
Vol.:(0123456789)

International Journal of Primatology (2024) 45:213–245
https://doi.org/10.1007/s10764-023-00398-z

1 3

The Importance of Representative Sampling for Home 
Range Estimation in Field Primatology

Odd T. Jacobson1,2,3  · Margaret C. Crofoot1,2  · Susan Perry4  · 
Kosmas Hench1  · Brendan J. Barrett1,2  · Genevieve Finerty1,2 

Received: 3 May 2023 / Accepted: 5 September 2023 / Published online: 31 October 2023 
© The Author(s) 2023

Abstract
Understanding the amount of space required by animals to fulfill their biological needs 
is essential for comprehending their behavior, their ecological role within their commu-
nity, and for effective conservation planning and resource management. The space-use 
patterns of habituated primates often are studied by using handheld GPS devices, which 
provide detailed movement information that can link patterns of ranging and space-use 
to the behavioral decisions that generate these patterns. However, these data may not 
accurately represent an animal’s total movements, posing challenges when the desired 
inference is at the home range scale. To address this problem, we used a 13-year data-
set from 11 groups of white-faced capuchins (Cebus capucinus imitator) to examine 
the impact of sampling elements, such as sample size, regularity, and temporal cover-
age, on home range estimation accuracy. We found that accurate home range estimation 
is feasible with relatively small absolute sample sizes and irregular sampling, as long 
as the data are collected over extended time periods. Also, concentrated sampling can 
lead to bias and overconfidence due to uncaptured variations in space use and underly-
ing movement behaviors. Sampling protocols relying on handheld GPS for home range 
estimation are improved by maximizing independent location data distributed across 
time periods much longer than the target species’ home range crossing timescale.
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Resumen
Comprender la cantidad de espacio que necesitan los animales para satisfacer sus 
necesidades biológicas es esencial para entender su comportamiento, su papel 
ecológico dentro de su comunidad y para una planificación eficaz de la conser-
vación y la gestión de los recursos. Con frecuencia, los primates habituados están 
estudiados utilizando datos de GPS portátil, que proporcionan información detal-
lada sobre sus movimientos y permiten relacionar los patrones de desplazamiento 
y uso del espacio con las decisiones conductuales que los generan. Sin embargo, es 
posible que estos datos no representen con exactitud la totalidad de los movimien-
tos de un animal, lo que plantea problemas cuando la inferencia deseada es a escala 
del área de campeo. Para abordar este problema, utilizamos un extenso conjunto de 
datos de 13 años de 11 grupos de capuchinos de cara blanca (Cebus capucinus imi-
tator) para examinar el impacto de los elementos de muestreo, como el tamaño de 
la muestra, la regularidad y la cobertura temporal, en la precisión de la estimación 
del área de distribución. Encontramos que la estimación fiable del área de dis-
tribución es factible con tamaños de muestra absolutos relativamente pequeños y 
muestreos irregulares, siempre que los datos se recojan durante periodos de tiempo 
prolongados. También ilustramos cómo el muestreo concentrado puede conducir 
a sesgos y a un exceso de confianza debido a variaciones no capturadas en el uso 
del espacio y en los comportamientos de movimiento subyacentes. Los protocolos 
de muestreo basados en GPS portátiles para la estimación del área de distribución 
se mejoran maximizando los datos de localización independientes distribuidos a 
lo largo de periodos de tiempo mucho más largos que la escala temporal de cruce 
del área de distribución de la especie objetivo.*The translated abstract was not 
copy-edited by Springer Nature.

Introduction

Animal space use often is described by using the home-range concept, developed 
by Burt (1943), who defined the home range as “the area traversed by the indi-
vidual in its normal activities of food gathering, mating and caring for young” (p. 
351). The home-range concept is integral to primate research, helping us under-
stand how individuals—and social groups—interact with one another and their 
environment. Measuring home ranges provides insights into various elements of 
behavioral ecology, such as habitat selection, species abundance, and distribution 
(Gautestad & Mysterud, 2005), metabolism (Harvey & Clutton-Brock, 1981), 
learning and cognition (Spencer, 2012), resource competition (Crofoot et al., 
2008), predator–prey dynamics (Suraci et al., 2022), and the roles species play in 
their ecological communities (e.g., seed dispersal (Gelmi-Candusso et al., 2019) 
and pollination (Abe et al., 2011)). Home-range estimates are frequently used to 
inform species’ minimum area requirements (Pe’er et al., 2014), size recommen-
dations for protected areas (Brashares et al., 2001), land-use decisions (Johansson 
et al., 2016), and other aspects of conservation policy and initiative.
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Although home-range estimation is a simple concept, in practice, it is logistically 
and statistically challenging (Fleming et al., 2015b). Recent research has identified 
three key elements required to estimate an accurate home range: 1) a quantitative 
definition of the home range (Börger et al., 2020); 2) sufficient sampling across the 
home range, which generally scales with time rather than number of recorded loca-
tions (Fleming et al., 2018); and 3) a robust estimator that extrapolates future space 
use and provides a workflow to overcome the numerous possible sources of bias in 
home range estimation (Fleming et al., 2015b). Furthermore, having a home range 
requires site fidelity, the tendency to remain or return to previously occupied areas 
(Switzer, 1993). Thus, most approaches assume home ranges are stationary, and the 
data themselves must show clear evidence of range residency; otherwise, home-
range analysis is not appropriate (Fleming & Calabrese, 2017).

Burt’s definition (1943) provides a conceptual framework for the home range, 
but it lacks the statistical basis needed to quantify it (Silva et al., 2021). Early 
efforts quantify the home range by using the Minimum Convex Polygon (MCP), an 
approach that involves drawing the smallest convex polygon which encompasses all 
the recorded locations (Börger et al., 2020; Mohr, 1947). However, joining the out-
ermost points in this manner yields biased estimates that are sensitive to sampling 
and assume uniform space use (Burt, 1943; Kernohan et al., 2001; Worton, 1995). 
Efforts have since focused on measuring the utilization distribution (hereafter UD) 
(Worton, 1989). The UD is a density function describing the probability distribution 
of an animal or group being at any point in space within a particular area (Börger et 
al., 2020; Calhoun & Casby, 1958; Jennrich & Turner, 1969). The 95% UD—or “the 
smallest area associated with a 95% probability of finding the animal” (Fieberg & 
Kochanny, 2005, p. 1346; White & Garrott, 1990)—is the widely adopted, although 
somewhat arbitrary, quantitative formulation, as Burt’s original home range con-
cept excludes “occasional sallies outside the area used for normal activities” that are 
“perhaps exploratory by nature” (Burt, 1943, p. 351).

Constructing UDs generally involves kernel density estimation (hereafter KDE). 
KDEs place kernels, or small probability density functions, over each location data 
point and averages them to acquire a total probability density function across all 
points (Börger et al., 2020; Worton, 1989). The resulting probability density func-
tion has the highest density where points are the most concentrated (Worton, 1989). 
The conventional KDE method was developed for home-range estimation when 
movement data were generally collected at relatively low sampling rates by using 
VHF radiotelemetry (Börger et al., 2020). Consequently, the underlying statistics of 
the KDE assumes that the data have no autocorrelation (Worton, 1989), meaning the 
observed locations are independent of previous and subsequent observed locations. 
This is a false assumption with recent GPS-based sampling regimes, as the ability 
of these devices to collect movement data at higher frequencies results in greater 
degrees of autocorrelation in movement datasets (Fleming et al., 2015b). When the 
data are sampled at intervals short enough that recorded locations are correlated in 
space and time, which can be as coarse as one fix per day (Calabrese et al., 2016), 
the assumptions of the conventional KDE are violated (Fleming et al., 2015b).

In the context of autocorrelated data, traditional KDE methods yield UDs that 
are better suited to reflecting an animal’s space use during the observation period 
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(i.e., occurrence distribution), rather than providing a home range estimate that 
extrapolates beyond the observed data to encompass future space use (i.e., range 
distribution) (Börger et al., 2020). The range distribution aligns with Burt’s initial 
description of the home range by measuring an animal’s long-term space use, mak-
ing it relatively resilient to variations in sampling effort (Fleming et al., 2015b). 
Conversely, the occurrence distribution focuses on space use during the observa-
tion period, making it highly sensitive to sampling and conforming closely to the 
observed data (Alston et al., 2022) (Fig. 1).

Calculating the occurrence distribution is valuable for analytical purposes unre-
lated to home range estimation, such as path reconstruction (Fleming et al., 2015a), 
and determining the times and locations of animal interactions or crossings over 
landscape features (Alston et al., 2022). Several methods explicitly estimate the 
occurrence distribution including Brownian bridge approaches (Horne et al., 2007), 
the continuous-time correlated random walk (Johnson et al., 2008), time-dependent 
LocoH (Lyons et al., 2013), and time-series Kriging (Fleming et al., 2015a). Never-
theless, KDE is widely used to estimate the home range (hereafter referred to as the 
range distribution), instead of the occurrence distribution (Fleming et al., 2015b), 
which is only suitable on the occasions where the recorded location data are inde-
pendent and not autocorrelated (Börger et al., 2020).

The autocorrelation found in most movement datasets generates UDs that more 
closely resemble the occurrence distribution, particularly when using KDE. As the 
occurrence distribution does not accommodate out-of-sample space use, the result-
ing area estimates are prone to negative bias and can lead to misinterpretation when 
the intended goal is home range estimation (Fleming et al., 2014b). However, if the 

Fig. 1  Comparison of a range distribution estimate versus an occurrence distribution estimate calculated 
and depicted using the same location data collected from a single group of white-faced capuchins at the 
Lomas Barbudal Monkey Project in Costa Rica, September 12, 2010 to December 31, 2010. The range 
distribution is calculated using auto-correlated kernel density estimation and the occurrence distribu-
tion is calculated using time-series Kriging. Red points are recorded locations of capuchin movements, 
blue represents the estimated utilization distribution, and black lines show the mean and 95% confidence 
interval boundary of the 95% level utilization distribution.
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desired outcome is occurrence estimation, KDE may be a viable option (Börger et 
al., 2020); thus, it is crucial for researchers to clearly identify their target of infer-
ence and select an appropriate estimator accordingly (Alston et al., 2022)

Recently developed home range estimation methods explicitly estimate the 
range distribution and account for the fact that animals’ paths result from move-
ment processes that are, by definition, spatiotemporally autocorrelated. These meth-
ods explicitly treat movement data as a sample of location estimates taken along 
an animal’s mostly unobserved continuous movement path (Fleming et al., 2015b). 
One of these methods, auto-correlated kernel density estimation (hereafter AKDE), 
improves upon the KDE by modelling the underlying continuous-time movement 
process of the animal (Calabrese et al., 2016). AKDEs generate home-range esti-
mates that are informed by autocorrelated data, rather than hindered by it. They 
also provide the analytical toolkit to handle several other obstacles, such as loca-
tion error, irregular sampling, bandwidth optimization, and estimation uncertainty 
(Fleming & Calabrese, 2017; Fleming et al., 2018, 2020).

A thorough evaluation of the AKDE compared against commonly used 
approaches, such as the MCP, KDE, and Local Convex Hull (LocoH), shows that 
the AKDE is superior in capturing space use out of sample and is the only estimator 
capable of producing unbiased estimates with low effective sample sizes (Noonan et 
al., 2019). While AKDE is increasingly adopted in studies of animal ranging behav-
ior (Crabb et al., 2022; Desbiez et al., 2020; Lenske & Nocera, 2018; McEvoy et al., 
2019; Montano et al., 2021; Naveda-Rodríguez et al., 2022; Poessel et al., 2022), 
the overwhelming majority of studies still use methods, such as the MCP and KDE 
(Börger et al., 2020; Fleming & Calabrese, 2017; Hemson et al., 2005; Laver & 
Kelly, 2010; Powell, 2000). The potential presence of significant, systematic biases 
from applying these methods to estimate home-range area is concerning, because it 
can lead to erroneous conservation decision-making (Gaston et al., 2008) or inac-
curate meta-analyses that influence public opinion and theoretical frameworks (Noo-
nan et al., 2020). Also, particularly worrying is that the methods that are primarily 
used to record primate movement (e.g., handheld GPS) are different than those used 
on studies of most other species (e.g., GPS tags), introducing additional bias into 
any comparative work (McCann et al., 2021; Sennhenn-Reulen et al., 2017).

To estimate the home ranges of habituated groups or individuals, primatolo-
gists often gather location data via handheld GPS devices (e.g., ring-tailed lemurs 
(Lemur catta), Axel & Maurer, 2011; white-faced capuchins (Cebus capucinus 
imitator), Campos et al., 2014; Bornean southern gibbons (Hylobates albibarbis), 
Cheyne et al., 2019; Phayre’s leaf monkeys (Trachypithecus phayrei), Gibson & 
Koenig, 2012; brown capuchins (Cebus apella), Hirsch et al., 2013; bonobos (Pan 
paniscus), McLester & Fruth, 2023; capuchins (Cebus sp.) and bearded sakis (Chi-
ropotes satanas), Phillips et al., 1998; chimpanzees (Pan troglodytes), Potts et al., 
2011; blue monkeys (Cercopithecus mitis), Roberts & Cords, 2015; mountain goril-
las (Gorilla beringei beringei), Seiler & Robbins, 2020). These devices can be inte-
grated easily into established data collection protocols (Brown & Crofoot, 2013) and 
provide a noninvasive means of tracking habituated animals in contrast to animal-
borne tracking devices that require capture (e.g., VHF and GPS collars; Dore et al., 
2020). The longitudinal datasets generated by using handheld GPS devices hold 
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significant potential, as they may span multiple decades and have corresponding 
data on demography, behavior, and environmental variables (Campos et al., 2014; 
Gibson & Koenig, 2012; Irwin & Raharison, 2021; Seiler & Robbins, 2020). Thus, 
these datasets can give rise to novel and important investigations that are not feasi-
ble for most tracking studies. Yet, the accumulated handheld GPS data from longi-
tudinal studies often is underused (Brown & Crofoot, 2013), with inquiries on social 
behavior and life history generally being of higher priority. Consequently, there is a 
lack of understanding of what drives long-term movement and space-use patterns of 
primates and how these patterns link with fitness and population demography.

Another key issue is that most modern approaches for estimating the home range, 
including the AKDE, are designed to handle movement data sampled continuously 
at discrete intervals over predetermined time periods (e.g., GPS tag datasets). Chal-
lenges arise when applying these approaches to the extensive, but often discontinu-
ous and opportunistic datasets produced by tracking the movements of habituated 
animals using handheld GPS devices. When animal movement data are collected 
by tracking the movements of human observers (e.g., handheld GPS datasets), sam-
pling bias may be introduced from several sources. For instance, data can only be 
collected when observers are present, causing missing data when rotating between 
multiple groups or during pauses in data collection. Bias also is introduced when 
some areas are less accessible to observers, for example over cliffs or flooded rivers. 
Sampling disruptions can be nonrandom in time and across behaviors, as research-
ers can more easily lose groups in rainy seasons where visibility and audibility are 
limited, or when groups are moving rapidly.

While handheld GPS data continues to be a valuable tool for primatologists in 
assessing space use and addressing ecological questions, the extent to which con-
ventional sampling protocols in field primatology yield home range estimates that 
represent the biological home range (i.e. “true” home range) remains uncertain. To 
address this problem, we present an extensive longitudinal dataset from the Lomas 
Barbudal Monkey Project—comprising 13  years of handheld GPS data collected 
over 11 groups of white-faced capuchin monkeys (Cebus capucinus imitator) in 
Guanacaste, Costa Rica. This dataset exemplifies characteristic long-term datasets 
acquired in primate field studies, highlighting the significant challenges encountered 
by longitudinal studies in the context of handheld GPS sampling.

White-faced capuchins are well-suited for this study due to their residence within 
a specific range, making their movement data appropriate for estimating home 
ranges (Silva et al., 2021). Additionally, their tendency to move together as a group 
(Campos et al., 2014) enables the possibility of tracking groups using just one 
device operated by a human observer. They are platyrrhines that are primarily arbo-
real and live in multi-male, multi-female groups of approximately 5–40 individuals 
(mean = 18.8) (Perry, 2012). Females exhibit lifelong group fidelity, whereas males 
disperse during adolescence (mean age 7.6  years) (Perry et al., 2012). Their diet 
primarily consists of fruit and arthropods (McCabe & Fedigan, 2007; Perry & Jime-
nez, 2006), although they are dietary generalists and also consume flowers, eggs, 
pith, and small vertebrates. While home ranges frequently overlap with neighbor-
ing groups, they do not defend strict territorial boundaries; however, interactions 
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between groups can be aggressive and occasionally fatal (Crofoot, 2007; Gros-Louis 
et al., 2003; Perry, 1996).

Our goal was to understand how to maximize the potential of long-term, handheld 
GPS data for accurate home-range estimation while providing practical suggestions 
for reliable sampling design. We thinned continuous segments of capuchin move-
ment data into alternative sampling regimes of varying temporal scales and levels of 
consistency and assessed the home range estimation performance using cross valida-
tion from the total samples. While the true biological home range remains unknown, 
employing this approach permits increased understanding of how essential aspects 
of movement datasets, such as limited sample sizes and irregular sampling, can 
impact the performance of home range estimates derived from observations col-
lected via handheld GPS. We address the following questions with respect to our 
dataset:

1. What sample size from handheld GPS is necessary to maximize estimation per-
formance?

2. At what temporal scales should we measure home ranges?
3. What are the most important considerations for obtaining representative samples?

Methods

Study Site

We conducted our field work at the Lomas Barbudal Monkey Project (referred to 
as “Lomas”), centered around the tropical dry forests of Reserva Biologica Lomas 
Barbudal (10°29–32′N, 85°21–24′W) in Guanacaste, Costa Rica. The field site also 
extends beyond the reserve to land owned by Finca El Pelón de la Bajura and other 
nearby private and public land. Initiating in 1990, the project has persisted until the 
present day, with its primary objective centered around the continuous monitoring 
of the social behavior and life history of white-faced capuchins (Perry et al., 2012).

The landscape at Lomas is rugged and highly heterogeneous, consisting of vari-
ous distinct forest types, including dry deciduous, riparian, savanna, mesic, extreme 
deciduous, and regenerative, as well as large patches cleared for cattle ranching 
(Frankie et al., 1988). Lomas experiences extreme seasonality; virtually all annual 
rainfall (1,000–2,200  mm) occurs from May to November (Frankie et al., 1988). 
During the dry season, most animal life seeks refuge in riparian areas as they pro-
vide the primary means of shade and food resources (Frankie et al., 1974). Fires are 
common in the dry season and increasingly so with stronger and more frequent El 
Niño events due to climate change (Campos-Vargas & Vargas-Sanabria, 2021; Perry 
et al., 2012). Additionally, human disturbance persists year-round at Lomas through 
agriculture, mining, poaching, and logging (Quesada & Stoner, 2004; Stoner & 
Timm, 2004; Jacobson, personal communication).
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Data Collection

We collected data on the movement trajectories of capuchin groups from September 
2009 to March 2020 by using handheld Garmin GPSmap Series units (62 s, 64, 64 s, 
66sr) clipped on or placed in researcher backpacks. Researchers followed capuchin 
groups from dawn until dusk recording the groups’ trajectory over the period when 
capuchins are expected to be active. During search days, researchers initiated GPS 
recording upon encountering groups and continued until the groups reached their 
sleeping site. When researchers were not collecting behavioral data on specific indi-
viduals, they positioned themselves as close to the geometric center of the group as 
feasible. Researchers maintained GPS recording as long as at least some individu-
als remained within visual contact, typically with 1–20  m between the researcher 
and the animal. However, in situations where researchers lost contact due to diffi-
cult conditions or when transitioning to study different groups, researchers would 
conclude GPS recording prematurely. Inefficiency of early GPS models and satellite 
disconnection due to cloud cover, cliff topography, or dense canopy also disrupted 
GPS data collection.

As is common in field primatology studies, movement data collection is some-
what opportunistic, as behavioral data collection protocols determine which group 
to follow, as well as when and how frequently. Once the behavioral data collection 
priorities were fulfilled for one group, data collection teams switched to another 
group. The time spent consecutively with any one group ranged between 1 and 
22 days (mean 2.49), depending on the amount of behavioral data needed, visibil-
ity, and whether or not the researchers lost contact with the monkeys. We cleaned 
all tracking data using reproducible scripts in the software environment R (R Core 
Team, 2022). We also wrote automated functions which flagged tracks outside of the 
typical study area or data collection period. We visualized tracks with the mapview 
package (Appelhans et al., 2022) to manually identity, flag, and remove erroneous 
points. Errors could result from satellite issues or researchers forgetting to turn off 
their GPS units once they left a focal group.

In our full dataset, there are a total of 3,086 tracks, including 1,937,900 recorded 
locations. 1,902 (62%) of the daily tracks are at least 10 h in duration, and 2,555 
(83%) are at least 5 h. We programmed GPS units to collect locations at one fix per 
5  min between 2009–2012. When GPSs were upgraded in 2013, they began col-
lecting at one fix per 30 s, which remains the same today. While we maintained the 
original sampling rates to measure fine-scale movement patterns, such as daily path 
length, for the purposes of this study, we adjusted the sampling rate to one fix per 
30 min to manage computational costs during home range estimation. After chang-
ing the sampling rate, our dataset includes 65,645 recorded locations, encompassing 
roughly 25,000 observation hours across 11 groups from 2009 to 2020 (Fig. 2).

There were six cases where specific groups were followed almost continuously 
for long periods of 2 to 4  months because of concurrent research projects. These 
intervals provide ideal subsets of the data to explore the impact of irregular sampling 
and small sample sizes on home range estimation. We subsampled these data to cre-
ate sampling regimes that varied in total duration, regularity of sampling effort, and 
volume of data.
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Sampling Regimes

We chose six high-quality segments (hereafter referred as “complete segments”) 
from five different capuchin groups (two of the segments came from one group; the 
rest were from different groups), in which the data were collected almost continu-
ously over multiple months. The data from these segments were collected over a 
period of no less than 50  days (with a maximum of 102  days), during which the 
data were recorded nearly continuously. We thinned each complete segment to gen-
erate ten alternative sampling regimes per complete segment, totaling 60 different 
regimes  (Fig.  3). We thinned five of the ten sampling regimes created from each 
complete segment by removing days from either the beginning, the end, or both, 
thereby ensuring that these regimes maintained nearly continuous monitoring effort. 
We refer to these thinned regimes as “concentrated sampling regimes.” We thinned 
the other five regimes by randomly removing days to create irregular sampling 
gaps. We refer to these regimes as “spread sampling regimes.” Across the 60 sam-
pling regimes, 30 were concentrated and 30 were spread. The number of days (and 
approximately the amount of locations) were held constant across concentrated and 
spread sampling regimes so that both spread and concentrated regimes have either 
30, 20, 10, 6, or 3 days, corresponding to approximetely 780, 520, 260, 156, and 78 
recorded locations, respectively. Each sampling regime is given a sampling regime 
ID denoting whether it is concentrated (C) or spread (S) followed by the number of 
days in the sampling regimes (e.g., S20).

Fig. 2  Temporal representation of handheld GPS tracking data collected from 11 groups of white-faced 
capuchins at the Lomas Barbudal Monkey Project in Costa Rica, September 2009 to March 2020. Colored 
boxes show six near-continuous segments of data (i.e., “complete segments”) selected from the total dataset 
to be thinned to create varying sampling regimes. Each vertical line shows the time sampled in a single day, 
with a maximum of 13 possible tracking hours (or 26 locations collected at a 30-min sampling rate). Group 
name is provided on the right side of the figure. Figure created using code from (Campos et al., 2014).
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Home Range Estimation

We computed home range estimates using the AKDE method implemented in the 
ctmm package (Calabrese et al., 2016) in R (R Core Team, 2022). The ctmm pack-
age leverages advances in continuous-time movement models to provide a suite of 
tools for generating UDs (among other downstream analyses) while accounting for 
the wide range of autocorrelation structures present in most modern tracking data-
sets as well as the option to model GPS error. We employ the “weights = TRUE” 
option in the akde function to incorporate irregular data. This option assigns higher 
weights to under-sampled time periods and lower weights to over-sampled time peri-
ods (Fleming et al., 2018). Furthermore, we address location error by incorporating 
an informative prior with a mean of 20 m and 2 degrees-of-freedom. This prior dis-
tribution provides a credible interval of approximately 7 to 33  m, which informs 
our movement models about the potential error associated with the location esti-
mates (Fleming et al., 2020). The inclusion of this prior accounts for satellite error, 
error caused by variation in group spread, and handheld GPS position relative to the 
capuchin group center. We detail ctmm analysis for home range estimation and pro-
vide an example workflow to make it easy to replicate the analyses with one’s own 

Fig. 3  Temporal representation of sampling regimes created by thinning near-continuous segments of data 
(i.e., “complete segments”) collected from white-faced capuchins at the Lomas Barbudal Monkey Project 
in Costa Rica, September 2009 to March 2020. The top row of each plot (labelled “all”) shows the total 
data from the complete segment. The following 10 rows of each plot depict different sampling regimes 
thinned from their respective complete segment, which are labelled with a sampling regime ID. “C” labels 
indicate concentrated data. “S” indicates spread data. Numbers indicate days in the sampling regime.
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data in Appendix 1. Then, we show how we applied this method to the 60 sampling 
regimes for this study in Appendix 2.

Performance of Sampling Regimes for Home Range Estimation

To evaluate the performance of the 60 sampling regimes—and thus the impact 
of different aspects of sampling design—we compared each home range estimate 
against the data from the full time period (i.e., complete segments). While the bio-
logical home range cannot be known with certainty, we assume that estimates that 
accurately represent the data from the complete segments are more likely to be 
closer to the biological home range.

We defined performance as the proportion of the recorded GPS locations from the 
complete segments that fall within the boundaries of the 95% UD home range esti-
mates calculated from the sampling regimes. This measure is hereafter referred to as 
“performance” or “performance score.” Because the 95% UD is an estimate of the 
area in which there is a 95% probability of finding the animal, a perfect performance 
score is 0.95, indicating that 95% of the total locations from the complete segment 
fell within the HR estimate. Also, because data from the sampling regimes represents 
a portion of the data within the complete segments, it is expected that performance 
scores should not deviate substantially from the optimal value of 0.95. Thus, perfor-
mance scores that deviate below 0.90 can be viewed as exceedingly poor.

To examine the relationship between key sampling characteristics (e.g., num-
ber of locations, number of weeks, and data irregularity or continuity) and home-
range performance, we employ binomial generalized linear mixed models (GLMMs) 
implemented using the brms package (Bürkner et al., 2023). Our number of suc-
cesses was the number of locations from the complete segment that fell within the 
95% AKDE of each sampling regime, whereas the number of trials was the number 
of locations overall in the complete segment. Our initial model uses a binary predic-
tor variable that indicates whether the data is concentrated or spread to predict the 
performance score as the response variable. In contrast, our second model predicts 
the performance score based on the absolute sample size, which is indicated by the 
number of recorded locations (collected at a sampling rate of 30 min per location). 
Finally, our third model predicts performance based on the number of weeks, which 
is a measure of temporal coverage, quantifying both the length of the sampling win-
dow and the number of unique time periods represented within it. We included an 
interaction between the predictors and the binary variable indicating spread or con-
centrated data in the last two models, and all models have varying slopes and inter-
cepts per group. We assessed the fit of our statistical models by employing posterior 
predictive checks by using the bayesplot package (Gabry et al., 2022). Posterior pre-
dictive checks evaluate model fit by comparing the observed data to simulated data 
from the posterior predictive distribution of the outcome variable inferred from the 
model (Rubin, 1984).

Finally, we compared the effects of increasing weeks versus increasing locations on 
the performance score. We did this by first z-score standardizing the number of weeks 
and locations in each regime. Thus, one standardized unit is equivalent to one standard 
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deviation away from zero. Next, we calculated the instantaneous slopes (or first deriva-
tives) of the model predictions across various standardized units of weeks and locations. 
This is a way of measuring the rate of increase (or effect size of increasing one standard-
ized unit of weeks or locations on the performance score) at different levels along the 
posterior prediction curve. We chose three different standardized numbers (− 1.30, − 0.55, 
and 0.20) that designate three levels (low, medium, and high) and are meant to be rep-
resentative points across the possible values of standardized weeks and locations. These 
three standardized numbers correspond to 21, 203, and 385 locations and 1, 3, and 
6 weeks.

Effective Sample Size

We analyzed estimates of the effective sample size, which is measured as the num-
ber of statistically independent locations within the sample (Fleming et al., 2019). 
The effective sample size is proportional to the mean number of times the animal 
reverted back toward the center of its home range (Fleming et al., 2019) or the mean 
number of times the animal crossed the linear extent of its home range (Fleming 
& Calabrese, 2017). It is estimated by dividing the sampling time (T) by the time-
lag between locations required for independence (τ), which also corresponds to the 
approximate average home range crossing timescale (Fleming & Calabrese, 2017; 
Silva et al., 2021). The effective sample size provides more information on spatial 
variance than the number of observed locations (i.e., absolute sample size) (Silva 
et al., 2021), and therefore is a better indicator of the reliability of home range esti-
mates (Fleming et al., 2019; Noonan et al., 2019). See Appendix 4 for a comparison 
of absolute sample size and effective sample size.

As τ (i.e. the average home range crossing timescale) is integral to the calculation of the 
effective sample size, we compared estimates of τ from the movement models fitted to the 
60 different sampling regimes to those estimated from the movement models fitted to the 
six complete segments. This procedure gives us a better understanding of how estimates 
of the effective sample size may be biased by missing data, which has important implica-
tions for the shape of the home range contours and the certainty of area estimates. If τ is 
underestimated, effective sample sizes will be positively biased, which results in overcon-
fident and misleading home range estimates. Conversely, overestimating τ will result in 
negatively biased effective sample sizes, leading to exceedingly large uncertainties.

We consider the values of τ taken from the movement models fit to the com-
plete segments as more reliable compared to estimates derived from the sampling 
regimes. This is because they are based on continuous data collected over extended 
periods, which effectively capture the timescale necessary for capuchin groups to 
fully use their entire range (determined by field-based approximations). We used 
these values to estimate reliable effective sample sizes for each sampling regime by 
dividing the sampling times (T) of the regimes by the τ values taken from the move-
ment models fit to the complete segments. Subsequently, we contrasted these esti-
mates to the effective sample size estimates derived from the movement models fit 
to the sampling regimes. Evaluating the discrepancy between these estimates offers 
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insights into potential sources of biases in τ (and consequently the effective sample 
size), stemming from variations in the sampling regimes.

Stationarity and Temporal Scale of Sampling Regime

To examine the long-term stability of home ranges and identify suitable time scales for 
estimating them in our longitudinal dataset we conducted a case study focusing on two 
groups: AA and RR. We calculated a single annual home range for each group (2014 
for AA and 2012 for RR) in which the data met our criteria for adequate home range 
estimation performance, as determined from our evaluation of the effects of sampling 
elements. Subsequently, we investigated changes in space use over four years by exam-
ining whether location data from different time periods, not included in the data used 
for home range estimation, fell within the boundaries of the home range. Specifically, 
we analyzed the proportion of locations from the previous year, the subsequent year, 
and the subsequent next year that fell within the mean 95% UD boundary of the home 
range estimate. This analysis allowed us to assess the consistency of the home ranges 
over time. Additionally, we visually assessed whether data from different seasons 
represented distinct portions of the annual home range. This approach enabled us to 
evaluate the temporal consistency of home ranges and determine the feasibility of seg-
menting the data based on specific time periods, such as years or seasons.

Ethical Note

The study was entirely observational; GPS devices were carried by observers instead 
of attached to the animals. All protocols were approved by UCLA’s Animal Care 
Committee (protocol 2016–2022), and all necessary permits were obtained from 
SINAC and MINAE (the Costa Rican government bodies responsible for research 
on wildlife) and renewed every 6 months during the course of the study; the most 
recent scientific passport number being #117–2019-ACAT and the most recent 
permit being Resolución # M-P-SINAC-PNI-ACAT-072–2019. This research fol-
lows the Animal Behavior Society’s Guidelines for the Use of Animals in Research 
(ASAB Ethical Committee/ABS Animal Care Committee, 2023).

Data Availability The reproducible code and data with shifted coordinates are avail-
able here:  https:// doi. org/ 10. 17617/3. IFOIIN (Jacobson, et al., 2023).  Coordinates 
were shifted to safeguard the capuchin population. Raw data can be requested here 
pending permission:  https:// www. moveb ank. org/ cms/ webapp? gwt_ fragm ent= 
page= studi es,path= study 29959 50493. 
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Results

Spread Sampling Outperforms Concentrated Sampling

Spread sampling regimes performed better on average, estimating home ranges 
that more closely approximated the target performance score of 0.95 (posterior 
median = 0.93, 95% credible interval: 0.87–0.96). Concentrated sampling regimes 
estimated home ranges that were more consistently negatively biased (posterior 
median = 0.85, 95% credible interval: 0.61–0.91) (Fig.  4a). Additionally, spread 
sampling regimes were more robust than concentrated sampling regimes to low 
quantities of recorded locations and weeks (Fig. 4b and c). Generally, home range 

Fig. 4  Model predictions of home range estimation performance predicted by characteristics of sampling 
regimes for white-faced capuchin movement data collected at the Lomas Barbudal Monkey Project in 
Costa Rica, September 2009 to March 2020. (A) Plot showing the home range estimation performance 
score predicted by whether the data was concentrated (blue) or spread (orange). Within these two cat-
egories, raw data are shown on the left, and posterior point intervals are shown on the right. Posterior 
point intervals describe the median and 66% and 95% credible intervals of the posterior distribution. 
Model predictions for the effect of number of locations (B) and number of weeks (C) within the sam-
pling regimes on performance score. Horizontal dashed line indicates optimal performance score of 0.95. 
Dark solid lines are the mean posterior predictions; lighter lines (although hard to see as they are very 
close to the mean) are 200 randomly sampled posterior predictions. Plots visualizing varying effects per 
group are shown in Figs. 1, 3, and 5 in Appendix 3.
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estimates for concentrated sampling regimes performed worse with fewer locations 
and weeks, but their confidence intervals remained consistently narrow. In contrast, 
the performances for spread sampling regimes did not substantially decrease with 
fewer locations and weeks, but the confidence intervals around their home range 
estimates widened (Fig.  5). Based on our findings, we established that for spread 
data, sampling regimes should encompass a minimum of 100 locations and span at 
least 5 weeks. For concentrated data, sampling regimes necessitate a minimum of 
500 locations and 5 weeks.

More Data is Not Always Better

Increasing the temporal coverage (measured by the number of weeks) in sampling 
regimes had a greater positive effect on home range estimation performance com-
pared to increasing the absolute sample size (measured by the number of recorded 
locations). When concentrated sampling regimes had low absolute sample sizes and 
temporal coverages (low =  − 1.3 SD corresponding to 21 locations or one week), 
a + 1 SD increase in locations (243 locations) improved performance of home range 
estimates by approximately 23% (Fig. 6a). Meanwhile, a + 1 SD increase in weeks 
(3  weeks) boosted estimation performance by approximately 30% (Fig.  6c). This 

Fig. 5  Home-range estimates derived from ten varying sampling regimes created by thinning a near-
continuous portion of the handheld GPS dataset from a single group (CE) of white-faced capuchins at 
the Lomas Barbudal Monkey Project in Costa Rica, July to October 2017 (Appendix 2 for all groups). 
The dark lines indicate the mean 95% utilization distribution contour and the dotted lines indicate the 
95% confidence intervals. The open yellow points indicate the locations that were thinned from the com-
plete segments and the filled green points indicate the locations that remained in the sampling regimes. 
The top row shows the concentrated sampling regimes and the bottom row shows the spread sampling 
regimes. Despite poor performance, home range estimates generated from sampling regime IDs C20, 
C10, C6, and C3 show narrow confidence intervals, suggesting biased and misleading effective sample 
sizes.
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implies that collecting as few as three locations on a weekly or less frequent sam-
pling schedule can lead to better performance improvements than collecting 243 
locations at a continuous 30-min sampling rate.

With larger quantities of data already present in sampling regimes, add-
ing more weeks and/or locations had less impact, because the rate of improve-
ment slowed down as it approached the optimal performance value of 0.95. For 
instance, when concentrated sampling regimes had medium quantities of locations 
and weeks (medium =  − 0.55 SD corresponding to 3  weeks or 203 locations), 
a + 1 SD in weeks and + 1 SD in locations both improved performance by approx-
imately 17%. At high quantities (high = 0.2 SD corresponding to 6 weeks or 385 
locations), a + 1 SD increase in weeks improved performance by approximately 

Fig. 6  Model estimates of the instantaneous slope coefficients (i.e., first derivatives) for increasing loca-
tions and weeks in sampling regimes on performance of home range estimates of white-faced capuchin 
groups at the Lomas Barbudal Monkey Project in Costa Rica, September 2009 to March 2020. Plots 
depict a combination of posterior densities, mean point estimates, and credible intervals (80 and 95%) for 
the instantaneous slope coefficients at varying quantities of weeks and recorded locations. Instantaneous 
slope coefficients represent the effect size of increasing 1 standard deviation in weeks or locations on the 
home range estimation performance score. Plots A and C (Blue-purple colors) represent concentrated 
sampling regimes. Plots B and D (orange-yellow) represent spread sampling regimes. Darker colors rep-
resent smaller quantities. Lighter colors represent greater quantities of weeks or locations.
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8% and a + 1 SD increase in locations improved performance by approximately 
10%.

We found a similar trend for spread sampling regimes: increasing the number 
of weeks improved performance more than increasing the number of locations 
(Fig. 6b and d). However, the effects of increasing both weeks and locations were 
much smaller compared with concentrated sampling regimes, because spread 
sampling regimes already had performance scores relatively close to optimal even 
with low quantities of locations and weeks.

Concentrated Sampling is Prone to Bias in the Effective Sample Size

The absence of crucial data can result in skewed estimations of the effective sam-
ple size, especially for concentrated sampling regimes. Of the 60 sampling regimes, 
12 concentrated sampling regimes and six spread sampling regimes showed signif-
icantly biased estimates (Fig.  7). The most substantial biases occurring in groups 
CE and FL, where several sampling regimes with seemingly adequate absolute sam-
ple sizes (~ 300–500 locations) and total time sampled (~ 10–20 full tracking days) 
had very large biases (e.g., off by effective sample sizes of approximately 50–150). 

Fig. 7  Effective sample sizes of various sampling regimes collected from white-faced capuchin groups at 
the Lomas Barbudal Monkey Project in Costa Rica, September 2009 to March 2020. Each panel shows 
the effective sample size estimates of each sampling regime within a group (Estimate effective sample 
size: open circles indicate the means and dashed lines indicates 95% confidence intervals), and a com-
parison with what the effective sample size should be if the home range crossing time was informed 
by the complete segments (Reliable effective sample size: closed circles indicate the means and solid 
lines indicates 95% confidence intervals). Colors indicate whether the sampling regime had concentrated 
(blue) or spread (yellow) data.



230 O. T. Jacobson et al.

1 3

These biases resulted in home range estimates with high levels of certainty but very 
low performance scores (Fig. 5).

Capuchin Space use Varies Across Years and Seasons

In our case study, assessing the stability of home ranges and identifying suitable 
temporal scales for home range estimation, we observed distinct trends in the space-
use patterns of groups RR and AA. Locations of group AA were relatively station-
ary across the 4-year period, although there were some excursions into areas outside 
the 2014 home range contour in 2015. Group RR displayed stability for two con-
secutive years, as evident from a substantial proportion of observations the previous 
year in 2011 falling within the home range contour from 2012. However, over the 
subsequent 2 years (2013 and 2014), there was noticeable drift in the observed loca-
tions (Fig. 8).

For group AA, we estimated the home range for 2014 and found that 99% (95% 
CI: 0.985–0.996) of the locations from 2013 fell within the mean 95% UD bound-
ary. Meanwhile, 88.7% (95% CI: 0.824–0.949) of the locations from 2015 and 96% 
(95% CI: 0.887–0.988) of the locations from 2016 were within the UD boundary. 
For group RR, we estimated the home range for 2012 and found that 98.4% (95% 
CI: 0.949–0.997) of the locations from 2011, 89.1% (95% CI: 0.830–0.932) of the 
locations from 2013, and 86.2% (95% CI: 0.842–0.900) of the locations from 2014 
fell within the UD boundary. Furthermore, group RR showed consistent space-use 

Fig. 8  Annual home-range estimates for two groups of white-faced capuchins at the Lomas Barbudal 
Monkey Project in Costa Rica (2011–2016) plotted alongside data from the preceding, subsequent, and 
next subsequent year. Dark lines indicate the mean 95% utilization distribution contour for 2014 (group 
AA) and 2012 (group RR). Dotted lines indicate the corresponding 95% confidence intervals.



231

1 3

The Importance of Representative Sampling for Home Range…

patterns between the wet and dry seasons, whereas group AA showed potential sea-
sonal variations in certain years.

Discussion

Our study shows that temporal coverage is a more important factor than the raw 
quantity of data for home range estimation. Sampling protocols that capture greater 
space-use variability by distributing location data over prolonged durations yield the 
most dependable home range estimates. Technological advancements in handheld 
GPS devices have facilitated the collection of location data with remarkable fre-
quency, allowing measurements to be obtained at intervals as short as every second 
(Garmin Customer Support, n.d.). The enhanced capabilities of these devices, char-
acterized by faster sampling rates and small error (~ 3 m), have paved the way for 
new opportunities to study the movement patterns of habituated animals in unprece-
dented detail. However, our findings indicate that, when examining home range esti-
mates, faster sampling rates may not necessarily yield improved results, as locations 
collected quickly in succession tend to contribute redundant information at the home 
range scale.

We employed a relatively coarse sampling rate of one location every 30 min. The 
estimated time between locations necessary to ensure independence, known as range 
crossing time, averaged around 12 h. This duration, although short compared with 
other animals, such as big cats (Karelus et al., 2021; Morato et al., 2016), ungulates 
(Calabrese et al., 2016; Fleming et al., 2015b), and other large mammals (Noonan et 
al., 2020), meant that we obtained new and independent information about the home 
range approximately once every 24 consecutive locations. However, we found that 
further information about the range was provided when locations were separated by 
week-long intervals. These findings highlight the importance of prioritizing the col-
lection of location data with larger time intervals between measurements.

Encouragingly for researchers employing handheld GPS data to estimate home 
ranges, our study revealed that sporadic gaps in data collection do not inherently 
compromise home range estimation performance. In fact, sampling regimes that 
sacrificed continuous observation for greater temporal coverage consistently out-
performed sampling regimes that were continuous but concentrated into short 
time periods, even when effective sample sizes were equal. The enhanced perfor-
mance of spread-out sampling strategies stems from longer total sampling dura-
tions providing capuchin groups more time to fully use their home range. Despite 
potential sampling gaps leading to missed range crossings, irregular data distrib-
uted over longer periods captured more variation in space use. Consequently, 
sampling regimes with extended durations should provide a more comprehensive 
representation of an animal’s overall space use, provided that crucial changes in 
ranging behavior are not missed due to sampling gaps.

Concentrated sampling strategies occasionally yielded positively biased effec-
tive sample sizes, leading to overconfident home-range estimates. These sampling 
regimes failed to capture variations in underlying movement processes, spe-
cifically the sudden shifts occurring within the home range. We observed that 
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when capuchin groups temporarily confined their movements to specific subareas 
within their home range, the movement models fitted solely to the data from these 
specific periods yielded an overestimation of the effective sample size. This is 
because the capuchin groups repeatedly traversed this smaller area, which led to 
underestimated, home-range crossing times and overestimated effective sample 
sizes. As a result, the overestimated effective sample sizes constrained the confi-
dence intervals, creating the illusion of high-quality home-range estimates, when 
in reality they were too small (Fig. 5, C20, C10, C6, and C3). This highlights the 
importance of examining home range estimate outputs in the context of the spe-
cies’ biology, and not solely relying on statistical criteria.

The influence of the movement and foraging behavior of the study species is 
likely a key determinant in the susceptibility of handheld GPS data to bias in the 
effective sample size. Species, such as frugivorous primates that forage on ephem-
eral and patchily distributed resources, must differentially allocate time across 
their home range so that search efforts align with when and where resources are 
most productive (Altmann, 1974; Janson, 2019). Frugivores may do this by forag-
ing for extended periods in small areas (Oppenheimer, 1968) and then shifting 
within their home range in response to changing resource availability (Campos 
et al., 2014). Due to frugivores’ sudden changes in space use, estimating their 
home-range crossing timescale poses challenges. It often requires more time to 
accurately summarize compared with folivorous primates, which usually move in 
more constant and predictable patterns, as their food resources are more evenly 
distributed (Reyna-Hurtado et al., 2018). However, even folivorous species, 
such as red colobus monkeys (Piliocolobus tephrosceles), have been observed to 
deplete food patches in an irregular manner as well (Snaith & Chapman, 2005).

Our examination of home range stability over extended periods through the 
case studies involving group AA and RR revealed considerable variation in space-
use patterns over years and potentially across seasons. As a result, we determined 
that the most suitable temporal scales for estimating home ranges across our full 
longitudinal dataset are annual and seasonal scales. These scales strike a balance; 
they are long enough to capture the entire home range used by groups, while 
still allowing important changes to be discerned. Applying criteria based on our 
analysis of sampling elements, specifically requiring spread data to encompass 
at least 5  weeks across each segment and consist of at least 100 locations, we 
estimated annual and seasonal home ranges across the entire dataset from 2009 
to 2020. Among a total of 117 annual and 212 seasonal segments encompassing 
11 groups, we identified 97 annual and 127 seasonal segments that satisfied our 
criteria for reliable home range estimation.

Temporal Scale of Sampling Regimes

A crucial challenge in home range estimation revolves around determining the 
appropriate temporal scale. This involves ensuring that the chosen scale is suffi-
ciently long to encompass the entire home range used by the animal. By doing so, 
we can ensure that variations in home range estimates carry biological significance 
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rather than being artifacts of sampling. Additionally, when investigating temporal 
changes, it is important to strike a balance where the temporal scale is not exces-
sively long, thereby obscuring biologically meaningful changes in space-use pat-
terns. As static representations of animal space use, home range estimates possess 
inherent limitations in detecting dynamic movement changes (Benhamou & Riotte-
Lambert, 2012). Therefore, the decision of temporal scale and where to segment the 
data becomes critically important.

Several longitudinal studies have shown remarkable stability in primate home ranges 
over years, decades, and even across generations (Janmaat et al., 2009; Jolly & Pride, 
1998; Poirier, 1968; Singleton and van Schaik, 2001). In group AA, we also observed 
a relatively long period of home-range stability of at least 4 years (Fig. 8). When home 
ranges remain stationary for prolonged periods, expanding the sampling window 
beyond the point of achieving a sufficient effective sample size is expected to have min-
imal impact on the estimation of the home range (Fleming et al., 2014b). Consequently, 
diffusion rates and/or the estimated home range area should have reached a plateau, 
indicating an adequate effective sample size has been reached and that further sampling 
does not result in more diffusion and/or size augmentation.

One key consideration for sampling design is determining the duration required to 
reach an adequate effective sample size, which depends on the specific timescale for 
the animal to fully use its entire home range. To achieve this, ten independent loca-
tions (i.e., observed home range crossings) are generally considered adequate for 
autocorrelated kernel density estimation (Fleming et al., 2019; Silva et al., 2021). 
Consequently, it is essential to ensure that the temporal scale chosen for home range 
analysis is at least as long as the timeframe necessary to meet this requirement (refer 
to Appendix 1 for a detailed walkthrough of this analysis). By adhering to this prac-
tice, researchers can establish a solid foundation for making meaningful compari-
sons across various species and sampling designs (Fleming & Calabrese, 2017).

A key challenge is that home ranges are not always stationary. For instance, 
group RR gradually shifted their range over a 4-year period. Other notable examples 
include seasonal shifts observed in Yunnan snub-nosed monkeys (Rhinopithecus 
bieti) (Li et al., 2001), shifts in response to habitat loss observed in vervet mon-
keys (Cercopithecus aethiops) (Isbell et al., 1990), and home range shifts following 
demographic changes observed in grey-cheeked mangabeys (Lophocebus albigena) 
(Janmaat et al., 2009). Because one of the critical assumptions underlying the range 
distribution is the stationary nature of the home range (Silva et al., 2021), it is 
important to segment the data before a change in stationarity occurs (Dettki & Erics-
son, 2008), thereby estimating separate home ranges during these distinct periods.

An alternative and more conventional strategy involves reporting home-range 
estimates across various standardized temporal scales, such as monthly, quarter-
annually, half-annually, and annually, because the outcomes can differ depending 
on the duration of these time periods (Börger et al., 2008; Campos et al., 2014; 
White & Garrott, 1990). While these scales are somewhat arbitrary, this approach 
ensures that important spatiotemporal variations in home range patterns are captured 
(Campos et al., 2014). Nonetheless, when an animal’s home-range crossing time 
is relatively long, using shorter time scales, such as monthly or quarter-annually, 
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may yield estimates that align more closely with the occurrence distribution. Thus, 
area estimates will be underestimated if the intended target was the range distri-
bution. If an adequate effective sample size is not attained, using arbitrary scales 
can introduce bias, particularly in cross-species comparisons when species differ 
in their home range crossing times (Fleming & Calabrese, 2017). Incorrect report-
ing of such results can mislead meta-analyses (Noonan et al., 2020) or conservation 
plans (Brashares et al., 2001; Gaston et al., 2008). A justified approach, therefore, 
is to exclusively report estimates as the home range when temporal scales are long 
enough to ensure an adequate effective sample size and thus represent the range dis-
tribution. Additionally, in many cases, it may be appropriate to report home range 
estimates across temporal scales that hold biological significance, such as across 
seasons.

Species‑level Differences in Home‑Range Crossing Time

The estimated time intervals between recorded locations, ensuring their independ-
ence, bear biological significance, as they are directly proportional to the timescale 
of home range crossings. Hence, these intervals dictate the duration needed for 
sampling strategies to adequately capture the biological home range. When devis-
ing sampling protocols, it is crucial to acknowledge the considerable variation in 
the time taken by individuals or groups to traverse their respective home ranges, 
as this varies across different species and ecological contexts. Home ranges tend 
to be larger for frugivores than folivores (Milton & May, 1976) and large-bodied 
species compared to small-bodied species (Terborgh & Janson, 1986). While larger 
home ranges generally translates into longer home-range crossing times (Noonan et 
al., 2020), this may not always be the case, particularly when movement speeds are 
variable between species. For instance, across mammals, carnivores typically have 
larger home ranges than herbivores, but herbivores tend to have longer home range 
crossing times (Noonan et al., 2020), presumably due to their slower and more dif-
fusive search patterns for food (Reyna-Hurtado et al., 2018).

Among primates, group-living species, such as gray langurs (Presbytis entellus) 
(Jay, 1965), chimpanzees (Pan troglodytes) (Nishida, 1968), and yellow baboons 
(Papio cynocephalus) (Altmann & Altmann, 1970) tend to have much longer home 
range crossing times than solitary species (Milton & May, 1976). Territorial spe-
cies, such as gibbons (Hylobatidae) (Cheney, 1986), red-bellied titi monkeys (Cal-
licebus moloch) (Mason, 1968), and vervet monkeys (Chlorocebus pygerythrus) 
(Reyna-Hurtado et  al., 2018), generally have much shorter home range crossing 
times than non-territorial species as they must traverse across their home range 
rapidly to defend their borders against neighboring conspecific groups (Mitani & 
Rodman, 1979). However, some nonterritorial species also may move rapidly across 
their range, such as the highly mobile squirrel monkey (Saimiri oerstedi), which can 
use 75–90% of its home range in a single day (Baldwin & Baldwin, 1972). For ref-
erence of how home-range crossing time translates to appropriate sampling design, 
the capuchin groups in our study had a mean home range crossing timescale of 12.5 
(95% CI: 9.4–16.7) hours, which scales to about 1 day considering that they very 
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rarely move at night. To reliably estimate the home range, we found that sampling 
regimes should include approximately 100–600 locations distributed over at least 
5–7 distinct weeks. A similar sampling duration (45–136  days) was required in a 
study on giant anteaters (Myrmecophaga tridactyla), where the average home range 
crossing time was approximately 2 days (Giroux et al., 2021). In contrast, a study 
on elongated tortoises (Indotestudo elongata) estimated a home range crossing time 
of 17 days on average (although sometimes much longer for particular individuals), 
and even with 1 year of consistent sampling, researchers were not able to achieve 
adequate effective sample sizes for several individuals (Montano et al., 2021). Stud-
ies on Mongolian gazelles have shown estimated range crossing times of around 
5–6 months (Fleming et al., 2014a). Given they live an average of 4–8 years (Olson 
et al., 2014), attaining adequate effective sample sizes is challenging within an indi-
vidual’s lifespan (Fleming et al., 2019).

Relevance of Sampling Regime for Conservation

In our study, effective sample size bias was most problematic for groups that had 
the most fragmented habitats from roads and pastures (CE and FL group). Com-
pared with other groups, CE and FL required more locations and weeks to reach 
the adequate home-range estimation performance. These greater sampling require-
ments may be because individuals in these groups perceive crossing the home range 
as riskier (Frid & Dill, 2002) or more energetically expensive (Huang et al., 2017). 
Thus, it may be favorable to deplete local resources before commuting long dis-
tances. Human-related disturbances have restricted and reduced the movements of 
mammals (Tucker et al., 2018), including primates (Pereira et al., 2022), across the 
globe. However, such disturbances may only delay movements until individuals are 
desperate and moving between fragmented habitats becomes essential (Bonelli et 
al., 2013; Lens & Dhondt, 1994; Panzacchi et al., 2013; Schtickzelle et al., 2006). 
If habitat fragmentation delays movements across animal home ranges, then gather-
ing sufficient data for home range estimation may take more time than expected. 
Sampling regimes that do not provide enough time for animals to cross between 
fragments will underestimate their home range crossing time and have highly biased 
effective sample sizes.

It is worrying that species of conservation concern often are prone to biased 
home-range estimates. High-risk species, such as large-bodied species with long 
home-range crossing times (Cardillo et al., 2005), are especially susceptible to 
underestimated home range areas due to challenges in obtaining sufficient effec-
tive sample sizes (Noonan et al., 2020). Similarly, our findings suggest that animals 
that live in fragmented habitats are prone to effective sample size bias. This bias 
can lead to both overconfident and underestimated home range estimates, which 
raises significant conservation concerns. Underestimated home range estimates may 
result in protected areas that are insufficient for population survival and reproduc-
tion (Brashares et al., 2001; Gaston et al., 2008). Therefore, it is crucial that sam-
pling for home range estimation be designed carefully around the ecological context 
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and behavior of the study species, especially when these results inform conservation 
initiatives.

Recommendations for Sampling Design

Based on our findings, we advise biologists to design appropriate sampling regimes 
(balancing effort with temporal coverage) by considering (a) the target distribution 
we are aiming to estimate, (b) what we should be aiming for in terms of “good qual-
ity” data, and (c) how we can tell “how much is enough?”.

When we are aiming to estimate the home range according to Burt’s original 
definition, we are targeting the range distribution. This is the space needed by the 
animal to survive and reproduce, which includes both the space used during the 
sampling period and the space that will eventually be used in the future given a con-
sistent underlying movement process (Alston et al., 2022). If we are targeting the 
occurrence distribution, then we are only interested in the space used during the 
sampling period, which essentially is an attempt to fill in the gaps between observed 
locations. The best quality data for the occurrence distribution are therefore when 
the sampling rate is as high as possible, as this will produce estimates closest to the 
animals’ actual movement path (Börger et al., 2020). When the range distribution 
is the target, the best quality data is when the effective sample size, or number of 
independent location data points, is maximized (Fleming & Calabrese, 2017). As we 
have shown, this is best accomplished by increasing the temporal coverage of sam-
pling, rather than the sampling rate. With this in mind, we recommend the following 
guidelines for estimating the range distribution from handheld GPS data:

1. Maximize independent locations by spreading data across an adequate time period 
to cover the complete home range of study animals (Fleming et al., 2015b).

2. To correct effective sample size bias, account for species’ home range crossing 
time. Use a pilot study or the Movedesign app (Silva et al., 2023) if a rough esti-
mate is unknown.

3. When labelling results as home ranges, avoid temporal scales, such as “weekly” 
or “monthly.” Choose time scales aligned with species’ biology, such as seasonal 
sampling, or sufficiently long and comparable intervals, such as annual sampling, 
to ensure meaningful comparisons across studies (Fleming & Calabrese, 2017).

4. Integrate GPS data collection with other priorities like behavioral and phenol-
ogy data collection. Periodically rotate among multiple groups or individuals if 
necessary, allowing for adequate temporal coverage of all study animals.

5. Acknowledge the limitations of handheld GPS data, especially if missing data are 
a result of researchers being unable to track primates in specific areas or during 
certain periods. In such cases, home range analysis may not be suitable.

6. Check data sufficiency using variogram regression (Appendix 1; Fleming et al., 
2014b) or by plotting home range area over time/sampling effort to see if it has 
plateaued (Odum & Kuenzler, 1955).

7. If the data meet the requirements for home range estimation, use AKDE (Appen-
dix 1 for a detailed walkthrough) as it considers autocorrelation and the range 
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distribution (Fleming & Calabrese, 2017). Newer versions integrate barriers and 
habitat components (Alston et al., 2023) to refine estimates.

Conclusions

GPS data collection is a component of almost all modern primate field studies 
(Janmaat et al., 2021), and home-range estimates are one of the most sought-after 
outputs of these data. Nonetheless, the reliability of home range estimates may be 
compromised when the sampling effort fails to capture the full extent of the bio-
logical home range or through inappropriate application of statistical approaches. 
This is concerning given that home range estimates play a crucial role in ecological 
inference and conservation decision-making. At present, we lack an understanding 
of how ranging patterns are influenced by enduring factors such as climate change, 
environmental disturbance, demographics, and social learning. Given that primate 
studies regularly gather longitudinal data on movement, environmental variables, 
behavior, and demographics, they may be in an exceptional position to address these 
inquiries and connect them to fitness. Nonetheless, our study has revealed that the 
usefulness of handheld GPS data in estimating home ranges depends on whether 
the sampling regimes have adequate temporal coverage for the focal animals to use 
their entire home range. Adhering to sound scientific principles involves linking the 
data collection procedure to the specific process of interest. It is therefore necessary 
to take care when designing sampling protocols for home range estimation to ensure 
that they represent the biological home range of the species under investigation.
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