n1) is skew-symmetric tensor-valued isotropic function. Conse-
quently, A � 0 (see Smith [23]). In this case,

k � �κ − Λεqκ � λ(θ )n1. (56)

Moreover,

λ(θ ) � (
�κ − Λεqκ

)∣∣
C�I,gκ�0 · n1 (57)
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where C� I implies that there is no deformation and gκ � 0 implies that there
is no temperature gradient.
The result (57) agrees with I-Shih Liu’s result for transversally isotropic bodies
with group symmetry group g2 [14].

(b) transversally isotropic bodies with group symmetry g5 � (O; n1 ⊗ n1).
In this case,

k(θ, n1 ⊗ n1, gκ) � A(θ, n1 ⊗ n1)gκ + a(θ, n1 ⊗ n1) (58)

where a(θ, n1 ⊗ n1) and A(θ, n1 ⊗ n1), as isotropic functions, must vanish,
resulting in

k � �κ − Λεqκ � 0, (59)

The result (59) agrees with I-Shih Liu’s result for transversally isotropic bodies
with group symmetry group g5 [14].
Therefore, for the above cases, we demonstrated that Λε � Λε(θ ) is not only a
necessary but also a sufficient condition to determine the entropy flux–heat flux
relation.
To demonstrate the generality of the proposed procedure, we consider the other
crystal classes for which representation of anisotropic invariants is given by Liu
[18]. Note, in all these cases, representations of anisotropic invariant function
are obtained using the tables for isotropic functions. This more general entropy
principle delivers relations which are the same as those obtained by the Clau-
sius–Duhem inequality and hold for all materials in classical thermodynamics.
Heuristically, we do not see any physically based objection which would contra-
dict the possibility that Λε could be different to Λε � Λε(θ ) for crystal classes
from G3 to G14. It is also in accordance with assumption given by Hutter [25],
p. 211, who demonstrated that Λε(θ ) is independent of the material properties
for the heat conducting compressible fluids.
Further, this could be related to the statement by Ingo Muller and Tommaso
Ruggeri in relation to extended thermodynamics: “Physicists firmly believe that
the differential equations of nature should be hyperbolic so as to exclude action
at a distance. This incompatibility between the expectation of the physicist and
the classical laws of thermodynamics has prompted the formulation of extended
thermodynamics”.
In addition, we do not see any physical reason that Λε would have a different
form to Λε � Λε(θ ) for these crystal classes.
The result for the following cases is new (to the best of our knowledgenot available
in the published literature).

(c) transversally isotropic bodies with group symmetry g1 � (O; n1, N1).
In this case,

k � k̂(θ, gκ , n1, N1) � A(θ, n1, N1)gκ + a(θ, n1, N1) (60)
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Here and in what follows, we use particularly the representation formulae [(2.41),
(4.2), (4.3), (4.6), (4.7)] given by Smith [23] (see also Liu [18], Wilmanski [26])
for vector-valued isotropic function and skew-symmetric tensor-valued function
of their arguments. We strictly apply these formulae for the vector function a
(θ, n1, N1) and a skew-symmetric tensor-valued function A(θ, n1, N1). Their
scalar invariant functions are always functions of θ . Therefore, we must find the
basis invariants of the set (n1, N1). They are

n1 · n1
trN2

1

n1 · N2
1n1 (61)

The generator of the set (n1, N1) for a(θ, n1 ⊗ n1) is n1, and consequently,
a � λ(θ )n1. The generator of the set (n1, N1) for A(θ, n1, N1) is N1 and,
accordingly, A(θ, n1, N1) � μ(θ )N1.
Thus,

k � �κ − Λεqκ � −μ(θ )N1gκ + λ(θ )n1
� μ(θ )n1 × gκ + λ(θ )n1. (62)

(d) transversally isotropic bodies with group symmetry g3 � (O; N1).
In this case,

k � �κ − Λεqκ � μ(θ )n1 × gκ (63)

3.3.1 Orthotropic Material Bodies

This section considers anisotropic bodies characterized with group symmetry
g6 � (O; n1 ⊗ n1, n2 ⊗ n2). The basis of invariants for (θ, n1 ⊗ n1, n2 ⊗ n2)
are functions only of θ (see Smith [23] and the “Appendix”). There are no
generators for a(θ, n1 ⊗ n1, n2 ⊗ n2), i.e., a(θ, n1 ⊗ n1, n2 ⊗ n2) � 0 and A
(θ, n1 ⊗ n1, n2 ⊗ n2) � 0.

Thus

k � �κ − Λεqκ � 0 (64)

3.3.2 Triclinic System

(a) Predial class characterized with group symmetry g7 � (O; n1, n2, n3). For this
class, there are no invariants of (O; n1, n2, n3). Generators for a(θ,n1, n2, n3)
aren1, n2 andn3. Thus,a(θ,n1, n2, n3) � λ(θ )n1+μ(θ )n2+ν(θ )n3.Generators
forA(θ, n1, n2, n3) aren1⊗n2−n2⊗n1,n2⊗n3−n3⊗n2 andn3⊗n1−n1⊗n3.
Thus,

A(θ, n1, n2, n3) � −p(θ )(n1 ⊗ n2 − n2 ⊗ n1)
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− q(θ )(n2 ⊗ n3 − n3 ⊗ n2) − r (θ )(n3 ⊗ n1 − n1 ⊗ n3)

� −p(θ )N3 − q(θ )N1 − r (θ )N2

and consequently

k � �κ − Λεqκ � [p(θ)n3 + q(θ)n1 + r(θ)n2] × gκ

+ λ(θ)n3 + μ(θ)n1 + ν(θ)n2 (65)

(b) Pinacoidal class characterized with group symmetry g8 � (O; N1, N2). For this
class, there are no invariants and no generators for a(θ, N1, N2), i.e., a � 0.
Generators for A(θ, N1, N2) are N1,N2 and N1N2 − N2N1 � −N3. Thus

k � �κ − Λεqκ � [−p(θ)N3 − q(θ)N1 − r(θ)N2]gκ

� [p(θ)n3 + q(θ)n1 + r(θ)n2] × gκ (66)

3.3.3 Monoclinic System

(a) Domatic class characterized with group symmetry g9 � (O; n2, n3). In the same
way as in the case of the predial class, we obtain

k � �κ − Λεqκ � [q(θ )n2 + r (θ )n3] × gκ + λ(θ )n2 + μ(θ )n3 (67)

(b) Sphenoidal class characterized with group symmetry g10 � (O; n1, n2 ⊗
n2, N1). For this class, there are no invariants for a(θ, n1, n2 ⊗ n2, N1) and
A(θ, n1, n2 ⊗ n2, N1). Generator of a(θ, n1, n2 ⊗ n2, N1) is n1 and a �
λ(θ )n1.Generator ofA(θ, n1, n2 ⊗ n2, N1) isN1 andA(θ, n1, n2 ⊗ n2, N1) �
−μ(θ )N1. Therefore,

k � �κ − Λεqκ � μ(θ )n1 × gκ + λ(θ )n1. (68)

(c) Prismatic class characterized with group symmetry g11 � (O; n2 ⊗ n2, N1). For
this class, there are no invariants for a(θ, n2 ⊗ n2, N1) and A(θ, n2 ⊗ n2, N1).
There are no generators of a(θ, n2 ⊗ n2, N1), thus, a � 0. Generator of A
(θ, n2 ⊗ n2, N1) is N1 and A(θ, n2 ⊗ n2, N1) � −μ(θ )N1. Therefore,

k � �κ − Λεqκ � μ(θ )n1 × gκ . (69)

3.3.4 Rhombic Systems

(a) Pyramidal class characterizedwith group symmetry g12 � (O; n1, n2 ⊗ n2). For
this class, there are no invariants of a(O; n1, n2 ⊗ n2) and A(O; n1, n2 ⊗ n2).
Generator of a(θ, n1, n2 ⊗ n2) is n1 and a � λ(θ )n1. There are no generators of
A(θ, n1, n2 ⊗ n2), i.e., A(O; n1, n2 ⊗ n2) � 0.
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Hence,

k � �κ − Λεqκ � λ(θ )n1. (70)

(b) Dipyramidal class characterized with group symmetry g14 � g6 �
(O; n2 ⊗ n2, n3 ⊗ n3) and consequently

k � �κ − Λεqκ � 0. (71)

4 The Entropy Inequality for Anisotropic Bodies

So far, we did not investigate the entropy inequality

σ �
(

∂�κ

∂θ
− Λε ∂qκ

∂θ

)
· gκ + ρκ

(
∂η

∂C
− Λε ∂ε

∂C
+

1

2ρκ

ΛεSκ

)
Ċ ≥ 0 (72)

for general anisotropic materials under the assumption that Λε � Λε(θ ). Making use
of the free energy function ψ � ε − θη, the expression for σ reduces to

σ �
(

∂�κ

∂θ
− Λε ∂qκ

∂θ

)
· gκ +

Λε

2

(
Sκ − 2ρκ

∂ψ

∂C

)
Ċ ≥ 0 (73)

which is linear in Ċ. Thus,

Sκ � 2ρκ

∂ψ

∂C
(74)

Equation (74) leads to the conclusion that all anisotropic elastic materials are
hyperelastic as a consequence of Λε(θ ), irrespective of whether the classical entropy
flux relation is valid. The remaining inequality now reads

σ �
(

∂�κ

∂θ
− Λε ∂qκ

∂θ

)
· gκ ≥ 0 (75)

or

σ �
(

∂k
∂θ

+
∂Λε

∂θ
qκ

)
· gκ ≥ 0 (76)

where k � �κ − Λεqκ . Now, from (46), we have

∂k
∂θ

� ∂A(θ,m,M)

∂θ
gκ +

∂a(θ,m,M)

∂θ
(77)

Since A(θ,m,M) is skew-symmetric gκ · ∂A(θ,m,M)
∂θ

gκ � 0, hence

∂k
∂θ

· gκ � ∂a(θ,m,M)

∂θ
· gκ (78)
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Therefore (75) becomes

σ �
(

∂a(θ,m,M)

∂θ
− 1

θ2
qκ(C, θ, gκ ,m,M)

)
· gκ ≥ 0 (79)

The nonnegative entropy production density σ attains its minimum, which is in fact
zero, when gκ � 0. A necessary condition for an extremum at gκ � 0 is

∂σ

∂gκ

∣∣∣
∣
gκ�0

� 0 (80)

or

qκ(C, θ, gκ � 0,m,M) � θ2
∂a(θ,m,M)

∂θ
, (81)

at equilibrium.
Since Eq. (81) holds for all anisotropic elastic bodies, it can be used to define the

heat flux vector at equilibrium for specific crystal classes. For instance, for transver-
sally isotropic material bodies, considered by Liu [14], with the following group
symmetries:

(a) g2 � (O; n1) and a(θ, n1) � λ(θ)n1, where λ(θ ) is an arbitrary scalar function,
we have

qκ(C, θ, 0,m,M) � θ2
dλ

dθ
n1 (82)

(b) g5 � (O; n1 ⊗ n1)

qκ(C, θ, 0,m,M) � 0 (83)

And similarly, for other group symmetries investigated here, the following results
hold:

g1 � (O; n1, N1) : qκ(C, θ, 0,n1,N1) � θ2 dλ

dθ
n1

g2 � (O; n1) : qκ(C, θ, 0,n1) � θ2 dλ

dθ
n1

g10 � (O; n1, n2 ⊗ n2, N1) : qκ(C, θ, 0,n1,n2 ⊗ n2,N1) � θ2 dλ

dθ
n1

g12 � (O; n1, n2 ⊗ n2) : qκ(C, θ, 0,n1,n2 ⊗ n2) � θ2 dλ

dθ
n1

g3 � (O; N1) : qκ(C, θ, 0,N1) � 0
g5 � (O; n1 ⊗ n1) : qκ(C, θ, 0,n1 ⊗ n1) � 0
g6 � (O; n1 ⊗ n1, n2 ⊗ n2) : qκ(C, θ, 0,n1 ⊗ n1,n2 ⊗ n2) � 0
g8 � (O; N1, N2) : qκ(C, θ, 0,N1,N2) � 0
g11 � (O; n2 ⊗ n2, N1) : qκ(C, θ, 0,n2 ⊗ n2,N1) � 0
g14 � (O; n2 ⊗ n2, n3 ⊗ n3) : qκ(C, θ, 0,n2 ⊗ n2,n3 ⊗ n3) � 0

(84)
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Note, g14 � g6.

g7 � (O; n1, n2, n3) : qκ (C, θ, 0, n1, n2, n3) � dλ

dθ
n1 +

dμ

dθ
n2 + dν

dθ
n3

g9 � (O; n2, n3) : qκ (C, θ, 0, n2, n3) � dμ

dθ
n2 + dν

dθ
n3

(85)

A necessary condition that entropy production σ has minimum at gκ � 0 is that
the second derivative of σ with respect to gκ be semi-positive, i.e.,

∂2σ

∂gi∂g j

∣∣∣∣
gκ�0

≥ 0 (86)

Note that ∂2σ
∂gi ∂g j

is a symmetric tensor. Using (76) and (79), it is easy to show that

∂2σ

∂gi∂g j

∣∣∣∣
gκ�0

� 2
∂Λε

∂θ

∂qi
∂g j

∣∣∣∣
(i, j)|gκ�0

� −2
1

θ2

(
∂qi
∂g j

)∣∣∣∣
(i, j)|gκ�0

≥ 0

having in mind that Λε � 1/θ .
Finally, (86) can be written as:

(
∂qκ

∂gκ

)∣∣∣∣
sym|gκ�0

≤ 0 (87)

which holds for all anisotropic elastic materials. The constraints that (87) imposes
must be investigated for particular anisotropic materials. For example, for the trans-
versely isotropic elastic materials where

qκ � a0 gκ + (b0 + b1(n · gκ))n + c0n × gκ

we have
(

∂qκ

∂gκ

)∣∣∣∣
sym|gκ�0

� a0I + b1n ⊗ n ≤ 0

with the constraints

a0 ≤ 0, a0 + b1 ≤ 0

5 Conclusion

This paper revisits entropy flux and heat flux relations for isotropic and several
anisotropic elastic materials. More specifically, we investigated the consequence of
the assumption that Lagrange multiplier conjugated to the energy balance equation
Λε � Λ(θ ) irrespective of validity of the classical entropy flux relation. This assump-
tion is used to derive the relationship between the entropy flux and heat flux for all
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isotropic elastic materials as well as for some crystal classes including transverse
isotropy, orthotropy, triclinic systems and rhombic systems. First, we re-examined the
entropy flux–heat flux relation for viscoelastic materials, isotropic elastic materials
and transversely isotropic elastic bodies and demonstrated that our results agree with
the results obtained by Liu [12–15, 27]. All these cases confirm that Λε � Λ(θ ) is a
necessary and sufficient condition for the determination of the entropy flux–heat flux
relation.

Furthermore, we derived the entropy flux–heat flux relations, based on the assump-
tion that Λε � Λ(θ ), for all the following crystal classes: transverse isotropy,
orthotropy, triclinic systems, monoclinic systems and rhombic systems for which rep-
resentations of anisotropic functions with respect to their symmetry groups can be
expressed in terms of isotropic functions. Our derivation is very general in the sense
that the constitutive relations are nonlinear. One of our main results is the proof that all
crystal elastic bodies, we considered, are hyperelastic. This represents a generalization
of I-Shih Liu’s finding for transversely isotropic bodies, the only case he analyzed.

We would like to draw attention to the following three points:

(i) The vector function a and skew-symmetric function A are isotropic functions
depending only on the set (θ, m, M) which simplifies the procedure.

(ii) Generally, the classical entropy flux–heat flux relation does not hold; it is true
for all crystal classes investigated here except for g2, g6 � g14.

(iii) The heat flux in the absence of a temperature gradient is not zero for all crystal
classes. This confirms Eringen’s statement that � � 1

θ
q + �1 where �1 is the

entropy change due to all other effects except heat input.

We repeat that heuristically, we do not see any physically based objection which
would contradict the possibility that Λε could be different to Λε � Λε(θ ) for crystal
classes we considered. Of course, the assumption Λε � Λ(θ ) and all our predictions
have to be verified experimentally. This is a task for future research in collaboration
with some experimentalists.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

For orthonormal vectors ni · n j � δi j and Ni the skew-symmetric tensors defined by
Ni � ei jkn j ⊗ nk, i, j, k � 1, 2, 3. it is easy to show that

ni ⊗ n j � (
ni ⊗ n j

)n for any natural number n,

Niv � −ni × v,

NiN j � ni ⊗ n j − δi j I,

NiN jv � (ni · v)n j − δi jv,

N2
i N j � −δi jNi ,
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w · Niv � w · (v × ni ),

w · NiN jv � (ni · v)(n j · v) − δi j (v · w),

trNi � 0

trNiN j � −2δi j
ni ⊗ n j − n j ⊗ ni � ei jkNk,

NiN j − N jNi � −ei jkNk,

where v and w are arbitrary vectors.
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