
Vol.:(0123456789)

International Journal of Primatology (2023) 44:581–612
https://doi.org/10.1007/s10764-023-00351-0

1 3

Strange Tunes—Acoustic Variation and Character 
Displacement in a Tarsier Hybrid Zone

Yvonne E.‑M. B. Bohr1,2,3 · Azhari Purbatrapsila4,5 · 
Dyah Perwitasari‑Farajallah5,6 · Jörg U. Ganzhorn1 · Stefan Merker2,3

Received: 29 December 2022 / Accepted: 30 January 2023 / Published online: 15 April 2023 
© The Author(s) 2023

Abstract
Natural hybridization provides valuable insights into evolutionary processes, such as 
speciation and the forces driving or hindering it. Sulawesi tarsiers Tarsius dentatus 
and T. lariang hybridize within a limited area, suggesting selection against hybrids. 
Their species- and sex-specific duet songs might serve as a premating barrier in sym-
patry, especially if differences are strengthened by character displacement. Individu-
als of mixed origin might face disadvantages if they inherit intermediate song traits. 
To shed light on the processes shaping this hybrid zone, we analysed 55 duet songs 
from within and outside the zone. For females and males, we identified temporal and 
frequency-related parameters that differ between species. We inspected hybrid songs 
for intermediate characteristics and analysed purebred songs for character displace-
ment in sympatry. Female hybrid songs (N = 2) were intermediate in four to five of 
six parameters; interpretation of male hybrid songs (N = 2) was inconclusive, because 
only two parameters were reliably quantifiable. There was no character displacement 
in female songs in sympatry (N = 11) compared with monospecific areas (N = 17). In 
male songs, interspecific differences in note rate were significantly larger within the 
hybrid zone (N = 8) compared with outside (N = 13). Intermediate song traits indicate 
inheritance and may disadvantage hybrids during mate choice. Character displacement 
in male songs is consistent with female mate choice, because females should opt for 
unmistakable signals to avoid costly hybridization. Our findings thus suggest that duet 
songs of T. lariang and T. dentatus play an important role in limiting this hybrid zone.
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Abstrak
Persilangan alami memberikan pemahaman berharga ke dalam proses-proses evo-
lusi seperti spesiasi dan kekuatan pendorong atau penghambatnya. Tarsius Sulawesi 
Tarsius dentatus dan T. lariang bersilangan dalam area terbatas, menggambarkan 
adanya seleksi terhadap para silangan. Nyanyian duetnya yang spesifik-jenis kelamin 
dan -spesies diduga bertindak sebagai penghalang pra-perkawinan dalam simpatri, 
terutama jika perbedaan diperkuat oleh perpindahan karakter. Individu campuran 
diduga akan menghadapi kerugian jika mereka mewarisi sifat nyanyian perantara. 
Untuk menjelaskan proses pembentukan zona persilangan ini, kami menganalisa 55 
nyanyian duet dari dalam dan luar zona. Untuk betina dan jantan, kami mengidentifikasi 
parameter terkait temporal dan frekuensi yang berbeda antar spesies. Kami memeriksa 
nyanyian silangan untuk karakteristik perantara dan menganalisis nyanyian ras murni 
untuk perpindahan karakter dalam simpatri. Nyanyian betina silangan (N = 2) merupa-
kan perantara dalam empat hingga lima dari enam parameter; interpretasi nyanyian 
jantan silangan (N = 2) tidak dapat disimpulkan karena hanya dua parameter yang 
dapat diukur secara terpercaya. Tidak ada perpindahan karakter pada nyanyian betina 
dalam simpatri (N = 11) dibandingkan dengan daerah monospesifik (N = 17). Pada 
nyanyian jantan, perbedaan interspesifik dalam tingkat nada secara signifikan lebih 
besar di dalam zona silangan (N = 8) dibandingkan dengan di luar (N = 13). Sifat 
nyanyian perantara menunjukkan pewarisan dan diduga dapat merugikan silangan 
selama pemilihan pasangan. Perpindahan karakter dalam nyanyian jantan konsisten 
dengan pilihan pasangan betina, karena betina harus memilih sinyal yang jelas un-
tuk menghindari persilangan yang merugikan. Temuan kami menyarankan bahwa 
nyanyian duet T. lariang dan T. dentatus memainkan peran penting dalam membatasi 
zona persilangan ini. *The translated abstract was not copy-edited by Springer 
Nature.

Introduction

Speciation is based on the evolution of reproductive barriers between populations. 
When populations come into secondary contact before reproductive isolation is com-
plete, hybridization—interbreeding—is likely to occur (Abbott et al., 2013; Brandler 
et al., 2021). Hybridization may thus provide insights into the evolution of species, 
making hybrid zones “natural laboratories for evolutionary studies” (Hewitt, 1988, 
p. 158). Therefore, hybridization has been in the focus of evolutionary research ever 
since Charles Darwin realized the significance of “crossing species” in the evolution-
ary context (Zinner et al., 2011). The consequences of hybridization depend on vari-
ous factors, such as habitat properties, hybrid fitness, frequency of assortative mat-
ing, and backcrossings (Arnold, 1997; Cortés-Ortiz et  al., 2019; den Hartog et  al., 
2007; Stebbins, 1959; Zinner et  al., 2011). Hybridization can push, delay, or even 
prevent speciation (Abbott et al., 2013). If hybrids exhibit adaptive traits leading to 
fitness higher than or similar to the parent species (e.g., in the periphery of the lat-
ter’s  ecological range) and if backcrossings into the parental populations are com-
mon (den Hartog et al., 2007), the hybrid zone is likely to expand. As a result, both 
parental species will eventually be superseded or will fuse back into a single species 
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(“speciation reversal”; Seehausen, 2006). If hybrids exhibit fitness similar to or even 
better than the original species but mainly breed assortatively without crossing back, 
they may establish as a third species (“hybrid speciation”) and coexist with both par-
ent taxa (Abbott et al., 2013; Lamichhaney et al., 2018; Mallet, 2007; Zinner et al., 
2011). Most frequently, however, hybridization in animals results in no offspring or 
offspring with lower fitness than the parent species and thus is selected against (Bar-
ton & Hewitt, 1985; Hoskin & Higgie, 2013). The latter case results in a stable, nar-
row hybrid zone, a so-called “tension zone” (Barton, 2001; Barton & Hewitt, 1985; 
Buggs, 2007; den Hartog et al., 2007; Merker et al., 2009) where backcrosses with 
the parental populations cause introgression of foreign genes from one species’ gene 
pool into the other.

Selection against disadvantageous heterospecific matings reinforces reproductive 
barriers in the parental species (Hoskin & Higgie, 2013; Howard et al., 1993). These 
barriers will preferentially take effect before mating, promoting the recognition of 
conspecific mates (Abbott et al., 2013; Coyne & Orr, 2004; den Hartog et al., 2007; 
Ortiz-Barrientos et  al., 2009; Servedio & Noor, 2003). An outcome of reinforced 
premating barriers might be displaced reproductive characters—the phenomenon of 
diverging phenotypes in sympatric populations of closely related species that experi-
ence reduced fitness due to reproductive interaction (Brown & Wilson, 1956; Pfen-
nig & Pfennig, 2009; Wilkins et al., 2013). If premating barriers are not invincible, 
postmating barriers might contribute to drive reproductive isolation. Complica-
tions for individuals of mixed ancestry can be intermediate, possibly unattractive 
signals (El-Shehaby et  al., 2011; Rundle & Nosil, 2005; Segura et  al., 2011; Xue 
et al., 2018). As a result, hybrid ⨯ hybrid matings may be more common than back-
crosses (Lamichhaney et  al., 2018). However, intermediate signals can as well be 
more attractive to one or both parental species (Coyne et  al., 1994; Vander Meer 
et al., 1985), which would increase the number of backcrossings.

In many vocalizing species, such as birds and nocturnal mammals, acoustic sig-
nals are prevailing traits for mate recognition and mate choice and thus can act as 
premating reproductive barriers. For this reason, acoustic mate choice signals are 
prone to reproductive character displacement (Braune et al., 2008; den Hartog et al., 
2007; Kenyon et al., 2011): If vocal signals are used for species recognition and if 
hybridization is disadvantageous in terms of fitness, the calls of closely related spe-
cies might diverge where populations co-occur. If an individual’s vocal repertoire is 
inherited rather than being learned from its consexual parent or its social neighbour-
hood, such “strange tunes” of hybrids might be unfavourable in the course of mate 
choice. While reproductive character displacement in vocal traits has been observed 
in several animal taxa (insects: Marshall & Cooley, 2000; anurans: Gordon et  al., 
2017; Micancin & Wiley, 2014; Pfennig & Rice, 2014; birds: Demko et al., 2019; 
Kirschel et  al., 2009; Seddon, 2005; mammals: Campbell et  al., 2019), it has not 
yet been clearly demonstrated in primates. Evidence for ecological or reproductive 
character displacement occurs in visual signals in guenons (Allen et al., 2014) and 
ecological character displacement occurs in acoustic signals in tamarins (Sobroza 
et al., 2021).

One of the most complex and elaborate—and still little understood—forms 
of vocal communication in animals is duetting, as the necessary coordination is 
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cognitively highly demanding (Nieder & Mooney, 2019). Duets are defined as over-
lapping, more or less precisely coordinated and stereotype song displays of two, 
usually mated, individuals—a leader/initiator and a follower/responder (Dahlin & 
Benedict, 2014; Farabaugh, 1982; Hall, 2004; Logue & Krupp, 2016). Duet songs 
often are loud and emitted mainly at dawn, thus optimizing long distance trans-
mission (Adret et al., 2018; Seibt & Wickler, 1977); they are mostly sex-specific 
(Todt & Naguib, 2000). Beside the emitters’ locations, details transferred in a duet 
can comprise crucial information for mate choice, such as species and individual 
identity, sex, reproductive status, mate quality, or pair-bond-status (Hall, 2004). 
Duetting might have more than one function, such as joint resource (e.g., territory) 
defence and pair bond strengthening or mate guarding, even within a single species 
(Hall, 2004).

The most common mammal duetters are pair-bonded, territorial primates living in 
dense vegetation, i.e., tropical forests (Adret et al., 2018; Geissmann, 2002; Müller 
& Anzenberger, 2002). Duetting is known from various primate taxa, namely gib-
bons (Geissmann, 2002; Marshall & Sugardjito, 1986), langurs (Tilson & Tenaza, 
1976), lemurs (Méndez-Cárdenas & Zimmermann, 2009; Pollock, 1986), titi mon-
keys (Adret et al., 2018; Caselli et al., 2014; Müller & Anzenberger, 2002) and tarsi-
ers (Burton & Nietsch, 2010; Shekelle et al., 2008, 2017). The latter are a family of 
small, nocturnal primates inhabiting Southeast Asian archipelagos. Their hotspot of 
diversification lies on the Indonesian island of Sulawesi. Apart from the special case 
of Tarsius pumilus, an enigmatic, small-bodied species living on Central (and pos-
sibly South) Sulawesi’s mountain tops (Grow & Gursky-Doyen, 2010; Hagemann 
et al., 2022), ranges of currently known Sulawesi tarsier species do not overlap. Tar-
siers communicate intensively via olfactory and vocal signals (Driller et al., 2015; 
Gursky-Doyen, 2010; MacKinnon & MacKinnon, 1980; Merker & Groves, 2006; 
Niemitz et  al., 1991; Nietsch, 1999; Shekelle & Salim, 2009). Whereas olfactory 
information is limited in range, vocalizations have the advantage of reaching over 
larger distances, which might give them more importance for mate attraction. While 
they are very similar in morphology, ecology, and behaviour, many tarsier species 
exhibit a distinct and complex vocal repertoire. In particular, the Eastern tarsiers, 
i.e., those from Sulawesi, are known for their far-reaching and sex- as well as spe-
cies-specific duet songs (Burton & Nietsch, 2010; Clink et al., 2020; Grow, 2019; 
Haimoff, 1986; Merker & Groves, 2006; Merker et al., 2010; Niemitz et al., 1991; 
Nietsch, 1999; Shekelle et al., 2008, 2019). These are uttered by adult and occasion-
ally also subadult family members when they disperse from their sleeping site at 
dusk and especially before they regather at dawn (Driller et al., 2009; Merker et al., 
2004; Nietsch, 1999; Nietsch & Kopp, 1998; Shekelle, 2008). Little is known about 
the functions of Eastern tarsiers’ duets. Possible purposes include territory declara-
tion and defence, information about individual or pair identity, and pair reunion after 
dispersed foraging at night (Clink et al., 2020; Méndez-Cárdenas & Zimmermann, 
2009). A function that is considered certain is species recognition, which means 
that duets also provide important information in mate choice where multiple spe-
cies come into contact (Burton & Nietsch, 2010; Merker et al., 2009; Nietsch, 1999; 
Nietsch & Kopp, 1998; Shekelle et al., 1997).
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While, despite the recognition of its evolutionary significance, our knowledge 
about primate hybridization is in general fragmentary (Cortés-Ortiz et  al., 2019), 
this particularly applies to tarsiers (Zinner et al., 2011). The first evidence of natu-
ral hybridization in tarsiers concerns the two Eastern tarsier species Tarsius lariang 
and T. dentatus (Merker et al., 2009). Both species are endemic to Sulawesi, where 
they are parapatrically distributed. They are similar in morphology, ecology, and 
behaviour; they sleep in small groups (mostly one adult pair plus their offspring), 
and their mating system can be described as predominantly monogamous with occa-
sional extra-pair matings (Driller et al., 2009; Merker et al., 2004; Tremble et al., 
1993; Bohr, unpublished data). T. lariang and T. dentatus diverged ca. 1 Mio. years 
ago (Driller et al., 2015) and came into secondary contact before their reproductive 
isolation was completed. Genetic evidence points to a narrow hybrid tension zone 
(Merker et al., 2009) and thus to selection against hybrids. Duet songs might play 
an important role in shaping the hybrid zone by acting as a reproductive barrier—
before mating (possibly strengthened by character displacement) or after mating in 
terms of “strange tunes”, i.e., unattractive signals, if songs show intermediate char-
acteristics (Rundle & Nosil, 2005).

We focussed on a narrow contact zone of ca. 1 km width between Tarsius lari-
ang and T. dentatus (Merker et al., 2009) to further elucidate the role of duet songs 
in tarsier speciation processes. Subsequent to an assessment of the discriminative 
ability of parameters measured for male and female tarsier songs, we addressed the 
following questions:

1) Do individuals of mixed ancestry show purebred or intermediate song traits? As 
vocal learning in nonhuman primates is highly limited, we hypothesize that also 
tarsier songs are to a large extent inherited. We thus predict intermediate traits 
for the songs of hybrids compared with those of purebreds. If tarsiers learn their 
vocal repertoire from their consexual parent, then songs of hybrid individuals 
should clearly resemble those of purebreds.

2) Is there evidence for vocal character displacement in male or female songs in 
areas of sympatry compared with allopatric occurrences, i.e., monospecific areas? 
Because females have higher reproduction costs, they should opt for clearly dis-
cernible signals during mate choice. Therefore, we predict character displacement 
in male but not or less in female songs.

Methods

Study Sites and Sampling

Between 2005 and 2012, we recorded duet songs of Tarsius lariang and T. dentatus 
at seven different locations in Central Sulawesi, Indonesia (Fig. 1; Tables S1, S2), at 
several monospecific sites and within a hybrid zone described by Merker et al. (2009). 
To account for a possible movement of the hybrid zone over time, we extensively mon-
itored its soundscape in 2005/2006 and 2012. Yvonne Bohr consistently spent a full 
year in the hybrid zone, and Stefan Merker spent 7 months there in total; fieldwork that 
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included song monitoring took place almost every day. We were thus able to observe in 
each period where tarsier groups were living in audible range of calls of the other spe-
cies (considered as hybrid zone) or not (considered as monospecific area). Because we 
monitored each group several times, we were highly familiar with the local soundscape. 
We only included vocalizations in the study whose assignment to the hybrid zone or 
to a monospecific area was unambiguous. We recorded all but one duet between 
0500–0630 h when tarsiers rejoined at their sleeping sites. One recording took place at 
1735–1745 h when the group dispersed. Recording distance ranged between ca. 5 and 
30 m.

Recording Equipment and Acoustic Analysis

Stefan Merker recorded tarsier songs at locations 1–6 (Fig.  1). Two recordings from 
Luwuk (location 7) were provided by Christine Driller. Both used a Sony MZ-NH900 
Hi-MD Walkman (Sony Corporation, Tokyo, Japan) with a frequency range of 
20  Hz – 20  kHz, connected to a hand-held Røde NT3 condenser microphone (RØDE 

Fig. 1  Tentative distribution of T. lariang (light grey) and T. dentatus (dark grey) on Sulawesi, Indone-
sia (adapted from Merker et  al., 2010) and song recording sites (2005–2012; 1 = Winatu, 2 = Marena, 
3 = Make, 4 = Peana, 5 = Pombewe, 6 = Kebun Kopi, 7 = Luwuk; TL = monospecific area T. lariang, 
TD = monospecific area T. dentatus, * for the sites Winatu and Marena, we differentiated calls as stem-
ming from the hybrid zone or a monospecific area on the basis of smaller-scale criteria, see text). For 
site-specific sample sizes, see Table S2. 
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Microphones, Silverwater, NSW, Australia), covering a range of 20 Hz – 20 kHz. After 
recording, they converted linear PCM files into  Waveform Audio File Format (.wav) 
using Sony’s SonicStage  4 software. Yvonne Bohr recorded tarsier songs at Winatu 
(location 1; Fig. 1). She employed an Olympus LS-3 Linear PCM recorder (Olympus 
Corporation, Tokyo, Japan), with a frequency range of 40  Hz – 21  kHz, connected to 
the handheld, highly directional gun microphone Sennheiser ME 67 (Sennheiser elec-
tronic GmbH  &  Co.  KG, Wedemark, Germany), which covers a frequency range of 
40 Hz – 20 kHz. Conversion of files was not needed here. We sampled all signals at a rate 
of 44.1 kHz and digitized them with 16-bit resolution, resulting in a dynamic range of 
96 dB. As the dominant frequencies of T. lariang and T. dentatus duets in general range 
between 3 and 20 kHz (Merker & Groves, 2006; Niemitz et al., 1991; Grow, 2019; see 
Gursky, 2015 for nonduet ultrasonic vocalizations in Sulawesi tarsiers), our equipment 
adequately covered the frequency range of the vocalizations examined in this study. We 
visualized and analyzed the final stereo .wav files in Raven Pro 1.4 and 1.5 (The Cor-
nell Lab of Ornithology, 2011). We only analyzed spectrograms of completely recorded 
duet songs where all relevant song parameters were clearly discernible, which lowered 
our sample size considerably. We generated spectrograms in Raven Pro with a fast Fourier 
transformation (FFT) applying a Hann window shape (sine-squared) with a size of 256 
samples, 3 dB bandwidth of 248 Hz, an overlap of 50% and a frequency grid spacing of 
172 Hz. The term “duet” refers to the conjoined vocalization of female and male tarsiers. 
We refer to one individual’s part in a duet as “song” or “duet song”. A “note” is the basic 
unit of a song and consists of a single, continuous, up- or downwardly modulated trace in 
a spectrogram. We analyzed 32 songs from female and 23 songs from male tarsiers. All 
songs stem from different individuals to ensure independence of the samples. Due to pro-
nounced divocalism (Fig. 2; MacKinnon & MacKinnon, 1980; Merker & Groves, 2006; 
Niemitz et al., 1991; Nietsch, 1999), it was easy to distinguish female and male songs, 
both audibly and visually.

For female songs, we manually drew selection frames around the emphasized fre-
quency. This energy-richest or dominant frequency of a harmonic series is in general 
identical to the fundamental or first harmonic, referring to the lowest frequency in a 
harmonic series (Whitehead, 1995). We then extracted the following measurements: 
begin time, end time, delta time, lowest frequency, highest frequency, delta frequency. 
From these measurements, we calculated six parameters applying to the whole duet 
song or to single notes (Table I). Because we found notes of male songs difficult to 
visually identify and to frame consistently over a whole song, we restricted framing 
to the 10 central notes of each male song (the number of notes in male songs ranged 
between ca. 35 and 240 notes). This limited the number of parameters compared with 
female songs. We extracted begin time, end time, lowest frequency, and highest fre-
quency of each note, and we then calculated the number of notes per second and the 
mean frequency height of notes (Table  I). In tarsier duet songs, notes of males and 
females partly overlap. We therefore refrained from an automatic placement of selec-
tion frames but framed manually instead. To minimize bias from placing selection 
frames in Raven Pro by eye (and thereby to reduce bias in the extracted parameters), 
a single researcher (Yvonne Bohr) checked and, if necessary, adjusted the final place-
ment of frames.
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Genetic Assignment Methods

We performed genetic analyses after song recordings were completed. We used 
eight microsatellite markers (Tl2301, Tl2407, Tl2350, Tl2491, Tl2487, Tl2328, 
Tl2325, Tl2457; see Tables 1 and 2 in Merker et al., 2012) to characterize a total 
sample of 60 tarsiers from the Winatu region as purebreds or hybrids (Bohr et al., 
in prep.). We performed DNA extraction, Whole Genome Amplification (WGA) 
and Multiplex-PCR as described in Merker et al. (2012). We determined microsat-
ellite allele lengths using a Beckman Coulter capillary sequencer CEQ 2000. With 
these data, we conducted a population assignment test in Structure v2.3 (100,000 
burn-in period, 1,000,000 repetitions, population information not used, ancestry 
model “admixture”, allele frequency model “correlated”). We considered tarsiers 
with Structure admixture coefficients (q) as purebred Tarsius lariang if 0 ≤ q ≤ 0.1, 
as purebred T. dentatus if 0.9 ≤ q ≤ 1.0, and as hybrids if q > 0.1 and < 0.9. Assign-
ments using NEWHYBRIDS 1.1 beta (Anderson & Thompson, 2002) confirmed 
this threshold. The four hybrids whose songs we examined in this study had the 
following assignment scores: Hybrid 1, 0.543; Hybrid 2, 0.320; Hybrid 3, 0.774; 
Hybrid 4, 0.565.

Assignment of Songs

Before acoustic and statistical analyses, we assigned songs to sex, species (or hybrid 
origin), and area. We could easily distinguish male and female duet songs based on 
spectrograms. To assign female and male songs to either Tarsius lariang, T. denta-
tus, or hybrid origin, we used geographic information (calls close to or far from the 
common species border, i.e., hybridization possible or unlikely) and—in the hybrid 
zone—genetic data (microsatellite-based assignment scores) and acoustic monitor-
ing findings. We only labelled songs to be of hybrid origin if the emitting animal 
was unambiguously identified and genotyped as a hybrid. Both female and both 
male hybrids were adult at the time of recording. We labelled songs that we could 
not assign to T. lariang, T. dentatus, or hybrid origin as “unassigned”. If not stated 
otherwise, samples used in statistical analyses comprise assigned (not unassigned) 
songs. Concerning the area, we assigned recordings as stemming from the hybrid 
zone if T. lariang and T. dentatus both occurred in that area, i.e., when we had heard 
duets of both species. We denoted recordings as stemming from a monospecific area 
if we had heard vocalizations of only one of both species. For more details of the 
assignment procedure, see Supplement.

Statistical Analyses

We performed all statistical analyses using IBM SPSS Statistics, Version 26.0. If 
not stated otherwise, tests were two-tailed with α set at 0.05. We report means 
with standard errors ( x ± SE). We tested data for normal distribution using 
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Shapiro-Wilk test and by visually examining Q-Q plots. To test homogeneity of 
variances, we used Levene’s test based on medians and visually inspected scat-
terplots of standardized predicted values versus standardized residuals (zpred vs. 
zresid).

We used independent t-tests to test for interspecific differences in song 
parameters in both sexes. As appropriate for small sample sizes, we report 
effect size for t-tests as Hedge’s g* (Hedges & Olkin, 1985). For a qualitative 
interpretation of g*, we use Cohen’s (1992) and Rosenthal’s (1996) classifica-
tion (0.2 being a small effect, 0.5 being a medium effect, and 0.8 being a large 
effect).

To identify the most significant song parameters discriminating between Tar-
sius  lariang and T. dentatus females, to classify yet unassigned female songs, and 
to evaluate female hybrid songs, we applied a linear discriminant function analysis 
(DFA), embedding the six variables (Table  I) in a stepwise manner. We opted for 
the stepwise method in order to exclude variables that do not enhance the discrimi-
nant function’s power. Variables entered the stepwise DFA according to their impact 
on Wilks’ lambda with “F to enter” = 3.84 and “F to remove” = 2.71. Classification 
results are based on equal prior probabilities. To examine the classification’s robust-
ness, we applied a leave-one-out cross-validation. For female songs, we used the 
described assignment as “actual group membership”. We interpreted squared canon-
ical correlation coefficients (Rc

2) as effect sizes for DFA. Because we used only two 
parameters for male tarsiers (Table I), we evaluated male hybrid songs by examina-
tion of scatterplots and raw data of male song characteristics.

To assess potential reproductive character displacement in the hybrid zone, we 
tested whether the difference between purebred T. dentatus and T. lariang songs 
was larger for individuals in the hybrid zone (HZ) compared with monospecific 
areas (MSA). We therefore created a new variable (“displacement”), calculated as 
the absolute difference between an individual’s parameter value and the other spe-
cies’ mean for this parameter in the respective area. We compared “displacement” 
between the monospecific areas and the hybrid zone by means of a one-tailed, inde-
pendent samples t-test where  H0: displacement HZ ≤ displacement MSA, and  Ha: 
displacement HZ > displacement MSA.

In addition, to examine the details of intraspecific character displacement, we 
used Mann-Whitney U tests to compare MSA with HZ for each song parameter. We 
report r as effect size estimate with 0.1 being a small effect, 0.3 a medium effect, 
and 0.5 a large effect (Fritz et al., 2012). For correct interpretation of effect sizes, we 
provide formulas for g* and r in the Supplement.

Ethical Note

This study complied to the legal requirements for foreign researchers in Indonesia 
and has been approved by the Indonesian Institute of Sciences (LIPI; research per-
mit 4538/SU/KS/2005), the Indonesian State Ministry of Research and Technology 
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(RISTEK; research permits no. 190/FRP/SM/II/2008 and 050/SIP/FRP/SM/II/2012) 
and by the Ministry of Forestry, Directorate General of Forest Protection and 
Nature Conservation (PHKA; capture permits no. S.1147/IV-Sek/HO/2005, SI.292/
IV.K.26/1/2008 and S.340/IV.K-26/1/2012). In addition, our research followed the 
IPS Code of Best Practices for Field Primatology; all methods for data acquisition 
were non-invasive. The authors affirm that they have no conflict of interest with any 
entities described herein.

Fig. 2  Spectrograms of T. lariang, T. dentatus, and hybrid songs (edited for publication to improve vis-
ual traceability and to eliminate noise), recorded 2005–2012 in Central Sulawesi, Indonesia. Additional 
spectrograms are shown in Fig. S1. Detailed descriptions of the species’ spectrograms can be found in 
Niemitz et al. (1991), Nietsch (1999), and Nietsch and Kopp (1998) for T. dentatus and for T. lariang in 
Merker and Groves (2006).
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Results

Female Songs

In total (monospecific areas and hybrid zone combined), we assigned seven female 
songs to Tarsius dentatus, 14 songs to T. lariang, and two songs to females of mixed 
origin (Hybrid 1 and 2). Songs of nine individuals remained “unassigned” (Table S2).

Songs of female T. dentatus (N = 7) and T. lariang (N = 14) differed signifi-
cantly in all six song parameters examined, with very strong effect sizes (Table II; 
Fig.  S2a-f). T. dentatus females uttered shorter notes at a higher rate; their songs 
started at a higher frequency, they reached higher frequencies over the entire song, 
and both their songs and single notes had a larger frequency range (Table II) than 

Fig. 2  (continued)
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in T. lariang females. Because sample size of female hybrids (N = 2) was small for 
statistical analyses, we provide values only (Table II; Fig. S2a–f). Hybrid 1 lay inter-
mediate (between CIs) for all parameters, except Mean frq. span of notes, where it 
barely grouped with T. lariang. Hybrid 2 was intermediate for all parameters, except 
Notes/s and Max. frq. of call, where it grouped with T. dentatus.

DFA (Fig.  3) retained three predictor variables that discriminate best between 
populations: Max. frq. of 1st note, Mean note length, and Mean frq. span of notes. 
Goodness of fit statistics show that predictor variables significantly discriminate 
between groups (Table  III). Discriminant function (DF) 1 can be regarded as the 
“frequency function”, DF2 as the “temporal function”. Effect sizes (Rc

2) point 
towards strong effects, especially for the “frequency function” DF1.

Based on original cases, DFA classified all individuals correctly. The nine unas-
signed individuals were classified as follows: two as Tarsius dentatus; five as T. lari-
ang; and two as hybrids (Table IV; Fig. S3a–f). Cross-validation classified 96% of 

Table II  Comparison of duet song characteristics between female T. dentatus (TD, N = 7) and T. lariang 
(TL, N = 14). For hybrids (H1, H2), we present values instead of means. All P values < 0.001 (***). We 
recorded songs 2005–2012 in Central Sulawesi, Indonesia.

Parameter Mean  ± SE [95% CI] t df g*

Notes/s td 2.243  ± 0.182 [1.80, 2.69] 7.548*** 7.092 4.32
tl 0.811  ± 0.054 [0.69, 0.93]
h1 1.232
h2 2.384

Mean note length (s) td 0.152  ± 0.016 [0.11, 0.19] -15.783*** 18.862  − 5.50
tl 0.647  ± 0.027 [0.59, 0.70]
h1 0.242
h2 0.319

Frq. range of call (kHz) td 13.847  ± 0.496 [12.63, 15.06] 14.867*** 19 6.61
tl 6.090  ± 0.275 [5.50, 6.68]
h1 8.436
h2 11.161

Mean frq. span of notes (kHz) td 3.200  ± 0.165 [2.79, 3.61] 12.151*** 19 5.40
tl 1.465  ± 0.059 [1.34, 1.60]
h1 1.595
h2 2.052

Max. frq. of 1st note (kHz) td 15.809  ± 0.633 [14.26, 17.36] 12.536*** 6.790 7.38
tl 7.609  ± 0.161 [7.26, 7.96]
h1 8.112
h2 10.605

Max. frq. of call (kHz) td 17.154  ± 0.334 [16.34, 17.97] 10.282*** 19 4.57
tl 12.756  ± 0.251 [12.21, 13.30]
h1 13.712
h2 17.022
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all cases correctly. It assigned all T. dentatus and all hybrids to the right group, but 
classified one T. lariang as a hybrid (Table IV).

Character Displacement in Female Songs

We recorded 17 female songs in monospecific areas. Of these, we assigned five to 
Tarsius dentatus and 12 to T. lariang. In the hybrid zone, we originally assigned 
only two female songs to T. dentatus and two songs to T. lariang. In order to increase 
sample size for the hybrid zone, we included the initially unassigned recordings 
according to their DFA classification. This resulted in 11 songs for the hybrid zone, 
including four T. dentatus and seven T. lariang songs. The one-tailed t-test to com-
pare “displacement” between the monospecific areas and the hybrid zone did not 
reveal reproductive character displacement in any of the six parameters (i.e., “dis-
placement” was not larger in the hybrid zone; Table V; Fig. S5a–f).

Fig. 3  Discriminant scores resulting from stepwise discriminant function analysis, including the param-
eters Max. frq. of 1st note, Mean note length, and Mean frq. span of notes of female T. dentatus (TD, 
N = 7), T. lariang (TL, N = 14), and hybrid (H, N = 2) songs (recorded 2005–2012 in Central Sulawesi, 
Indonesia). Group centroids are group means of DF1 and DF2 for TD, TL, and H. Unassigned cases 
(N = 9) are not considered in the calculation of group centroids.
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Male Songs

We assigned (monospecific areas and the hybrid zone combined) 13 male songs to 
Tarsius dentatus, eight songs to T. lariang, and two songs to males of mixed ori-
gin (Hybrid 3 and 4); see also Table S2.

Male duet songs differed significantly between species: Songs of T. lariang males 
were faster and lower in frequency than songs of T. dentatus males (Fig. 4; Table VI; 
Fig. S6a-b). The effect of species identity was very strong for both parameters, but 
it was larger for frequency height than for note rate. As sample size for male hybrids 
was too small (N = 2) for statistical analyses, we give only descriptive values. While 

Table IV  Classification results of stepwise discriminant function analysis on female T. dentatus, T. lari-
ang, and hybrid song parameters. Prior probabilities calculated as “all groups equal”. We recorded songs 
2005–2012 in Central Sulawesi, Indonesia.

Group Predicted group membership

T. dentatus T. lariang Hybrid Total

Original Count (%) T. dentatus 7 (100%) 0 (0%) 0 (0%) 7 (100%)
T. lariang 0 (0%) 14 (100%) 0 (0%) 14 (100%)
Hybrid 0 (0%) 0 (0%) 2 (100%) 2 (100%)
Unassigned cases 2 (22%) 5 (56%) 2 (22%) 9 (100%)

Cross-validated Count (%) T. dentatus 7 (100%) 0 (0%) 0 (0%) 7 (100%)
T. lariang 0 (0%) 13 (93%) 1 (7%) 14 (100%)
Hybrid 0 (0%) 0 (0%) 2 (100%) 2 (100%)

In cross-validation, each case is classified by the functions derived from all cases other than that case.

Table V  Results of one-tailed, independent t-tests on the variable “displacement” (the absolute differ-
ence between an individual’s parameter value and the other species’ mean for this parameter in the area), 
comparing songs of T. dentatus and T. lariang females in monospecific areas (MSA, N = 17) and a hybrid 
zone (HZ, N = 11); recordings from 2005–2012, Central Sulawesi, Indonesia. All P values > 0.98

Parameter Mean    ± SE        t df      g*

Notes/s MSA 1.619  ± 0.071  − 3.124 26  − 1.17
HZ 1.289  ± 0.070

Mean note length (s) MSA 0.538  ± 0.078  − 2.344 26 0.02
HZ 0.463  ± 0.089

Frq. range of call (kHz) MSA 7.984  ± 0.225  − 2.842 15  − 1.19
HZ 6.498  ± 0.472

Mean frq. span of notes (kHz) MSA 1.777  ± 0.070  − 2.274 14  − 0.96
HZ 1.393  ± 0.154

Max. frq. of 1st note (kHz) MSA 8.939  ± 0.219  − 6.561 26  − 2.47
HZ 6.792  ± 0.225

Max. frq. of call (kHz) MSA 4.752  ± 0.216  − 3.122 26  − 0.91
HZ 2.928  ± 0.353
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Table VI  Duet song characteristics for male T. dentatus (TD, N = 13) and T. lariang (TL, N = 8). 
Results of independent t-tests reveal significant differences between male songs of both species. All P 
values < 0.001 (***), df = 19. For hybrid individuals (H3, H4), we show values instead of means. We 
recorded songs 2005–2012 in Central Sulawesi, Indonesia

Parameter Mean    ± SE   [95% CI]         t      g*

Notes/s td 2.584  ± 0.144 [2.27, 2.90]  − 5.348***  − 2.40
tl 3.833  ± 0.183 [3.40, 4.27]
h3 3.148
h4 3.902

Mean frq. height of 
notes (kHz)

td 13.497  ± 0.339 [12.76, 14.24]  − 10.115*** 4.36
tl 8.662  ± 0.251 [8.07, 9.26]
h3 8.520
h4 9.818

Fig. 4  Individual measurements of the time variable Notes/s versus the frequency variable Mean 
frq. height of notes in male T. dentatus, T. lariang, and hybrid songs (recorded 2005–2012 in Central 
Sulawesi, Indonesia).
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Hybrid 4 was intermediate in frequency (lying between CIs), Hybrid 3 grouped with 
T. lariang. For note rate, Hybrid 4 grouped with T. lariang, while Hybrid 3 was 
intermediate (Fig. 4; Table VI; Fig. S6a-b).

Character Displacement in Male Songs

Testing for differences in the newly created variable “displacement” between male 
songs from the hybrid zone (N = 8; thereof  NTD = 4,  NTL = 4) and monospecific 
areas (N = 13; thereof  NTD = 9,  NTL = 4) using one-tailed t-tests revealed character 
displacement in the parameter Notes/s (Fig.  5a): “displacement” was larger in the 
hybrid zone ( x = 1.70 ± 0.17), than in the monospecific area ( x = 0.90 ± 0.13). This 
difference was significant (t = 3.78, df = 19, P < 0.001, one-tailed) and represented a 
very large effect (g* = 1.63). There was no significant difference between the hybrid 
zone ( x = 5.17 ± 0.28 kHz) and the monospecific area ( x = 4.68 ± 0.31 kHz) in Mean 
frq. height of notes. (t =  − 1.10, df = 19, P = 0.14 one-tailed; Fig. 5b). Effect size was 
g* = 0.14, indicating a small effect.

Most of the shift in Notes/s can be attributed to Tarsius lariang (Fig. 6). In songs 
of male T. dentatus, a Mann-Whitney U test showed no significant difference in 
Notes/s between monospecific areas (N = 9,  Mrank = 7.33) and the hybrid zone (N = 4, 
 Mrank = 6.25), U = 15.00, Z =  − 0.46, P = 0.71 (using the exact sampling distribution 
of U, Dinneen & Blakesley, 1973) and a small effect of r = 0.13. For T. lariang, 
although there was no statistically significant difference between monospecific areas 
(N = 4,  Mrank = 3.00) and the hybrid zone (N = 4,  Mrank = 6.00), U = 2.00, Z =  − 1.73, 
P = 0.114, there was a large effect of r = 0.61.

Fig. 5  a-b. The variable “displacement” (the absolute difference between an individual’s parameter value 
and the other species’ mean for this parameter in the area) in a) note rate (Notes/s), and b) Mean frq. 
height of notes of male T. lariang and T. dentatus songs recorded 2005–2012 in a hybrid zone (N = 8) 
and in monospecific areas (N = 13) in Central Sulawesi, Indonesia.
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Discussion

In this study, we determined specific vocal traits for males and females that distin-
guish the duet songs of Tarsius lariang and T. dentatus. We also provide an initial 
assessment of how songs of tarsier hybrids relate to songs of parental species. Songs 
of female hybrids were intermediate in most parameters. A clear interpretation of 
male hybrid songs was not possible. While Hybrid 4 was intermediate in frequency 
(lying between confidence intervals), Hybrid 3 grouped with T. lariang. For note 
rate, Hybrid 4 grouped with T. lariang, while Hybrid 3 was intermediate. Further-
more, we provide evidence for asymmetric reproductive character displacement in 
a hybrid zone of nonhuman primates: T. lariang males seem to sing faster in the 
mixed zone compared to outside, whereas the song characteristics of females and T. 
dentatus males are not reinforced in the hybrid zone.

Our analyses of female and male duet songs illustrate the discriminative power of 
selected temporal and frequency related song traits. They further corroborate the sig-
nificance of duet songs in discriminating tarsier species. The notion that duet songs 
of Sulawesi tarsiers are species-specific has long been held (MacKinnon & MacKin-
non, 1980; Niemitz, 1984). Commonly, identification of new tarsier species begins 
with the detection of unfamiliar vocalizations in the field and their comparison 
with spectrograms of known species. Morphological and anatomical studies follow 
(Merker & Groves, 2006; Shekelle et al., 2008, 2017, 2019), eventually combined 
with or followed by genetic analyses (Driller et al., 2015; Merker et al., 2010; Shek-
elle et al., 2010). As was already known from the descriptions of Tarsius dentatus 
(formerly T. dianae, Niemitz et al., 1991) and T. lariang (Merker & Groves, 2006) 
and as visual evaluation of spectrograms suggest, our analyses of single parameters 
prove songs of female T. dentatus and T. lariang to be highly distinct. There are 

Fig. 6  Note rate (Notes/s) of male T. dentatus and T. lariang recorded 2005–2012 in Central Sulawesi, 
Indonesia, within monospecific sites  (NTD = 9,  NTL = 4) and a hybrid zone  (NTD = 4,  NTL = 4).
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striking differences in temporal as well as frequency-related traits. Discrimination 
of male songs, both in the field and visually, is less obvious. Our study provides two 
easily measurable song parameters for male T. dentatus and T. lariang—one tempo-
ral and one frequency-related trait—to discern male songs clearly.

T. dentatus females and males sing at higher frequencies compared with T. lari-
ang. The use of different frequency levels might relate to different habitat prefer-
ences of species, as vocalizations at lower frequencies reach farther in dense veg-
etation than higher frequencies (Brown & Waser, 2017; Brown et al., 1995; Masali 
et al., 1992; Peters & Peters, 2010). So far, however, there is no evidence of striking 
differences in natural habitats used by T. lariang and T. dentatus (Driller et al., 2009; 
Yvonne Bohr and Stefan Merker, personal observation). Vocalization frequency 
might be also related to body size or body mass of the different taxa; in mammals, 
body size often is negatively correlated with frequency (Bowling et al., 2017; Martin 
et al., 2017; Peters & Peters, 2010). Correspondingly, species with a smaller head 
size are better at locating signals of higher frequencies (Heffner, 2004; Masterton 
et  al., 1969; Ramsier & Rauschecker, 2017). Although T. lariang apparently has 
a slightly larger mean skull length compared with T. dentatus (Merker & Groves, 
2006), there were no significant differences in head length, nor in head-body-size in 
our sampling of both species in Winatu (Yvonne Bohr, unpublished data). While T. 
dentatus males had a higher body mass than T. lariang males, females did not dif-
fer. Therefore, the correlation effect of body mass and frequency does not seem to 
be applicable here. The effect of body size on the fundamental frequency is based 
on the correlation between body size and larynx size: a larger body holds a longer 
larynx, which produces sounds of lower fundamental frequency (Garcia et  al., 
2017). However, the size of the larynx can be decoupled from body size (Garcia 
et al., 2017). Therefore, a shorter larynx of T. dentatus compared with that of T. lari-
ang might explain the higher frequencies in former species’ songs. The true ration-
ale behind the use of different frequencies in T. dentatus and T. lariang remains 
unknown for now. The clear interspecific differences in the vocal output of females 
and males (Fig. 2; Burton & Nietsch, 2010), however, might facilitate the tarsiers’ 
mate choice or avoid interspecific conflicts in areas of contact, such as in the studied 
hybrid zone. Playback experiments could further unveil the role of tarsier songs in 
these and other contexts.

Genetic analyses done after the song recordings showed that we had good qual-
ity records from only two female and two male hybrids. This sample size is too low 
for sound statistical analyses. Therefore, the performed statistical analysis (DFA) 
and our interpretation of hybrid songs have to be considered preliminary. While we 
tentatively labelled one of the genetically identified female hybrids (Hybrid 1) as 
T. lariang during monitoring in the field, the other female hybrid (Hybrid 2) had 
already attracted attention during monitoring, because her song appeared to start 
like T. dentatus and to end like T. lariang. Likewise, we already noted both previ-
ously “unassigned” songs of non-genotyped females that DFA later characterized as 
hybrid songs to be peculiar in the field. Acoustic and visual inspection of spectro-
grams as well as statistical analyses point towards a song structure of female hybrid 
calls that differs from their parental species. A comparison of their parameter means 
with confidence intervals of T. lariang and T. dentatus and the DFA point towards 
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an intermediate vocal pattern. While songs of male hybrids partly showed interme-
diate values with respect to the parent species, the two parameters analyzed are not 
sufficient to characterize male hybrids’ songs clearly. Especially because male tar-
sier notes are in general more similar between species than are female notes.

There are several examples of intermediate song traits in avian hybrids (de 
Kort et al., 2002; Moore & Coulson, 2020; Shipilina et al., 2017). For mammals, 
intermediate vocal traits have been shown for mice (Hahn et al., 1998), fur seals 
(Page et al., 2001), deer (Long et al., 1998), and primates. In nonhuman primates, 
intermediate song traits are so far known only from gibbons (Brockelman & 
Schilling, 1984; Geissmann, 1984; Maples & Haraway, 1982; Marler & Tenaza, 
1977; Tenaza, 1985) and howler monkeys (Kitchen et al., 2019). As in ours, the 
sample sizes in those studies were low, each including one or two hybrid indi-
viduals. A female Hylobates muelleri (father) ⨯ H. agilis (mother) hybrid’s song 
resembled the females’ song of her father’s species, which she had never heard 
before (Maples & Haraway, 1982). While some song traits of a male H. pileatus 
(father) ⨯ H. lar (mother) hybrid were very similar to purebred songs of either 
parental species, others were intermediate or even showed new structures. In the 
female hybrid’s song, some traits equaled those of her father’s species, but oth-
ers were intermediate (Geissmann, 1984). The song of a female H. lar (father) ⨯ 
H. muelleri (mother) hybrid differed from both parental songs, whereas the male 
hybrid’s song was lar-like except for one trait that resembled H. muelleri (Tenaza, 
1985). A genetically intermediate male hybrid of Alouatta palliata and A. pigra 
vocalized like A. palliata in temporal traits, while frequency-related song charac-
teristics were intermediate (Kitchen et al., 2019). For tarsiers, our results show a 
similar “mixed” pattern: the two female hybrids were, compared with confidence 
intervals of purebred T. dentatus and T. lariang, intermediate for the majority of 
the parameters. For the non-intermediate song characters, there was individual 
variation in the similarity to purebreds. One male hybrid was intermediate in the 
temporal parameter and grouped with T. lariang concerning the frequency trait. 
The other male hybrid was intermediate in the frequency parameter and grouped 
with T. lariang concerning the temporal trait.

Intermediate song traits indicate genetic inheritance, rather than learned vocal 
patterns (Page et al., 2001). Across the animal kingdom, there is far less evidence 
for learned vocalizations, i.e., by imitation of other individuals, compared with 
genetically determined sound, even in birds (Boves et  al., 2010; Janik & Slater, 
1997; Nieder & Mooney, 2019; Päckert, 2018; ten Cate, 2021; Woolley & Sakata, 
2019). In mammals, the clearest evidence of vocal production learning, i.e., “the 
ability to modify the structure of vocalizations as a result of hearing those of oth-
ers” (Janik & Knörnschild, 2021), which includes modifications of frequency 
properties (Boughman & Moss, 2003; Janik & Slater, 1997), derives from ceta-
ceans (Janik, 2014), pinnipeds (Reichmuth & Casey, 2014), bats (Knörnschild, 
2014; Vernes & Wilkinson, 2020), elephants (Stoeger & Manger, 2014), and the 
human genus (Janik & Slater, 1997; ten Cate, 2021; Tyack, 2020). In nonhuman 
primates, this ability is debated and seems to be, at best, very limited (Fischer & 
Hammerschmidt, 2019; Janik & Knörnschild, 2021; Lameira et  al., 2013). Sev-
eral researchers concluded that vocalizations of nonhuman primates are to a large 
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extent innate and have a highly conserved structure within species (Cheney & 
Seyfarth, 2018; Fischer & Hammerschmidt, 2019; Fischer & Price, 2017; Janik 
& Knörnschild, 2021; Jürgens, 2002; Owren et al., 1992). Neurobiological studies 
suggest that nonhuman primates are not able to produce new sounds (in terms of 
voiced calls) as they lack a direct connection between the primary motor cortex 
and the laryngeal motoneurons (Cheney & Seyfarth, 2018; Jürgens, 2009). Our 
analysis gives a first glance at vocalization patterns in hybrid tarsiers and points 
towards intermediate song traits. This finding suggests that tarsier duet songs are 
largely innate and that tarsier hybrids may not be capable of learning purebred 
structured vocalizations from their consexual parent. This is in accordance with 
current knowledge on vocal learning in nonhuman primates and on the acquisition 
of their vocal repertoire.

In the hybrid zone of T. lariang and T. dentatus, purebreds may perceive interme-
diate songs, or more precisely songs with intermediate characteristics, as “strange 
tunes”. Not being perceived as attractive mates will result in fitness disadvantages 
for hybrids (“extrinsic behavioral hybrid dysfunction”; Irwin, 2020; Servedio & 
Noor, 2003). In various taxa, purebred females respond less to hybrid vocalizations 
compared with those of conspecific males (e.g., anurans: Doherty & Gerhardt, 1984; 
Höbel & Gerhardt, 2003; birds: Derégnaucourt & Guyomarc’h, 2003). Nevertheless, 
responses to mixed individuals’ signals can still be stronger than to heterospecific 
individuals due to higher similarity or even single “sexy traits” in the intermediate 
vocalization (Wyman et al., 2016; e.g., anurans: Gerhardt, 1974; Höbel & Gerhardt, 
2003; birds: Collins & Goldsmith, 1998; Derégnaucourt & Guyomarc’h, 2003). The 
resulting reduced discrimination against hybrids enables backcrossings and can lead 
to intensive introgression (Randler, 2002; Wyman et  al., 2016). In the case stud-
ied here, the limited width of the hybrid zone between T. lariang and T. dentatus 
(Merker et  al., 2009) suggests selection and thus discrimination against hybrids. 
It remains unclear whether the intermediate/mixed character of hybrid songs goes 
along with an increased attractiveness to parental species as compared to heterospe-
cific songs, possibly promoting backcrossing.

A larger number of good quality recordings from mixed tarsier individuals, at 
best in combination with detailed genetic information, would provide more insights 
into how and to what extent hybrid vocalizations differ from purebreds. As species 
have, over time, acquired characteristic vocal repertoires and mate recognition sys-
tems, purebred song traits are well-predictable over time and space. In contrast, the 
multitude of ways hybridization can take provides for a great potential of variability 
in hybrid song traits. An increased sample size of hybrid songs is therefore impor-
tant. We also encourage future studies to investigate how hybrid tarsiers perform 
with respect to other characteristics of their duetting performance, such as timing 
or coordination of song length (Clink et al., 2020). Playback experiments to explore 
perception of hybrid, con- and heterospecific signals of the same or the opposite sex 
by purebred and mixed individuals could shed more light on premating reproductive 
isolation between T. lariang and T. dentatus in the common hybrid zone.

The accentuated interspecific contrast in male song characteristics in the hybrid 
zone, compared with monospecific sites, is consistent with a key role of tarsier 
song in mate recognition. Post-mating barriers to gene flow, e.g., reduced fitness of 
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hybrids, can lead to selection of premating barriers, like the reinforcement of mate 
choice relevant signals. Our finding of character displacement in males but not in 
females might be interpreted as a result of female mate choice; due to their higher 
investment in reproduction (Gursky, 2002), female Sulawesi tarsiers should opt for 
high quality males, i.e., for good genes. If mating with hybrids is disadvantageous, 
purebred females should choose males with unmistakable signals. Their preference 
for vocalizations that can be clearly assigned to a conspecific male would then drive 
character displacement. For males, in contrast, the large interspecific differences in 
evolved female songs may simply make further differentiation unnecessary. In addi-
tion, males generally encounter fewer disadvantages from unfavorable matings. In 
view of observed extra-pair offspring (Driller et  al., 2009; Yvonne Bohr, unpub-
lished data), this might hold true for T. lariang and T. dentatus. In addition, contrary 
to the predictions of reproductive character displacement, female songs seem to be 
more similar within the hybrid zone than in monospecific areas. This may be due to 
a lack of need for reinforcement, on the one hand, and introgression in the course of 
hybridization, on the other (Merker et al., 2009; Moran & Fuller, 2018).

Interestingly, T. lariang males seem to be responsible for the notable shift in 
Notes/s (Fig. 6), which is underlined by the effect size estimate of r = 0.61 compared 
with 0.13 in T. dentatus. T. lariang males in general “sing faster” than T. dentatus 
males, i.e., they show higher values for Notes/s. In the hybrid zone, they seem to 
sing even faster compared to monospecific areas, whereas T. dentatus males show 
no difference. This might indicate that T. lariang females have a greater interest in 
avoiding hybridization than T. dentatus females and choose conspecific males that 
differ most clearly from T. dentatus. The rationale behind this asymmetric pattern 
might include differences in selection pressure against hybridization between the 
two species, possibly because of “unequal hybridization costs, biases in likelihood 
of hybridization, asymmetrical effects of reproductive interference, evolutionary 
constraints, or historical accidents” (Cooley, 2007). As Smadja and Ganem (2005) 
reason for house mice, the potential competitive asymmetry in favour of the prob-
ably more opportunistic T. dentatus compared with T. lariang (Merker et al., 2009) 
might promote migration of T. dentatus into T. lariang range, which would favour 
stronger selectivity in female T. lariang. In view of previous observations (sampling 
period 2001–2006) that T. dentatus males successfully mate (or have mated) with T. 
lariang females but no indication that T. lariang males reproduce with T. dentatus 
females (Merker et  al., 2009), our findings of stronger (but probably not yet suf-
ficient) discrimination of T. lariang females against T. dentatus males may thus be 
interpreted as a reaction to the invasion of the T. lariang range first and foremost 
by T. dentatus males (and only subsequently by T. dentatus females). This tentative 
movement of the hybrid zone further into T. lariang range might explain the asym-
metric pattern of mitochondrial introgression between the two species (Merker et al., 
2009). Further genetic analyses and playback experiments may shed more light on 
this matter.

The observed displacement in male song traits in the hybrid zone concerned the 
temporal but not the frequency parameter. This matches the prediction that temporal 
traits can be easier modified than frequency-related traits (Boughman & Moss, 2003). 
The former can be modified by behavioral changes and are thus under control of the 
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singing individual, whereas the latter require control of the vocal apparatus, which is 
restricted in nonhuman primates (Janik & Slater, 1997, 2000; ten Cate, 2021).

The results of this study are in accordance with previous observations that tarsier 
vocalizations play an important role in mate recognition (Burton & Nietsch, 2010; 
Merker et al., 2009; Nietsch, 1999; Shekelle et al., 1997). In summary, we identi-
fied temporal and frequency-related parameters to discriminate between duet songs 
of Tarsius lariang and T. dentatus and likely between other Sulawesi tarsier species 
as well. We report intermediate patterns of hybrid tarsier vocalizations in terms of 
quantitative acoustic characters and provide evidence of asymmetric reproductive 
character displacement in male songs. These findings suggest that duets songs play a 
key role in directing hybridization between T. lariang and T. dentatus.
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