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Abstract This paper presents optimization methods for the K-means segmentation
algorithm for a sequence of thermal images. Images of the sample response in the
frequency domain to the thermal stimulation with a known spectrum were subjected
to cluster segmentation, grouping pixels with similar frequency characteristics. Com-
pared were all pixel characteristics in the function of the frame number and grouped
using the minimal sum of deviations of the pixels from their segment mean for all the
frames of the processed image sequence. A new initialization method for the K-means
algorithm, using density information, was used. A K-means algorithm with a kd-tree
structure C# implementation was tested for speed and accuracy. This algorithm divides
the set of pixels to the subspaces in the hierarchy of a binary tree. This allows skipping
the calculation of distances of pixels to some centroids and pruning a set of centroid
clusters through the hierarchy tree. Results of the segmentation were compared with
the K-means and FCM algorithm MATLAB implementations.

Keywords kd-tree · KKZ · K-means · Seeding · Thermal image sequences

1 Introduction

As a result of thermal excitation, a solid gives us a temperature response that we can
study in both time and frequency domains. The sequence of thermal images includes
in successive frames various information, depending on the internal structure of the
sample. Analysis of thermal image sequences provides information about the quality
of a sample’s inner layers, its defects, and changes of thermal parameters. It can be
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used for detection of very small substance concentrations, study of photochemical
reactions (e.g., photosynthesis), or obtaining depth profiles of samples in thermal
microscopy.

Changes in the thermal sequence frames are continuous, and we can talk about
the characteristics of each pixel in the sequence. To reduce processing, one can use
cluster segmentation, which has a well-defined error and allows for an accurate quality
comparison of various algorithms used for this purpose. This feature is quite rare
among segmentation methods.

This paper presents a method of optimizing a K-means algorithm for segmentation
of thermal image sequences using a kd-tree structure, which divides a set of the pix-
els to subspaces in the hierarchy of a binary tree. This allows skipping of the pixels
distance calculation to some centroids and pruning clusters from the set of clusters
during a search of the hierarchy tree. A new method of K-means algorithm initializa-
tion, using information about the pixels density in a sequence, was applied. Results
of the speed and accuracy of the segmentation algorithm were compared with the
implementation of the K-means algorithm and FCM algorithm implementations in
MATLAB.

2 Principles of Algorithms

2.1 Description of Cluster Segmentation Algorithms

The fastest and most popular cluster segmentation algorithm is K-means (Forgy [1],
MacQueen [2], Lloyd [3], Wu et al. [4]). Image clustering using K-means is a pixel
segmentation algorithm, depending only on pixel values in consecutive frames and
not taking into account locations and values of the neighbor pixels. The result of the
segmentation consists generally of k incoherent objects, composed of pixels that are
not necessarily located in their neighborhood, but of similar values. The procedure
for the segmentation of an image sequence determines the sets of similar pixel value
characteristics in a function of the frame number. From now on, for simplicity, we
will in this article understand the term pixel as a vector of pixel values in successive
frames of the sequence. The input parameter of the procedure is a set of k vectors
of initial clusters. To eliminate the possibility of assigning two similar pixels to two
different clusters, after assignment of pixels to the nearest segments, cluster centroids
are recalculated to the mean value from all the pixels belonging to the cluster, and
the assignment step is repeated (Lloyd algorithm). The iteration is interrupted when
the pixels cease to change their assignment to clusters. The K-means algorithm is
always convergent if the measure of the distance vectors is the Euclidean metric L2,
but the speed of convergence and accuracy of local solutions is determined mainly by
the choice of the initial vector clusters (Pena et al. [5]). The standard solution is to
choose centroids at random with a uniform probability distribution from all the values
in the set (Forgy approach [1]). A KKZ method (Katsavounidis et al. [6]) is also a
fast seeding algorithm in which pixels farthest from existing centroids are chosen for
the new centroids. This prevents dividing a cluster into several smaller ones in case of
choosing centroids, which are close to each other. Unfortunately, this method is very
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sensitive to outliers in a sequence. Arthur and Vassilvitskii in [7] present a K-means++
algorithm, in which the initial centroids are selected from a set of input pixels, assuming
a pixel probability proportional to the distance from the found centroids. The method
thus combines the use of statistics and analysis of the mutual distance of clusters.
The most common initialization algorithms for K-means, however, do not take into
account the density distribution of pixels. Use of such information and the kd-tree
structure is presented by Redmond and Heneghan [8]. Determination of the density
distribution requires calculation of the mutual distances between pixels, which needs
O(n2) count of operations. For a pixel k, its density can be determined, for example,
by using the sum of the inverses of the pixel distances to all other pixels. The distance
to near pixels has a much greater influence on this function value than to far ones
(similar to the inverse distance weighting function). Factor ε prevents the function
from escaping to infinity for cases, when xi = xk .

ρk =
P∑

i=1

1

(xi − xk)
2 + ε

= 1

ε

P∑

i=1

[
(xi − xk)

2

ε
+ 1

]−1

. (1)

Factor ε corresponds to a resolution of recorded distances; hence, it should satisfy
ε � (xi − xk)

2 for all i , except for the case: xi = xk .
Using a Taylor series expansion of the function (t + 1)−1 = 1 − t + t2 − t3 + · · ·

and expanding every term in the sum (Eq. 1) for t = (xi −xk )
2

ε
, we obtain

ρk = 1

ε

(
P − 1

ε

P∑

i=1

(xi − xk)
2 + 1

ε2

P∑

i=1

(xi − xk)
4 − · · ·

+ (−1)n 1

εn

P∑

i=1

(xi − xk)
2n

)
. (2)

The series converges only when ε > (xi − xk)
2 for each pair of i, k.

Let us denote the vector of mean values of all pixels as x and the variance of pixel’s
values as

variance = 1

P

P∑

i=1

(xi − x)2. (3)

The density (Eq. 1) could be estimated, taking distances to be equal to the fixed mean
value dk :

ρk =
P∑

i=1

1

(xi − xk)
2 + ε

∼= P

dk + ε
. (4)

Expanding both sides of the equation into a Taylor series,
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and comparing second terms of both sides, dk can be evaluated as

dk = 1

P

P∑

i=1

(xi − xk)
2 = 1

P

P∑

i=1

(xi − x)2 + (xk − x)2 = variance + (xk − x)2 .

(6)
Since ε should be as small as possible, we want to choose for its value the convergence
limit for the series ε ≈ dk . Additionally, ε has to be the same for all pixels, so we take
the mean value of all dk :

ε = 1

P

P∑

k=1

dk = 1

P

P∑

i=1

[
variance + (xk − x)2

]
= 2∗variance. (7)

And finally we can estimate the pixel’s k density as

1

P
ρk = 1

3∗variance + (xk − x)2 . (8)

The local pixel density approximation using Eq. 8 requires O(n) operations.
For the segment centroids, the pixels with a greater local density, but also more

distant from the already found centers should be selected. In our experiments, as the
first center, the pixel with the highest density is selected. Due to the less accurate
estimation of the local density, the other centers of segments were chosen from pixels
with a maximum product of the square root of the density and its distance from the
already found centers. We denote such an initialization method as high density (HD)
for the density described by Eq. 1 and its approximation using Eq. 8.

The segmentation algorithm Fuzzy C-Means (FCM, Bezdek [9]) assumes that the
pixels may be partially assigned to a segment as defined by the membership func-
tion μ (soft membership). Equation 9 presents a modification of cluster centroids
to the center of gravity of the segments for each frame, which takes place after
iteration:

x̄ j =

P∑
i=1

μ(xi , x̄ j )xi

P∑
i=1

μ(xi , x̄ j )

. (9)
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Equation 10 defines the membership function for each pair of the ith pixel and jth
segment:

μ(xi , x j ) = (xi − x j )
−2/(r−1)

S∑
j=1

(xi − x j )−2/(r−1)

, (10)

where r is the fuzziness of the member function, r ≥ 1 and S is the segment count.
The K-means algorithm is thus a special case of the FCM method, for which the

membership function is binary, taking one for the pixel and assigned segment pair and
zero for the pixel with other segments (hard membership). The FCM algorithm can
find, in general, a better solution, resulting, however, with increased computational
effort and hence, a longer processing time.

The standard implementation of the K-means algorithm calculates the distances
between pixels and all the cluster centers. As long as the cluster centers change,
distance calculations for pixels have to be evaluated, and pixels are assigned to the
nearest segments. However, organizing the collection of pixels in a kd-tree structure,
one can construct a K-means algorithm which assigns groups of pixels to the segment
simultaneously, and not one segment to one pixel at a time. There is often no need
for calculating distances from each pixel to the centers of each segment. Groups of
pixels can be assigned to a segment, or rejected as located too far away. The input
data are two-dimensional (pixel values as a function of the frame number). The kd-tree
could be created by comparing the data alternately in these dimensions. More effective,
however, is to sort characteristics, for example, on their mean values (reducing the data
to a single dimension). A more accurate similarity indicator is the square length of
the characteristic vector. Since the square length of the vector is always non-negative,
in order to distinguish the characteristics of a negative mean value, it is assumed that
the similarity index is the square length of the vector with the sign from the mean
value. Such a classification groups similar characteristics in the nodes of the kd-tree,
fewer comparisons during processing are needed, and the computation time is shorter.
Equation 11 shows how to determine the characteristic square length Len of the pixel
vector v (with a dot product), by which pixels are sorted. Vector ones has coordinates
all equal to 1.

Len = sign(v ◦ ones) ∗ v ◦ v (11)

On a sorted pixels basis, a binary kd-tree is created. The leaves of the tree correspond
to the pixels.

The new nodes are created from two nodes of the lower level, starting from the
lowest level of the leaves. In each node the maximum distance of its children from
the center is stored—the node deviation. During segmentation, the kd-tree is searched
recursively using a filtering procedure. The parameter for the procedure is a list of
clusters, in which segments located too far away from the center of the node are
pruned (Fig. 1). The triangle inequality for distances is used. The distance between
a segment and any node’s pixel is less than a sum of distance Δ from a segment to
a node and the node’s deviation d, but greater than the difference between them. The
segment is close enough to the node’s pixels if its minimum distance to the pixels will
be smaller than the maximum distance between the pixels of the current node and its

123



Int J Thermophys (2014) 35:2374–2387 2379

C2

C1,C2,
C3,C4

C1,
C3,C4

C1,C4 C3,C4

C1 C4 C3 C4

P1 P2 P3 P4 P5 P6

N4 N5 N6

N2 N3

N1

P1

P2

P3

P4 P5
N1

N2

N3,N6

N4

N5

C1

C2

C3

C4

P4

N2 N5

C3

C4

N4
C1
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Fig. 2 Using triangle inequality for pruning segment centroids during kd-tree search

nearest segment. In Eq. 12 ΔN is the distance from the node to its nearest segment
(Fig. 2);

Δ − d < ΔN + d,

Δ < ΔN + 2d.
(12)

Pseudocode of filtering procedure is presented below:

The node-to-segment assignment involves updating the sum of segment centroids
and segment centroids count by summing with the node’s respective properties. This
enables a later calculation of the segment centroid without aggregating error.
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When using the Euclidean norm L2, taking a triangle inequality into account
requires the calculation of square roots of vector squared lengths (inequality for the
squared lengths may not be satisfied). Such problems are not posed by city metric
L1 (Manhattan, taxi), but K-means using L1 and the algorithm is not always conver-
gent. The proper method would determine centers of segments based on the median
pixels rather than the mean (K-median algorithm). We do not use correlation in our
calculation either, because correlation indicates the degree of similarity between the
characteristics, but does not allow determination of the characteristic most similar to
all others characteristics of pixels in the segment.

In general, during segmentation, some segments can eventually lose all their pixels.
If we choose for the initial centers pixel values from the sequence, it will mean that
some of the selected pixels must have identical characteristics. The algorithms imple-
mented in MATLAB use two strategies—ignore (drop) and selecting for the center of
the empty segment a pixel which is farthest from its center (singleton). In our imple-
mentation of the K-means, if the initial centers of segments are selected from pixels
in sequence, none of the segments ever lose all their pixels, because at least one pixel
is at zero distance from a segment’s center, and a pixel check of the segment-to-pixel
distance starts from the currently assigned segment. In this way we eliminate the need
for special processing of empty segments. This technique is also used in an algorithm
with the kd-tree.

2.2 Used Algorithms and Techniques

Clustering algorithms in MATLAB were performing a batch update phase only, with-
out trying to improve the result with a time-consuming on-line phase. In the batch
update mode, if the segment has not lost pixels, or gained new ones, calculations
for its distance to the pixels were not repeated. In this way, successive iterations are
performed faster and the segmentation process is significantly shortened. In our imple-
mentation, in addition to memorizing segments, whose centers have not been moved,
the distances of pixels from the segments, which are known to be changed in the next
iteration, are calculated only until reaching the excess of the minimum currently known
distance between the pixel and the segment. Additionally, an algorithm was developed
in which adding or removing pixels from a segment is reflected immediately, not after
the iteration (dynamic update).

In the experiments we used algorithms K-means and FCM in MATLAB, object-
oriented algorithms developed in C# with the update of the segments at the end of
an iteration or with a dynamic update and the K-means algorithm using the kd-tree
structure.

2.3 Segmentation Error

For segmentation of an image sequence, the absolute error for S objects is defined as
the sum of deviations of all P pixels from the nearest centers of segments for all K
frames of the sequence:
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Fig. 3 Frames of Seq1 sequence

error =
K∑

k=1

P∑

i=1

min
j∈<1,S>

(
xki − x̄k j

)2
. (13)

The absolute error can also be presented as the sum of the absolute errors in individ-
ual segments and illustrated as the characteristic of the absolute segment errors in a
function of the segment number:

error =
S∑

j=1

K∑

k=1

Pseg( j)∑

i=1

(
xk ji − x̄k j

)2 =
S∑

j=1

errorseg( j). (14)

3 Results

We show the study of three sequences of thermal images with a resolution of 128×128
pixels and the number of frames from 1 to 512 (Fig. 3). The K-means algorithm has
a very strong dependence on the choice of the initial centers of the segments. There-
fore, in the first experiment, we compared the HD initialization method with Forgy’s
approach for 20 iterations, KKZ, and the HD approximation method. Comparison of
methods for initializing the K-means algorithm is shown in Table 1. Selection of the
initial centers determines the error of the first iteration. That error for this experiment
was also given, as a small final error is related to finding a good initial estimate. A small
initial error cannot guarantee, and is not sufficient to achieve a good end result, but as
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Fig. 4 Start and stop errors of K-means with different seeding algorithms for Seq1, Seq2, and Seq3

experiments reveal, it is a prerequisite. Results of different initialization methods are
compared in Fig. 4 with the results of 20 consecutive random initializations. The HD
initialization got the best results. An approximation for the HD method also obtained
better results than for the KKZ and FA initializations. Due to the high computational
complexity of the HD method, in further experiments, we used the HD approximation,
calculating the density of pixels in accordance with Eq. 8. Prior to segmentation using
the kd-tree, the pixels were sorted according to their characteristic length.

Table 2 present results of the segmentation of a Seq2 sequence for a different
number of frames using all investigated K-means algorithms. Figure 5 illustrates
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Fig. 5 Calculation time comparison for different K-means implementations in function of frames count

Fig. 6 Segmented output image for Seq1 with segment mean values in pixels. To the right, four selected
segments in sequence

this as calculation time function plots. The FCM algorithm is computationally much
more complex than KM; it is difficult to converge and requires choosing an appro-
priate fuzziness factor r for every change in the number of processed frames of the
sequence. In our experiment, we adopted the constant r = 1.5 and the number of
iterations is equal to 200. It is worthwhile to mention that the C# code does not pro-
duce a native code, and therefore is slower than an application written in C++, but
it is relatively easy in a C# environment to implement parallel processing using a
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Fig. 7 All pixel characteristics for selected segments of Seq1

parallel. For loop, the computation time was therefore shorter than the MATLAB
implementation by a factor proportional to the number of processor cores—in our
case, twice. Dynamic update segmentation converges faster than other algorithms. The
computation time is longer only because it does not use parallel processing of pixels.
Changing the order of pixel processing would affect, in this case, the final result of
segmentation.

Figure 6 presents a result image of Seq1 sequence segmentation in which pixel
values are equal to the mean value of the associated segment’s center vector. Using a
jet palette for pseudocolors, the correctness of segmentation could be easily verified.
Four segments from this image are chosen, and all pixel characteristics for a given
segment are presented in images in Fig. 7.

All algorithms implemented in C# are object-oriented, enabling easy analysis and
code modification. Implementation of other segmentation algorithms, such as hierar-
chical segmentation, is planned in the future.
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4 Conclusion

This paper presents a new method for initializing a K-means algorithm, which takes
into account the density of pixels in a sequence. A quick estimate method for calcu-
lating the density of pixels with a complexity of O(n) has also been presented. Using
this additional information, the HD method obtains smaller segmentation errors than
KKZ and FA initializations.

K-means segmentation using the kd-tree has proved to be very fast with segmen-
tation of single images, but segmentation of the sequences takes much longer and
successive iterations are not performed as fast as in standard implementations of a K-
means algorithm. With sorting of one-dimensional data, a K-means algorithm using
the kd-tree can be used to segment individual images in real time. Due to the recursive
nature of the algorithm, there are considerable difficulties in accelerating consecutive
iterations of the algorithm and parallelization of computations.

Sequences of thermal images are contained in each pixel of the frame, temperature
information associated with the same location on the sample surface but also with
the depth information associated with the frame number. This example of specific
thermal image sequences enables very high information compression using cluster
segmentation. As a result, pixels with similar thermal properties are combined into
groups—clusters. Such a reduction in quantity of information can allow real-time
implementation of thermal tomography.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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