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Abstract Using a density functional scheme, for the first time the carbon dependence
on the structural, dynamic, thermodynamic, and dynamic properties of Si1−xCx alloys
(x = 0.0 to 1.0 in steps of 0.125) has been investigated. The structural properties of
these materials, in particular, the composition dependence of the lattice parameter
and bulk modulus, are in excellent agreement with experimental data and follow a
quadratic law in (x). A nonlinear relationship is found between the elastic constants
C11, C12, and C44 and the carbon concentration (x). The behavior of the acoustical
and optical phonon frequencies at high-symmetry points Γ , X , and L is predicted.
Through the quasi-harmonic Debye model, in which the photonic effects are taken
into account, the Debye temperature, the heat capacity, the Helmholtz free energy, the
internal energy, and the entropy are determined for the Si1−xCx compounds.

Keywords Alloys · DFT · DFPT · Elastic constant · Phonon · SiC compounds ·
Thermodynamic

1 Introduction

In view of their technological promise, Si1−xCx alloys have attracted increasing
research interest in the last few years. Although they are members of the binary group
IV alloy family, they have remarkable properties, which set them apart from other
binary alloys, such as Si1−xGex [1,2]. These alloys containing carbon exhibit both
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physical and chemical properties that differ significantly from the general trends of
the group IV family.

Silicon and carbon, both crystallizing in the zincblende structure, form a continuous
series of Si1−xCx solids with composition x ranging from 0 to 1, where x denotes
the mole fraction of C. By changing the alloy composition, the physical properties
can be controlled at arbitrary values of composition x between those of Si and C, and
in some cases, they can be quite different from those of the constituent materials. To
this purpose, the effect of composition on physical properties of Si1−xCx assumes
particular importance.

In this work, we are interested in the prediction of the effect of the carbon com-
position on the structural, elastic, thermodynamic, and dynamic properties of the
zincblende Si1−xCx compounds, and we present for the first time a complete and
comparative study of these properties for several carbon concentrations from 0 to 1
(in steps of 0.125).

The paper is organized as follows: Sect. 2 contains a brief description of the method
of calculation. Section 3 contains our results compared to the available experimental
and theoretical data. Section 4 contains the conclusions.

2 Method of Calculation

We have performed first-principle total-energy calculations using the pseudopotential
method based on the density functional theory (DFT) [3,4], within the local-density
approximation. We employed norm-conserving Troullier–Martins pseudopotentials
[5]. The exchange-correlation energy of electrons is described in the local-density
approximation with the Teter–Pade parameterization [6]. The calculations were carried
out using the ABINIT code [7].

The Kohn–Sham (KS) single-particle functions were expanded in a plane-wave
basis set. Self-consistent solutions of the (KS) equations were obtained by sampling
the irreducible Brillouin zone with the special k-point method. Well-converged results
were obtained using a kinetic energy cutoff of 70 Hartree and with a set of 28 k-
special points, which correspond to 6 × 6 × 6 k-points mesh in the Monkhorst–
Pack notation [8]. Having obtained self-consistent solutions of the (KS) equations,
phonon frequencies and elastic constants are obtained using the self-density functional
perturbation theory (DFPT) [9] which allows the calculations of the dynamic matrix
at arbitrary q vectors. We ensure the convergence of the phonon frequencies to 2 cm−1

to 3 cm−1.
To model the alloy at different compositions (x), we have used the virtual crystal

approximation (VCA) [10].VCA treats an alloy as a perfect periodic crystal, whose
properties are modeled as a linear average of those of Si and C atoms. Elemental ionic
pseudopotentials of Si and C are combined to construct the virtual pseudopotential of
the Si1−xCx:

VVCA = (1 − x) VSi + xVC (1)
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3 Results and Discussion

3.1 Structural Properties

In the present work, the structural properties of the binary compounds Si and C are
calculated in the zincblende structure. Then, the semiconductor binary alloy is of
the type Si1−xCx . We have started our pseudopotential calculation of the structural
properties with the zincblende structure, and let the calculation forces move the atoms
to their equilibrium positions.

For the considered structures, we performed the structural optimization by calcu-
lating the total energies for different volumes around the equilibrium cell volume V0
of the Si and C compounds and their alloys. The calculated total energies are fitted to
Murnaghan’s equation of state [11] to determine the ground- state properties as the
equilibrium lattice constant a0, the bulk modulus B0, and its pressure derivative B ′.
The equilibrium lattice parameters have been computed for several concentrations (x)
by minimizing the crystal total energy calculated for different values of the lattice
constant. The initial lattice parameters were taken from previous experimental and
theoretical values as a starting point for geometry optimization. The calculated lattice
parameters are listed in Table 1.

The calculated lattice constants for Si and C agree quite well with those experi-
mentally obtained in [12], and they differ by less than 0.77 % and 0.75 %, respectively.
It is known that the LDA calculation generally gives an ∼1 % underestimation of the
lattice constants. The theoretical values by Bernard and Zunger [13] and Sze [16] are
similar for Si and C (respectively) with ours.

In Fig. 1, we present our VCA (in steps of 0.125) calculated lattice constant as a
function of C concentration, which is fitted by the following quadratic equation:

a(x) = 5.370 − 0.287x − 1.521x2 (2)

One can see from Table 1 that like for Si and C, the LDA underestimates the lattice
parameter of Si1−xCx . Our calculated bulk modulus agrees well with the experimental
values [17,18] for Si and C, respectively, and as a function of the carbon concentration,
it is determined by the following equation:

B = 97.406 − 109.616x + 917.418x2 − 1792.981x3 + 1345.715x4 (3)

3.2 Elastic Constants

It is very important to investigate the elastic properties of materials because they
provide a link between the mechanical and dynamic behavior of crystals and give
important information concerning the nature of the forces operating in solids. In
particular, they provide information on the stability and stiffness of materials. Val-
ues of elastic constants give significant information about the bonding characteristics
between adjacent atomic planes and the anisotropic character of the bonding and struc-
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Fig. 1 Variation of lattice parameter of bulk Si1−xCx with carbon concentration (x): our data (circles),
Vegard’s law (squares), and Eq. 2 (line)

tural stability [22]. Elastic properties of a cubic single crystal are described by three
independent constants C11, C12, and C44. The combination of these three constants
gives more information and data, such as acoustic wave velocities, elastic moduli for
crystals in polycrystalline states (bulk modulus B, shear modulus G, Young’s mod-
ulus E , Poisson’s ratio σ ), and some thermodynamic properties such as the Debye
temperature.

Here, we have computed the elastic response of the Si1−xCx alloys with respect to
the strain perturbations, obtaining the second derivatives of the total energy with all the
perturbations in order to obtain the elastic constants as implemented in the ABINIT
code.

The obtained single-crystal elastic constants C11, C12, and C44for Si, C, and their
binary alloys in the zincblende phase are listed in Table 1. There is no experimental
study in the literature about the effect of carbon concentration on the elastic constants
of the binary alloys Si1−xCx ; hence, there is no possibility for comparison with experi-
ments, except for Si and C which are in reasonable agreement with previously reported
results.

It is known that the mechanical stability conditions in cubic crystals on the elastic
constants are given by C11 − C12 > 0, C11 > 0, C44 > 0, C11 + 2C12 > 0, and
C12 < B < C11. Our elastic constants in Table 1 satisfy these stability conditions,
and hence, we can say that Si1−xCx alloys in the zincblende structure are elastically
stable for all carbon concentrations.

The dependence of the elastic constants C11, C12, and C44 on the carbon concen-
tration (x) in the VCA (in steps of 0.125) is also illustrated in Fig. 2 and described by
the following expressions [in GPa]:

C11 = 164.32 − 239.81x + 2106.19x2 − 4611.59x3 + 3667.29x4 (4)
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Fig. 2 Variation of C11, C12, C44, and B of bulk Si1−xCx with carbon concentration (x)

C12 = 63.96 − 14.04x + 13.18x2 − 16.88x3 + 99.78x4 (5)

C44 = 78.49 − 121.22x + 1197.76x2 − 2617.54x3 + 2047.12x4 (6)

We can see from Fig. 2 that the three elastic constants C11, C12, and C44 increase with
increasing carbon concentration x .

Once the elastic moduli are calculated, we derived other important mechanical
properties (see Table 1), such as the Zener anisotropy factor Az , the isotropic shear
modulus G, the Poisson ratio σ , and the Young’s modulus E .

The Zener ratio is defined by [23]

Az = 2C44/ (C11 − C12) (7)

For an isotropic crystalC11 −C12 = 2C44, so AZ = 1. The magnitude of the deviation
from 1 is a measure of the degree of elastic anisotropy possessed by the crystal. If
AZ < 1, the crystal is stiffest along the 〈100〉 cube axes, and when AZ > 1, it is stiffest
along the 〈111〉 body diagonals [24].

From the computed AZ values in Table 1, AZ is found to be lower than 1 for all C
concentrations of Si1−xCx alloys, which means that they are stiffest along the 〈100〉
body diagonals. We can also see from Table 1 that the Si1−xCx alloys became more
anisotropic with decreasing concentration x of C.

Our results for the Zener ratio are fitted by the following quadratic equation:

Az = 0.633 − 0.004x + 0.176x2 (8)

We have calculated Poisson’s ratio (σ ) and Young’s modulus (E) in terms of the
computed data given in [25], in which the isotropic shear modulus (G) is calculated
using the Voigt–Reuss–Hill homogenization method given in [26].
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The value of Poisson’s ratio which quantifies the stability of the crystal against shear
is small (σ = 0.1) for covalent materials, whereas for ionic materials it is usually close
to 0.25 [27].

Our calculated Poisson’s ratios decrease from 0.22 to 0.08 with increasing con-
centration x . Therefore, the covalent contribution in inter-atomic bonding became
higher with increasing C concentration x , and we can say that these materials became
mechanically more stable with decreasing carbon concentration.

The Young’s modulus (E), which is defined as the ratio of stress to strain and is used
to provide a measure of the stiffness of the solid, is found to increase with increasing
concentration, so we can say that these materials became much harder and more stiffer
going from x = 0 to x = 1.

Our calculated Poisson’s ratio (σ ), Young’s modulus (E), and the isotropic shear
modulus (G) versus concentration (x) in the VCA (in steps of 0.125) are described by
the following expressions:

σ = 0.219 − 0.111x + 0.228x2 − 0.266x3 (9)

E = 152.446 + 594.571x − 2347.028x2 + 2757.386x3 (10)

G = 61.412 + 303.319x − 1190.525x2 + 1361.706x3 (11)

There is no study in the literature about the effect of the carbon concentration on these
parameters, so our calculated results can be considered as predictions.

3.3 Thermodynamic Properties

3.3.1 Debye Temperature

One of the most important parameters that determines the thermal characteristics of
materials is the Debye temperature θD. As a rule of thumb, a higher θD implies a higher
associated thermal conductivity and melting temperature. The knowledge of such a
numerical figure is essential for developing and manufacturing electronic devices
[24,27]. The Debye temperature (θD) of the considered compounds is estimated from
the average sound velocity νm in terms of the following equation [28]:

θD = h

KB

[
3n

4π

(
NAρ

M

)]1/3

vm (12)

where h is the Planck’s constant, kB is the Boltzmann’s constant, n is the number
of atom per molecule, NA is the Avogadro’s number, ρ is the density, and M is the
molecular weight. νm is the average wave velocity and it is dependent on the transverse
(νt) and the longitudinal (νl) wave velocities according to the following formulas [28]:

vm =
[

1

3

(
2

v3
1

+ 1

v3
1

)]−1/3

(13)
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Table 2 Calculated density ρ (in g·cm−3), transverse, longitudinal and average sound velocities (νt , νl,
and νm, respectively, in m·s−1), calculated from elastic moduli, and the Debye temperature (θD in K),
calculated from the average sound velocity for Si1−xCx compounds

ρ (g·cm−3) νt (m·s−1) νl (m·s−1) νm (m·s−1) θD (K)

x = 0 2.372 5.182 8.734 5.739 633.42

2.32a 636d

x = 0.125 2.335 5.433 9.028 6.009 676.23

x = 0.25 2.302 5.703 9.408 6.302 725.05

x = 0.375 2.294 6.043 9.919 6.679 789.78

x = 0.5 2.332 6.530 10.628 7.207 884.64

x = 0.625 2.438 7.265 11.630 8.003 1032.79

x = 0.75 2.643 8.353 13.042 9.177 1265.25

x = 0.875 2.998 9.929 15.062 10.870 1634.31

x = 1 3.591 12.242 18.106 13.358 2245.74

3.51b 11.6c 18.33c 2220e

2220f

a Ref. [30]
b Ref. [31]
c Ref. [32]
d Ref. [33]
e Ref. [34]
f Ref. [35]

νl and νt can be estimated from the shear modulus G and the bulk modulus B by using
Navier’s equation as follows [28]:

v1 =
(

3B + 4G

3ρ

)1/2

and vt =
(
G

ρ

)1/2

(14)

The calculated values of average, transverse, and longitudinal wave velocities and the
Debye temperature for Si1−xCx alloys are presented in Table 2.

For the Debye temperature, we have found that θD increases with increasing carbon
concentration (x). The increase in the Debye temperature can be attributed to the
progressive increase in the average sound velocity νm.

Our result for the carbon concentration effect on the Debye temperature is given in
Table 2 and is correlated by the following equation:

θD = 633.42 + 208.88x + 975.06667x2 − 1980.16x3 + 2408.53333x4 (15)

To our knowledge, there are no reported results of the effect of carbon concentration on
average, transverse, and longitudinal wave velocities of the Si1−xCx alloys; so there
is no possibility for comparison.
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3.3.2 Temperature Dependence of the Thermodynamic Quantities

Using the concept of the phonon, we calculate the thermal properties of the crystal,
in particular, the phonon contribution to the Helmholtz free energy (F), the internal
energy (E), the entropy (S), and the heat capacity (C). We calculate the temperature
dependence of these parameters at a constant volume of Si1−xCx alloys for various
concentrations (x) in the VCA. The results are plotted in Fig. 3.

Figure 3a displays the internal energy of Si1−xCx alloys versus (x) as a func-
tion of the temperature. Our results suggest that, above 300 K, the total internal
energy increases almost linearly with temperature for all concentrations (x =
0, 0.25, 0.500.75, 1.0). At high temperatures, the internal energy tends to display kBT
behavior.

Figure 3b shows the variation of the free energy versus (x) as a function of the
temperature. Overall profiles of all plots show similar characteristics, and the free
energy decreases gradually with increasing temperature.

The zero-temperature values �F0 and �E0 can be calculated from the following
expression, generated by the zero-point motion [29]:

�F0�E0 = 3nN

ωmax∫
0

h̄ω

2
g (ω) dω (16)

where n is the number of atoms per unit cell, N is the number of unit cells, ωmax is
the largest phonon frequency, ω is the phonon frequency, and g(ω) is the normalized
phonon density of states with

ωmax∫
0

g (ω)dω = 1 (17)

The calculated �F0 = �E0= (13.021, 14.38, 16.69, 21.45 and 33.85) kJ·mol−1 for
x = 0, 0.25, 0.50, 0.75 and 1, respectively. It can be clearly seen that the free energy
and the internal energy increase with increasing carbon concentration (x).

The variation of the entropy with temperature is given in Fig. 3c for the same tem-
perature range and for the same concentrations (x = 0, 0.25, 0.500.75, 1.0). Here the
entropy increases rapidly with increasing temperature and decreases with increasing
carbon concentration (x).

In Fig. 3d, we show the temperature dependence of the total heat capacity (CV ).
One can see that CV shows the same behavior in the temperature range from 0 to 50
K, for all concentrations (x= 0, 0.25, 0.50 0.75, 1.0). For T < 600 K, Cv increases
rapidly with the temperature and with decreasing carbon concentration, and for T >

600 K, Cv increases slowly with the temperature and approaches a constant called the
Dulong–Petit limit.

The effect of the carbon content on the Helmholtz free energy (F), the internal
energy (E), the entropy (S), and the heat capacity (C) is fitted by the following equa-
tions:
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Fig. 3 Temperature dependence of internal energy, free energy, entropy, and heat capacity for Si1−xCx
compounds

F
(

kJ·mol−1
)

= 6.65 + 11.28x − 20.87x2 + 37.84x3 (18)

E
(

kJ·mol−1
)

= 18.39 + 9.52x − 32.88x2 + 41.28x3 (19)

S
(

J·mol−1·K−1
)

= 39.14 − 5.88x − 40.02x2 + 11.45x3 (20)

C
(

J·mol−1·K−1
)

= 39.73 − 7.84x + 12.86x2 − 32.41x3 (21)

We note that there are no results reported on the internal energy, free energy, and the
entropy; except for the heat capacity for Si and C at T = 300 K, which are equal
to 40.26 and 12.36 H [35], respectively, and agree well with our results (39.72 and
12.33).

3.4 Phonons Dispersion

The calculation of vibrational properties is performed using DFPT in the plane-wave
pseudopotential method as implemented in the ABINIT code, with the above-described
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Fig. 4 Calculated phonon dispersions for Si1−xCx semiconductors
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Table 3 Phonon frequencies calculated at the high-symmetry points Γ , X , and L for Si1−xCx compounds
considered in this work (cm−1), the related experimental data, and the other theoretical works

ΓT O ΓLO XT A XLA XT O XLO LT A LLA LT O LLO

x = 0 515 515 137 409 463 409 105 373 491 414

519a 519a 150b 410b 463b 410b 114b 378b 487b 417b

517b 517b 146c 414c 466c 414c 111c 378c 494c 419c

517c 517c

x = 0.25 568 568 157 454 501 454 121 425 537 448

x = 0.5 660 660 206 537 572 537 156 515 619 516

x = 0.75 848 848 359 724 725 724 259 673 794 716

x = 1 1315 1315 787 1092 1214 1092 549 1072 1260 1225

1332a 1332a

a Ref. [36]
b Ref. [37]
c Ref. [38]

virtual crystal approximation. Phonon band structures of Si1−xCxhave been calculated
for 0 < x < 1 in steps of 0.125 of the alloy (x). Our results for the bulk phonon
dispersions along several symmetry lines, for several concentrations (x) of C (x =
0, 0.25, 0.50, 0.75, and 1), are displayed in Fig. 4.

When comparing phonon dispersion curves of Si1−xCx (0 < x < 1), it becomes
apparent that the general shapes in the dispersion curves are similar among these mate-
rials, and there is no splitting at the Γ point between the longitudinal and transversal
optical phonon frequencies.

The optical and acoustic regions have crossed for Si, C, and Si1−xCx alloys at the
X symmetry point. The separation between the longitudinal and transversal modes
for the acoustic region at the X point increases across Si → C; however, the optical
region decreases with increasing carbon content.

Some numerical values at the high-symmetry points Γ , X , and L are also reported
and compared with experimental and theoretical results in Table 3. Our results for
Si and C agree well with experiment [36] and other theoretical [37,38] results. Note
that we have no experimental data to compare with our results for Si1−xCx alloys.
Our calculations are a reliable prediction of the phonon dispersions. The composition
dependence of the phonon frequencies calculated at the high-symmetry points Γ ,
X , and L for Si1−xCx alloys is plotted in Figs. 5, 6, and 7. The calculated phonon
frequencies are nonlinearly fitted by the following relations:
� point:

ω(TO,LO) = 515.98 + 63.51x + 919.77x2 − 1685.11x3 + 1499.43x4 (22)

X point:

ω(LA,LO) = 409.72 + 112.88x + 290.69x2 − 271.95x3 + 548.98x4 (23)
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Fig. 5 Variation of phonon frequency of bulk Si1−xCx with x at Γ point
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Fig. 6 Variation of phonon frequency of bulk Si1−xCx with x at X point

ω(TA) = 137.18 + 15.48x + 426.39x2 − 921.92x3 + 1129.03x4 (24)

ω(TO) = 464.51 − 11.67x + 1109.56x2 − 2290.48x3 + 1941.82x4 (25)

L point:

ω(TA) = 105.11 + 13.81x + 328.55x2 − 706.87x3 + 807.84x4 (26)

ω(TO) = 493.34 − 15.63x + 1239.88x2 − 2331.43x3 + 1871.15x4 (27)
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Fig. 7 Variation of phonon frequency of bulk Si1−xCx with x at L point

ω(LA) = 373.80 + 62.39x + 922.87x2 − 1671.53x3 + 1383.78x4 (28)

ω(LO) = 493.34 − 15.63x + 1239.88x2 − 2331.43x3 + 1871.15x4 (29)

4 Conclusion

We have performed first-principle calculations in the VCA method of the structural,
elastic, thermodynamic, and vibrational properties of the bulk Si1−xCx alloy, within
the LDA to the DFT using the pseudopotential plane-wave method.

The calculated lattice constants of the bulk Si1−xCx alloy are described by a
quadratic function.

The elastic constants, the Zener ratio, the Young’s modulus, the Poisson’s ratio,
the Debye temperature, and the heat capacity gave a nonlinear relationship with the C
composition x .

The general shapes in the dispersion curves are similar between these materials,
and there is no splitting at the Γ point between the longitudinal and transverse phonon
frequencies.

The variation of the calculated optical and acoustic phonon frequencies with com-
position x has a nonlinear form.

For the two limiting cases, Si and C, in most cases calculations are in good agreement
with available theoretical and experimental data.
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