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Abstract Modeling of the probe beam deflection caused by temperature gradients for
layered sample was realized in COMSOL Multiphysics, which utilizes finite element
method to analyze heat transport. The sample consisted of a 100-nm-thick layer on
a 500-pm-thick substrate. It was also assumed that the sample was illuminated with
either a Gaussian or a flat top beam of harmonically modulated intensity. To obtain the
probe beam deflection signal, the normal and tangential components of the tempera-
ture gradient in the air above the sample were integrated over the probe beam path.
The numerical model of the experiment gave insight into the various parameter depen-
dencies, e.g., the thermal and optical properties of the substrate and the layer, and the
geometry of the experiment. These insights are used in the analysis of experimental
data and in the planning of future measurements.
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1 Introduction

The detection of temperature disturbances by the use of the mirage effect is the basis
of various optical techniques known as photothermal deflection measurements. Illu-
minating a sample with an intensity-modulated light beam generates a non-stationary
temperature disturbance connected with temperature gradients. These temperature gra-
dients induce changes in the refractive index through the thermo-optic effect, which is
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essential to the optical detection of temperature gradients. A probe light beam passing
through the disturbed region can be deflected, changing the intensity distribution in
its cross section. This effect is called the mirage effect. Application of the mirage
effect for signal detection in photothermal measurements was proposed by Boccara
and Fournier [1], and Murphy and Aamodt [2].

Qualitative descriptions of the mirage effect are simple. However, its quantitative
model—especially when the real probe beam and 3D temperature field are taken into
account—is quite complicated. The ray model is the simplest theoretical model. It is
based on the principles of geometrical optics and the assumption that the probe beam
can be treated as a single ray [3]. This ray is deflected on temperature gradients, and
the sum of the deflections along a ray path is proportional to the measured signal.
This model was recently improved to take into account the finite cross section of the
probe beam [4]. The probe beam was considered as a bundle of rays. The signal was
the weighted sum of the rays’ deflections over the beam cross section. However, this
model does not take into account the differences in the phase shifts for rays using dif-
ferent pathways and having varying interference effects. The wave nature of the probe
beam was taken into account in the model proposed by Glazov and Muratikov [5].
The propagation of probe beam through the region with a perturbed refractive index
distribution—called the thermal lens—was analyzed. The thermal lens was treated as
a single phase, so the influence on the distribution of the probe beam amplitude was
not considered. A model considering both the amplitude and the phase change of light
in the probe beam caused by the thermal lens was proposed in Ref. [6-9]. It is based
on the complex geometrical optics equations, but is restricted to probe beams with
Gaussian profiles.

This short review of existing models of photothermal deflection measurements
contains only the main proposals for theoretically modeling. However, even in the
simplest geometrical optics models, an analytical solution for probe beam deflection
can only be obtained in simple cases, e.g., 1D temperature fields.

The aim of this work is to show that analysis of photothermal deflection measure-
ments can be done by numerical analysis of temperature disturbance caused by an
absorption of light from the power beam, and numerical calculation of the probe beam
deflection. The main advantages of this approach are first the possibility for modeling
experiments with any power beam distribution (Gaussian, flat top, etc.), and second the
ability to use samples of any optical and thermal properties. The proposed approach
was used to analyze the signal in measurements utilizing infrared radiometry for signal
detection [10-12].

2 Numerical Model

2.1 Temperature Field

The first step in the modeling of the photothermal deflection measurement is the deter-
mination of the temperature field in the sample and its surrounding. Consider a sample

with a 100-nm-thin layer on 500-pum-thick substrate. The sample was surrounded by
air modeled by two 3-mm-thick layers above and below the sample. To maintain axial
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Fig. 1 Geometry of the model. Az, mm
Detailed description in the text 3

symmetry, all layers were enclosed in a cylinder 5 mm in radius. The geometry of the
system is shown in Fig. 1. In such geometry, the symmetry axis coincides with the
z-axis, the temperature field is a function of two variables r and z, and the solution
must be found at the half-plane r > 0.

Absorption of light from the power beam causes a rise in the number of heat sources
in the considered system. It was assumed that the light intensity distribution in the beam
cross section kept the system symmetry. Two types of power beams were considered:

— the Gaussian beam with the light intensity at z = 0

2

I(r,1) = Ipexp (-#) sin 27 f1) (1)

— and the flat top beam with the light intensity at z = 0

I(r,t) = sin 2w ft), 2)

exp (55) + 1

where [ is the maximum light intensity in the power beam, R is a parameter
characterizing its radius, u is a parameter describing the width of the flap top beam
edge, and f'is the light modulation frequency.

Assuming that the light absorption in the film and the substrate obeys the Beer—
Lambert law—and there is no light reflection at the film—substrate interface—volume
densities of heat sources in the system can be described as

wi (r,z,1) = Bl () exp(Brz), for —d <z <0, 3
wy (r,z, 1) = Pol () exp (—pid)exp (B2 (2 +d)), for z<—d, (4

@ Springer



93 Page4of 12 Int J Thermophys (2017) 38:93

a b C
200 294 200/ 0 zooi 6000
0 5 0

£ 200

£

3 -200 »

-400

OT/or, K/m
Z,
aT/dz,K/m

-600

-800 293 -800 -2500 -800 -6000
0 400 800 0 400 800 0 400 800
r, um r, um r, um

Fig. 2 Temperature (a), the radial (b), and z-axis (c) gradients calculated for homogeneous PET sam-
ple illuminated by intensity-modulated Gaussian beam at 1 = 0.059s (maximum of the light intensity).
Parameters of the model used in calculations are listed in the text

where B, By are light absorption coefficients of the film and the substrate, respec-
tively, and d is the layer thickness. The heat transport model of the system must have
defined boundary conditions. In photothermal experiments using modulated light, the
harmonic component of the temperature field with frequency f'is the only factor influ-
encing the measured signal. This component propagates as a heavily damped thermal
wave, for which penetration depth is defined by the thermal diffusion length

w= | §)

where « is the thermal diffusivity of the sample. For modulation frequencies greater
than 100Hz, and R < 1.0mm, it can be assumed that the harmonic temperature
disturbance does not reach the outer borders of the system, and the temperature at
these borders is equal to ambient. Due to symmetry, the heat flux through the border
at r = 0 is equal to zero. An interfacial layer between the thin film and the substrate
creates a barrier for the heat flux. This barrier is described by interfacial thermal
resistance Rth, which connects the heat flux through the barrier j with the temperature
jump on it AT

AT

R

J (6)
The thermal model of the system was built in COMSOL Multiphysics® using the heat
transfer module. The temperature distribution as a function of time was calculated for
30 periods after switching on the heat sources with time resolution of 20 points per
period. The radial and z-direction temperature gradients in air above the sample were
then calculated on a regular spatial grid with 10 pum steps for 0 < » < 2000 pm, and
0 < z <200 pm. Results were exported to a file for further analysis.

Exemplary temperature and temperature gradient distributions obtained for the
Gaussian beam with R = 88 wm, and homogeneous polyethylene (PET) sample
(thermal conductivity ¥ = 0.052W-m~'K~!, density p = 950 kg-m~3, specific heat
¢ = 2300J-kg”'K~!, and the optical absorption coefficient i = B = 80m™!))
are shown in Fig. 2. These calculations were carried out for the modulation frequency
f = 500 Hz, with maximum light intensity I = 3x 107 W- m~2, and the distributions
shown correspond to t = 0.059s.
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2.2 Photodeflection Signal

According to the ray model, proposed by Aamodt and Murphy [3], the deflection of
the probe beam passing through the thermal lens is given by the formula

- 1 dn o -
W =—— | VT xdI’ @)
ndT r

where the integration is carried out along a beam path I". In practice, two components
of this deflection are measured, the deflection perpendicular to the sample surface, the
so-called normal deflection

1dn [* 0T
Yn=———+ ——dx, (3)
ndT J_ 0z

and the deflection parallel to the sample surface, tangential deflection

" ldn [ 8Td ©)
=——— —dx.
! ndT J_o 0y

The last two equations were obtained under the assumption that the probe beam defec-
tion is small and the probe beam is parallel to the x-axis. Integrals in Egs. (8, 9) can be
calculated numerically if partial derivatives 97 /dz and 7 /9y are known. The first one
is obtained directly from the finite element model built in COMSOL Multiphysics®.
The other can be calculated from the radial temperature gradient 97 /dr. The geometry
corresponding to the signal detection scheme is depicted in Fig. 3. The probe beam
goes in parallel to the x-axis at a distance s from the symmetry axis of the temperature
field, at a height / over the sample surface. The beam intersects consecutive circles
for which the radial temperature gradient 97 /dr = f(z = h, r, t) was calculated. The
aT /0y temperature gradient is

Fig. 3 Geometry of the signal
detection scheme. Detailed
description in the text
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Fig.4 Amplitudes and phases of normal and tangential probe beam deflections as functions of the distance
between the power beam axis and the probe beam obtained for the same parameters as Fig. 2 (PET sample
illuminated by intensity-modulated Gaussian beam)

oT 50T
—=—-— (10)
ay r or

The normal and the tangential deflections as functions of time were calculated using
trapezoidal rule. Then, amplitudes and phases of both deflections were obtained by
digital signal processing analogous to this used in lock-in amplifiers. Exemplary depen-
dences obtained for the same model parameters as listed at the end of Sect. 2.1 and
the sample—probe beam distance 7 = 100 pm are shown in Fig. 4.

3 Analysis

The numerical model of photothermal deflection measurements allows for the analysis
of the influence of various parameters of the model on measured signals. Two main
goals of this analysis are follows: (1) Does the variation of selected sample parameters
influence measured dependencies and can it be determined? And (2) does the simplified
method for analysis of experimental data give correct values of sample parameters?
It is important to carry out the analysis for realistic distributions of the light intensity
in the power beam cross section. The general assumption is that the power beam is
Gaussian. Nowadays, the laser diodes are used in many photothermal experiments to
generate the disturbance of the temperature field. The light from the source is guided to
the sample through an optical fiber. The light intensity distribution along the diameter
of alight spot is depicted in Fig. 5. The spot is obtained by focusing light from optical
fiber on the sample surface. The experimental distribution is fitted by two theoretical
distributions: the Gaussian one described by Eq. 1, and the flat top beam described by
Eq. 2.

The central part of the experimental distribution is noisy. Nevertheless, it is clear that
the flat top beam fits experimental points much better than the Gaussian distribution.
Parameters of fitted curves are as follows:

— Gaussian beam: R = 88.4 um, Iy = 4.9a.u.
— flattopbeam: R = 114 um, u = 10 wm, Ip = 4.4a.u.
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Fig.5 Lightintensity distribution in the power beam cross section fitted with Gaussian (solid line) and flat
top (dash line) distribution
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Fig.6 Normalized amplitudes and phases of normal tangential deflections as functions of the power—probe
beams distance calculated for Gaussian and flat top power beams at 100 pm over the Si sample

In further analysis, two samples (or sample substrates) are considered—PET and
silicon (Si). Basic properties of PET are given in Sect. 2.1. It is a transparent mate-
rial with low thermal conductivity. Basic parameters of Si used in modeling are
as follows: k = 131 W-m™'K~!, p = 2330kg- m™3, ¢ = 703 J- kg7'K~!, and
B = 8.5 x 10*m~!. The thermal diffusivities of these materials are as follows:
aper = 0.24 x 1072 m?s™!, ag; = 0.80 x 10~* m?s~!. The influence of the light
intensity distribution in the power beam cross section on amplitudes and phases of
normal and tangential deflections for Si and PET samples is shown in Figs. 6 and 7,
respectively. Amplitudes are normalized to the amplitude of the normal deflection for
s = 0. Signals were calculated for 4 = 100pm.

The main conclusion built on a comparison of Figs. 6 and 7 is that the influence of
the power beam shape on analyzed dependencies is more pronounced in the transpar-
ent sample with low thermal diffusivity. In the sample with high thermal diffusivity
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Fig.7 Normalized amplitudes and phases of normal tangential deflections as functions of the power—probe
beams distance calculated for Gaussian and flat top power beams at 100 wm over the PET sample

and relatively long thermal diffusion length, the temperature disturbance propagates
along the sample surface. This leads to broadening of calculated dependencies, but also
homogenizes the temperature distribution. Therefore, differences between dependen-
cies for Gaussian and flat top beams are small. In the PET sample, these dependencies
are narrower and the influence of power beam shape is more pronounced.

As the power beam used in experiments can be better described as the flat top beam,
further analysis was carried out for this type of beam.

3.1 Influence of Transparent Thin Layer on Thick Substrate

As is mentioned in the previous section, an demonstrative analysis presented in the
paper was carried out for two sample substrates—PET and Si. The purpose of this
analysis described in this section is to determine how a thin layer can be deposited
onto a 500 wm substrate to still be “visible” in photothermal deflection measurements.
Calculations were carried out for semitransparent layers (8; = 80m™') of various
thicknesses (10 wm, 1 wm, and 0.1 pm). In the case of a Si substrate, layers with
high (k1 = 500 W- m~'K~!) and low (x; = 10 W- m~'K~!) thermal conductivities
were considered. In both cases, the layer density was p = 2250 kg- m~>, and the heat
capacity ¢ = 707 J- kg 'K ~!. These parameters correspond to the thermal diffusivi-
ties 3.14 x 10™* m?. s~ and 6.29 x 107® m?. s~!, respectively. In the case of a PET
substrate only, the layer with high thermal diffusivity was considered.

The normal and the tangential phases of the probe beam deflection calculated for
a pure Si substrate sample and a layered sample with various layer thicknesses are
shown in Fig. 8. Calculations were carried out for the layer with relatively high thermal
conductivity (k1 = 500 W-m 'K 1), and & = 100 um. The influence of the layer on
the photodeflection signal is visible only for the 10-pwm-thick layer. The influence of
thinner layers is practically insignificant. Moreover, similar graphs obtained for the
layer with lower thermal conductivity (x; = 10 W- m~'K~!) revealed that even a
10-pm-thick layer on Si does not cause noticeable changes in analyzed dependencies.

@ Springer



Int J Thermophys (2017) 38:93

Page 9of 12 93

90 T T T T 90 T T T T
45 substrate B 45 = substrate 1
0l === d=10 pum |] 0 === d=10 um |]
= = d=1 um - = d=1pum
o -45 o -45 1
S 3
= -90 4 -~ -90 4
> >
-135 -135 4
-180 -180
-225 T T T T -225 T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
S, um S, um

Fig. 8 Phases of normal and tangential deflections of the probe beam as functions of power—probe beams
distance s. Calculations were carried out for Si substrate and layered structures with various layer thick-
nesses. The thermal conductivity of the layer k1 = 500 W-m™ -1
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Fig. 9 Phases of normal and tangential deflections of the probe beam ac functions of power—probe beams
distance s. Calculations were carried out for PET substrate and layered structures with various layer thick-
nesses. The thermal conductivity of the layer k1 = 500 W-m~ 1K1

Thus, the photothermal deflection measurements are not suitable for the inves-
tigation of thin layers deposited on thick substrates with relatively high thermal
conductivity.

In the case of a conductive film deposited on semitransparent substrate with very
low thermal conductivity, different behavior is observed. The influence of the layer
on both the normal and the tangential phases is well pronounced (Fig. 9). The same
conclusion can be made for respective amplitudes. The analysis performed for the layer
with lower thermal conductivity (k; = 10 W-m~'K~!) showed that even 1-pum-thick
layer should be detectable in a photothermal deflection experiment.

3.2 Simplified Analysis Based on Linear Relations
The possibility of a simplified analysis of data from photothermal deflection measure-
ments was analyzed by Salazar and Sdnchez-Lavega [13]. They concluded that in the

case of a probe beam passing over a parallel sample surface, linear relations can be
used in two aspects: the phase of normal deflection depends linearly on 4 for s = 0,
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and the phase of tangential deflection depends linearly on s for 4 = 0. In both cases,
a point-like heat source was assumed. In the case of v, (k) dependence, it remains
linear also for 1D temperature field (homogeneously illuminated sample surface).

Figure 10 shows the v, (1) dependencies obtained for Si sample and two radii of the
flat top power beam: 11.4 pm and 1140 pm. In a tightly focused beam, the dependence
is not linear. A broad power beam exhibits good linearity. The slope of fitted straight
line a allows for the calculation of thermal diffusivity of air oajr = 7 f/ a?. The value
calculated from data shown in Fig. 10 was 1.94 x 107> m?s~!. This value is exactly
the same as the one used for air in COMSOL Multiphysics®.

The other expected linear dependence is the phase of tangential deflection as a
function of the power—probe beam distance s. Two such dependencies obtained for
a Si sample with power beam radii 11.4 wm and 114 pm are shown in Fig. 11. Both
dependencies are practically linear for s > 200 um and have almost the same slopes.

More detailed analysis revealed that the dependence calculated for a tightly focused
beam is less steep. The slopes calculated for # = 100 pm and the s in range 1000
wm—1500 pm were 4.59 x 10> m~! and 4.61 x 103 m~! for R equaled to 11.4 pm
and 114 pm, respectively. Calculated slopes depend also on h and the range of s taken.
As a consequence, the thermal diffusivity value obtained from simplified analysis
based on linear regression varies when h or s ranges are changed. Figure 12 shows
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dependencies of thermal diffusivities on the sample—probe beam distance / calculated
for two s ranges: 600—-900pm and 1200-1500.m, and two diameters of the power
beam: 11.4pum and 114pwm.

As it follows from the figure, the thermal diffusivity obtained from regression
analysis carried out for s from 600 pm to 900 pm is underestimated of about 20 %. But
analysis for 1200 pm—1500 pm gives an overestimated value of the thermal diffusivity.
However, in this case, the error is smaller, and values obtained for small 4 give good
estimation of the actual thermal diffusivity of the sample. It is worth mentioning that
the influence of the power beam radius on obtained values is relatively small.

As it follows from Figs. 6 and 7, determination of the thermal diffusivity from
the slope of the linear part of ¥(s) dependence is possible only for opaque samples.
For a transparent sample (Fig. 7), it is not possible to identify a linear portion in this
behavior.

4 Conclusions

Numerical modeling of physical experiments has become more and more popular due
to its flexibility and ability to consider complex models, which better convey real
experiments. In photothermal experiments, this concerns the geometry of measure-
ments (the distribution of the light intensity in power beam) and the thermal and optical
properties of the sample. Pure analytical models are based on many simplifications
because obtaining an analytical solution for more realistic models is not possible. As
we have shown in this paper, the numerical modeling of photothermal deflection mea-
surements allows for the analysis of the influence of various parameters of a model
on measured signals, including the influences of power beam shape and the thin film
deposited on the thick substrate. However, it is also possible to add further complexity,
such as the influence of anisotropy in thermal properties of the layer and the influence
of the thermal resistance at layer—substrate interface. It is also shown that numerical
modeling allows for the analysis of the correctness of oft-used simplified methods for
experimental data analysis based on linear relations.
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Another merit of numerical modeling is the possibility of preliminary analysis
regarding the usefulness of selected measuring methods for the determination of
defined sample properties. Results presented in this work illustrated the sensitivity
of measurement to various parameters of a model and hint at possible modifications
of experimental procedure to achieve defined goals.

Numerically modeling an experiment can be also used for the determination of
physical properties of a sample based on best fitting procedures. In this case, calcula-
tions are more time-consuming in comparison with curve fitting based on an analytical
model, but it is still possible.
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