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Abstract
Despite the burgeoning adoption of informal learning in people’s daily lives, the 
actual effects of informal learning activities, especially technology-related informal 
learning activities, are much less reported than those of formal learning. Further-
more, there is a notable lack of research on the effects of technology-related informal 
mathematics learning activities (TRLA). This study aims to propose and validate 
a new model which illustrates the effects of TRLA on four constructs: mathemat-
ics self-efficacy (MSE), mathematics interest (MI), self-regulation in mathemat-
ics learning (SR), and teacher-student relationship (TSR). Adopting a quantitative 
cross-sectional survey approach, 460 students were investigated. The data were ana-
lyzed employing two-step structural equation modeling. Our findings demonstrate 
the direct effects of TRLA on MI and SR as well as the indirect effects on MI, MSE, 
and TSR. This study advances the understanding of technology-enhanced informal 
learning, which is an emerging perspective of technology-enhanced learning.

Keywords  Effect · Informal mathematics learning · Structural equation modeling · 
Technology enhanced learning · Technology-related learning activities

Introduction

The way in which people learn and acquire new skills is rapidly evolving. Numer-
ous information and communication technologies (ICTs) (e.g. mobile devices, 
wireless Internet) have made learning ubiquitous (Carreira et  al., 2016; Hwang 
& Purba, 2022), and learning is becoming increasingly non-traditional, informal, 
spontaneous, open, and  unintentional (Bitzenbauer et  al., 2024; He & Li, 2019; 
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Jagušt et al., 2018; Shaby et al., 2023). According to Jagušt et al. (2018), at least 
70% of learning happens outside formal learning settings. However, despite the 
burgeoning adoption of informal learning in people’s daily lives, its actual effects 
are much less reported than those of formal learning (Morris et al., 2019; Walan & 
Gericke, 2021).

School mathematics is commonly perceived as difficult (Li & Schoenfeld, 2019). It is 
reported that many students are concerned about assessment-driven school mathemat-
ics learning environments (Jenßen et al., 2023; Yuan et al., 2023). Meanwhile, knowl-
edge of science, technology, engineering, and mathematics (STEM) related knowledge 
can be acquired within different real-world contexts through non-assessment-driven 
informal learning experiences (Jiang et al., 2021; Marcus et al., 2018). Of possible con-
cern is research indicating that students may be bound by the traditional teacher-led 
classroom experiences and could not easily adapt themselves to other learning forms of 
STEM fields (Jiang et al., 2021). This highlights the importance of exploring the real 
impact of informal STEM learning.1 Particularly, as Acioly-Regnier (2020) claimed, 
informal learning is not a well-recognized or sufficiently explored area in mathematics 
educational research, and the effects of informal mathematics learning have rarely been 
examined. In addition, most existing studies regarding informal STEM activities focus 
on K-12 students (e.g. Hoffman et al., 2021; Maiorca et al., 2021; Roberts et al., 2018), 
while university students appear to be ignored. Hence, studies are needed to justify the 
effects of informal mathematics learning activities, particularly at the university level.

Technology-enhanced learning refers to the advantages and benefits of using 
ICTs in teaching and learning (Shen & Ho, 2020), and discussions on the subject 
have increased exponentially in higher education in recent years (Dunn & Kennedy, 
2019; Zhao et  al., 2022). However, a considerable percentage of studies are set in 
classroom or formal contexts (Viberg et al., 2021). Consequently, very little evidence 
elucidates the effects of technology-related informal learning activities on students. 
Considering the different characteristics of formal and informal learning (He & Zhu, 
2017), do ICTs help students achieve similar benefits in informal learning as formal 
learning? Does the integration of ICTs enhance informal learning? Very few studies 
have addressed these concerns. He et al. (2021) called for more efforts to extend the 
current body of knowledge in technology-enhanced learning into informal learning 
contexts. Thus, more empirical research is needed to advance the understanding of 
technology-enhanced informal learning (He & Zhu, 2017; He et al., 2021).

Motivated by these gaps, this study aims to propose and validate a new model 
to illustrate some of the potential effects of technology-related informal mathe-
matics learning activities (TRLA). Based on our new model, the larger goal is to 
explore other impacts of technology-related informal learning and further bridge the 
gaps between formal and informal learning. Focusing on an emerging perspective, 
namely technology-enhanced informal mathematics learning, this study contributes 
to the existing literature on technology-enhanced and informal learning.

1  STEM learning can be viewed as individual science, technology, engineering and mathematics learn-
ing or interdisciplinary learning that focuses on integrating the individual STEM disciplines (Jiang et al., 
2021; Li, 2018). Hence, informal STEM learning includes informal science, technology, engineering and 
mathematics learning. Accordingly, informal mathematics learning belongs to informal STEM learning, 
particularly as mathematics belongs to the STEM umbrella.
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Literature Review and Hypotheses Development

We conceptualize our research model based on the control-value theory (Pekrun, 
2006; Pekrun et al., 2011) and the self-determination theory (La Guardia & Patrick, 
2008; Ryan & Deci, 2000). On the one hand, the control-value theory posits that 
students’ learning environment (e.g. TRLA) can have effects on their interest and 
motivation to learn, control and value beliefs (e.g. self-efficacy) and self-regulation 
in learning (Pekrun, 2006). On the other hand, the self-determination theory postu-
lates that self-determination (i.e. self-regulation) can affect people’s social relation-
ships with their important others (La Guardia & Patrick, 2008; Ryan & Deci, 2000). 
Drawing from these two theories, we include five constructs in our model, namely 
technology-related informal mathematics learning activities (TRLA) on mathemat-
ics self-efficacy (MSE), mathematics interest (MI), self-regulation in mathematics 
learning (SR) and teacher-student relationship (TSR).

Technology‑Related Informal Mathematics Learning Activities (TRLA)

According to Livingstone (2001), all of the activities “involving the pursuit of 
understanding, knowledge or skill which occurs without the presence of externally 
imposed curricular criteria” could be regarded as informal learning (p. 4). Notably, 
these kinds of learner-led, non-assessment-driven, unstructured, voluntary activities 
are usually situated in out-of-school settings (He & Li, 2019; He & Zhu, 2017; Toh 
et al., 2017). The rapid development of ICTs has changed informal learning activi-
ties, and many such activities take place in technology-related environments (e.g. 
Amado et al., 2018; Carreira et al., 2016; Chugh & Turnbull, 2023; Chugh et al., 
2023). Technology-related informal learning activities can be defined as activities 
that involve informal learning processes taking place with ICTs (He et  al., 2021). 
Personal computers and smartphones with ubiquitous internet access are now 
commonplace and provide learners with numerous opportunities to search for the 
resources and information they need (Mehrvarz et al., 2021). As a new and emerg-
ing learning style, the effects of technology-related informal learning activities on 
students have not been fully explored. Specifically, most previous studies only detect 
the effects of technology-related informal learning activities on students’ academic 
performance (Goff et al., 2018; Heidari et al., 2021; Mehrvarz et al., 2021), and to 
the best of our knowledge, their effects on other aspects such as learning attitudes 
and beliefs have rarely been investigated.

In the STEM fields, informal learning activities may have a significant potential 
impact on student achievement (Hurst et al., 2019), interest (Roberts et al., 2018) and 
self-efficacy (Hoffman et al., 2021; Maiorca et al., 2021), but such effects are much 
less reported than those in school settings (Morris et  al., 2019; Walan & Gericke, 
2021). Hence, research on informal STEM learning, especially informal mathemat-
ics learning, is strongly advocated (Morris et al., 2019; Pattison et al., 2016; Satyam 
et  al., 2020; Walan & Gericke, 2021). Furthermore, studies on technology-related 
informal mathematics learning activities (TRLA) are minimal. Compared with 
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traditional informal learning, it is also unclear whether technology-related informal 
STEM or mathematics learning can affect students equally or more.

Mathematics Interest (MI)

Mathematics interest (MI) is the learners’ “predisposition to engage and reengage 
with” mathematics “over time, as well as the psychological state that accompanies 
this engagement” (Bohrnstedt et al., 2020, p. 173). Prior studies showed inconsistent 
results regarding the impact of informal STEM learning activities on STEM interest. 
Specifically, Roberts et al. (2018) concluded that informal STEM learning successfully 
developed students’ STEM interests as students may have fun in those activities, while 
Lock et al. (2019) found that such an impact was insignificant statistically. According 
to the control-value theory (Pekrun, 2006), students’ interest and motivation to learn 
will be influenced by their learning environment (e.g. TRLA). For instance, students 
may develop their interest and be motivated to learn when they find the learning materi-
als pique curiosity and the learning environment is motivational (Pekrun, 2006; Pekrun 
et al., 2011). In TRLA, with the assistance of ICTs, there is no doubt that students will 
find it more manageable and enjoyable to obtain the mathematical resources they find 
interesting (Pierce et al., 2007). Hence, they are very likely to develop MI in TRLA. 
However, this has scarcely been verified. We hypothesize:

H1. MI is directly influenced by TRLA.

Mathematics Self‑Efficacy (MSE)

Mathematics self-efficacy (MSE) can be defined as the “students’ beliefs in terms of 
their capabilities to effectively deal with mathematics problems and get rid of dif-
ficulties” (Zhu & Meyer, 2022, p. 82). Based on Bandura’s (1997) social cognitive 
theory, self-efficacy has four sources: enactive mastery experiences, vicarious expe-
riences, verbal persuasion and emotional arousal. In terms of emotional arousal, if 
individuals experience joy, excitement and contentment in an activity, they are more 
likely to have high levels of self-efficacy (Bandura, 1997). In contrast, if individuals 
experience anxiety, sadness and dissatisfaction, they are more likely to have low lev-
els of self-efficacy (Bandura, 1997). It is obvious that if students have strong math-
ematics interests, they will feel joyful in mathematics learning activities, and thus, 
they will be more likely to have high levels of self-efficacy. The effects of mathe-
matics interest on mathematics self-efficacy have also been confirmed in Zhang and 
Wang’s (2020) empirical study. We hypothesize:

H2. MSE is directly influenced by MI.

The control-value theory posits that students’ control and value beliefs (e.g. self-
efficacy) will be impacted by their learning environment (Pekrun, 2006). As Pekrun 
(2006) proposed, students’ control and value beliefs (e.g. self-efficacy) are acquired 
during exposure to their learning settings. For instance, if students find the learning 
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materials easy to understand, they will feel competent and develop self-efficacy 
(Pekrun, 2006). Hence, as a supportive learning environment, TRLA may help stu-
dents develop their self-efficacy. Furthermore, it was found that technology-related 
informal learning activities can help students improve their academic performance 
(Goff et  al., 2018; Heidari et  al., 2021; Mehrvarz et  al., 2021). Therefore, in the 
mathematics domain, it is reasonable to assume that students may be more confident 
in their mathematics capabilities or performance after TRLA. We hypothesize:

H3. MSE is directly influenced by TRLA.

Self‑Regulation in Mathematics Learning (SR)

Self-regulation in mathematics learning (SR) refers to the “process whereby learners 
set goals for their” mathematics “learning and then attempt to monitor, regulate, and 
control their cognition, motivation, and behavior, guided and constrained by their goals 
and the contextual features” in the mathematics learning environment (Pintrich, 2000, 
p. 453). The control-value theory proposes that students use different learning strategies 
in different learning settings (Pekrun, 2006). Moreover, a learning environment that 
can provide students with autonomy and support will promote self-regulated learning 
(Pekrun, 2006). A wealth of evidence has indicated that incorporating ICTs in learning 
activities can foster students’ self-regulation (Bergamin & Hirt, 2018; Palalas & Wark, 
2020; Seifert & Har-Paz, 2020). In TRLA, students rarely get any in-time guidance or 
support from their teachers, and have to apply a series of cognitive or non-cognitive 
strategies (e.g. goal-setting and planning, keeping records and monitoring, self-evalu-
ation) to promote their self-learning (Ballouk et  al., 2022). However, the association 
between technology-related informal learning and self-regulation has rarely been sub-
stantiated, especially during students’ mathematics learning. We hypothesize:

H4. SR is directly influenced by TRLA.

Recent research has shown that self-regulation can impact interest (Callan et  al., 
2022). A meta-analysis showed that students’ intrinsic motivation and interest were sig-
nificantly enhanced after receiving self-regulated learning training (Theobald, 2021). 
Particularly, Carneiro et al. (2011) posited that self-regulation was an important medi-
ator in the effects of technology-related informal learning environments on learners’ 
interest. Research has also shown that learners’ interest can be evoked by active partici-
pation and attractive learning environments (Neher-Asylbekov & Wagner, 2023). Car-
neiro et al. (2011) further argued that informal learning environments are less instruc-
tor-oriented and more learner-oriented, requiring learners to use self-regulatory skills 
to interact with the environments appropriately. In other words, if the informal learning 
environments are active and attractive, but learners cannot use self-regulatory skills to 
engage in the environments (e.g. learners cannot persist in the learning due to a lack of 
self-control), their interest in the subject matter might be limited. However, to the best 
of our knowledge, the relationship between self-regulation and interest has not been 
confirmed in the domain of mathematics education. We hypothesize:
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H5. SR directly influences MI.

Self-regulation has been found to be significantly correlated to academic self-efficacy 
(Ziegler & Opdenakker, 2018). According to Müller and Seufert (2018), self-efficacy is 
one consequence of self-regulation. This is because self-regulation can be considered 
one kind of enactive mastery experience (Müller & Seufert, 2018), which is one pow-
erful source of self-efficacy (Bandura, 1997). As Müller and Seufert (2018) explained, 
when learners perform their planned actions and achieve their goals in their self-regu-
lation process, they will “interpret the results of these enactive mastery learning experi-
ences and form beliefs about how capable they are in managing subsequent related learn-
ing activities” (p. 2). These arguments have also been justified in some empirical studies. 
For instance, Wang (2023) found that students who successfully apply self-regulated 
strategies in their learning may have more confidence in their academic performance. 
However, to the best of our knowledge, such a relationship has not been examined in the 
context of mathematics learning. We hypothesize:

H6. SR directly influences MSE.

Teacher‑Student Relationship (TSR)

Based on Zhou et al.’s (2020) definition, the teacher-student relationship (TSR) can 
be regarded as a two-way interpersonal link between teachers and students “that 
takes place in proximal (e.g. interpersonal interactions) and distal systems (e.g. the 
classroom context)” (p. 474). Based on the self-determination theory (La Guardia & 
Patrick, 2008; Ryan & Deci, 2000), self-determination (i.e. self-regulation) plays a 
vital role in people’s social relationships. Specifically, the more people are autono-
mously motivated or self-regulated, “the more they will experience the relationship 
to be fulfilling” (Legault, 2017, p. 6). Self-regulated people will try to have positive 
relationships with their important others who can support them in pursuing their 
goals (La Guardia & Patrick, 2008; Ryan & Deci, 2000).

Moreover, Aldrup et al. (2018) and Evans et al. (2019) found that students’ mis-
behavior negatively impacted the teacher-student relationship. As self-regulated stu-
dents usually exhibit lesser misbehavior (Cole et al., 2019), they tend to have better 
relationships with their teachers. However, to the best of our knowledge, no prior 
studies have confirmed it. We hypothesize:

H7. TSR is directly influenced by SR.

Bandura (1997) claimed verbal persuasion is also a source of self-efficacy. Teach-
ers are frequently considered the most important verbal persuaders of students, and 
students who have good relationships with their teachers are more likely to receive 
positive comments from their teachers (Smart, 2014). Zhou et al. (2020) further found 
that positive teacher-student relationships will contribute to high levels of mathemat-
ics self-efficacy. Hence, students’ relationships with teachers indirectly facilitated by 
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TRLA may further enhance their mathematics self-efficacy. However, this relationship 
between TSR and MSE has seldom been examined in universities. We hypothesize:

H8. TSR directly influences MSE.

Figure 1 shows our conceptual research model, which illustrates that TRLA may 
have direct effects on MI, MSE, and SR as well as indirect effects on MI, MSE, and 
TSR. Our model integrates the control-value theory (Pekrun, 2006; Pekrun et al., 2011) 
and the self-determination theory (La Guardia & Patrick, 2008; Ryan & Deci, 2000). 
Specifically, the direct effects of TRLA on MI, MSE, and SR are supported by the con-
trol-value theory (Pekrun, 2006; Pekrun et al., 2011), while the direct impact of SR on 
TSR is supported by the self-determination theory (La Guardia & Patrick, 2008; Ryan 
& Deci, 2000). In addition, the effects of MI, SR and TSR on MSE are supported by 
Bandura’s (1997) theory regarding the sources of self-efficacy.

Method

Participants

We adopted a quantitative cross-sectional survey study design, frequently used in 
science and mathematics education research (e.g. Guo et al., 2022; Jiang et al., 2024; 
Parviainen et al., 2023). A total of 460 students from two universities2 in China were 

Fig. 1   The conceptual research 
model. Note. Technology-related 
informal mathematics learning 
activities (TRLA), mathematics 
self-efficacy (MSE), mathemat-
ics interest (MI), self-regulation 
in mathematics learning (SR), 
teacher-student relationship 
(TSR)

2  Both universities have a pronounced focus on nurturing STEM disciplines, with a mandatory compo-
nent of advanced mathematics for all students.
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recruited and invited to complete the survey instruments. Using the listwise dele-
tion method (McNeish, 2016), we removed 21 incomplete responses. The final data 
set consists of 439 valid responses. Among them, 44% are male students, and 56% 
are female students. As for our participants’ majors, 35.8% are science, technology, 
engineering, and mathematics (STEM), 44.6% are economics and management, and 
19.6% are humanities and social sciences. Hence, to some extent, our participants 
can be considered representative, as the difference in the proportion of male and 
female students is only around 10%, and their majors cover almost all disciplines. 
In addition, 13.4% of students usually spend less than one hour per week in TRLA, 
46.9% spend 1–2 h, 35.8% spend 2–3 h,3 and 3.9% spend three hours or above.

Instrument Development and Data Collection

The process of instrument development involved five stages. To begin with, based 
on relevant literature, an English language instrument containing five constructs was 
developed (see Table 1). Next, we developed a Chinese version following the for-
ward and back translation rules (Guillemin et al., 1993). Education researchers and 
language experts then reviewed the translated instrument. Based on their comments, 
related revisions were undertaken. Subsequently, following Slattery et  al.’s (2011) 
guide, a pilot test was conducted on 139 university students. A few items were 
revised or deleted based on students’ feedback (e.g. those items that could not be 
understood clearly). Items with low factor loadings were also removed after an ini-
tial statistical check (Hair et al., 2010). After the pilot test, seven items were removed 
(i.e. TRLA2, TRLA6, MI4, MI5, MSE1, MSE5 and TSR1). Finally, according to the 
results of our pilot test, we developed an improved seven-point Likert scale (see the 
Appendix) and employed it in the formal data collection. Students were informed of 
our recruitment information by their teachers. All participants voluntarily completed 
the questionnaires after knowing our privacy protection measures and their rights. 
After the data collection, we validated the formal research instrument using the data 
set containing 439 responses (see the Results section).

Data Analysis

Using AMOS 22 Graphics, we adopted a two-step structural equation modeling 
approach to analyze the “complex relationships between directly and indirectly observed 
(latent) variables” (Stein et al., 2012, p. 495). Before the first step, univariate normality 
tests were performed to test the assumption of normality in the structural equation mod-
eling. In the first step, we employed the confirmatory factor analysis (CFA) technique to 
validate our instrument. In the second step, we examined the hypotheses and calculated 
the direct, indirect and total effects of TRLA on MI, MSE, SR, and TSR.

3  The group of students spending 1–2 h encompasses those spending 1 h but excludes those spending 
2 h. Similarly, the group of students spending 2–3 h comprises those spending 2 h but does not include 
students spending 3 h.
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During the data analysis, several goodness-of-fit indices suggested by Hu and 
Bentler (1999) were used to assess the model fit, including the chi-square to the 
degree of freedom ratio (χ2/df), the comparative fit index (CFI), the Tucker-Lewis 
index (TLI), the standardized root mean residual (SRMR), and the root mean square 
error of approximation (RMSEA). Specifically, Hu and Bentler (1999) recom-
mended that χ2/df should be lower than 5, CFI and TLI should not be lower than 
0.95, and SRMR and RMSEA should be smaller than 0.08.

Results

The Results of the Measurement Model

Before the first step, we tested the univariate normality. According to Stevens 
(2009), this significance test on kurtosis is highly sensitive to the sample size and 
may not be practical in structural equation modeling. Hence, it is recommended to 
inspect the kurtosis values for individual variables (Kline, 2005; Stevens, 2009). To 
ensure that the model’s fit remains unaffected, it is essential that all kurtosis val-
ues remain within a magnitude not exceeding 3.0. (Kline, 2005). The AMOS output 
showed that no absolute kurtosis values were greater than 3.0, indicating no severe 
deviations from normality.

In the first step of the structural equation modeling approach, we applied the CFA 
technique to test the measurement model and validate the instrument. The CFA 
results showed that the five-factor measurement model of TRLA, MI, MSE, SR and 
TSR fitted to the data well with the following goodness-of-fit indices: χ2 = 402.222, 
df = 125, χ2/df = 3.218, RMSEA = 0.071, CFI = 0.977, TLI = 0.972, SRMR = 0.031. 
The values of composite reliability (CR) and average variance extracted (AVE) for 
all constructs respectively exceed the threshold of 0.70 and 0.50 (see the Appendix), 
indicating that convergent validity was assured (Hair et al., 1998). The coefficients 
of interrelationships among the constructs are smaller than the square root of AVEs 
(see Table 2). Hence, the Fornell-Larcker criterion is achieved, and the discriminant 
validity is assured (Fornell & Larcker, 1981). The coefficients of Cronbach’s alpha 
(α) are also higher than the threshold of 0.70 (see the Appendix), suggesting the 
construct reliability was assured.

The Results of the Structural Model

In the second step of the structural equation modeling approach, the structural 
model was tested, and the hypotheses were examined. The results are shown in 
Table 3. The structural model fitted to the data well with the following goodness-
of-fit indices: χ2 = 403.568, df = 127, χ2/df = 3.178, RMSEA = 0.071, CFI = 0.977, 
TLI = 0.972, SRMR = 0.032. It was found that TRLA significantly impacted MI 
(β = 0.322, p = 0.000) and SR (β = 0.668, p = 0.000). However, the influence of 
TRLA on MSE (β = -0.052, p = 0.154) was not significant. Meanwhile, SR signifi-
cantly impacted MI (β = 0.540, p = 0.000), MSE (β = 0.525, p = 0.000) and TSR 
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(β = 0.608, p = 0.000). Besides, the significant influence of MI on MSE (β = 0.386, 
p = 0.000) was also exhibited. Therefore, H1, H2 and H4-H8 could be accepted, 
while H3 was not supported.

As H3 could not be confirmed, we revised our hypothesized research model by 
removing its path (i.e. TRLA → MSE). The revised model with standardized coef-
ficients is shown in Fig. 2.

After removing the insignificant path, the standardized direct, indirect, and total 
effects of TRLA on MI, MSE, SR, and TSR were also calculated (see Table  4). 
Notably, the mediating roles of MI, SR, and TSR were verified. Specifically, MI 
played a mediating role in the effects of TRLA on MSE (TRLA → MI → MSE, 
β = 0.118, p = 0.000). SR played a mediating role in the effects of TRLA on 
MI (TRLA → SR → MI, β = 0.360, p = 0.000), the effects of TRLA on MSE 
(TRLA → SR → MSE, β = 0.338, p = 0.000), and the effects of TRLA on TSR 
(TRLA → SR → TSR, β = 0.405, p = 0.000). TSR and SR had chain mediat-
ing effects between TRLA and MSE (TRLA → SR → TSR → MSE, β = 0.043, 
p = 0.000). MI and SR had chain mediating effects between TRLA and MSE 
(TRLA → SR → MI → MSE, β = 0.131, p = 0.000). Although the direct impact of 
TRLA on MSE and TSR was not significant, the indirect effects of TRLA on MSE4 

Table 2   Fornell-Larcker 
discriminant validity

Note. Bold numbers on the diagonal are the square roots of the AVEs

Construct TRLA MI MSE SR TSR

TRLA 0.931
MI 0.683 0.973
MSE 0.609 0.795 0.956
SR 0.668 0.756 0.849 0.889
TSR 0.422 0.440 0.576 0.609 0.965

Table 3   Summary of the 
hypothesis examining results

Note. *p < 0.05; **p < 0.01; ***p < 0.001

Hypotheses Paths Standardized 
coefficients (β)

C.R Results

H1 TRLA → MI 0.322*** 7.416 Accepted
H2 MI → MSE 0.386*** 9.238 Accepted
H3 TRLA → MSE -0.052 -1.424 Rejected
H4 TRLA → SR 0.668*** 15.442 Accepted
H5 SR → MI 0.540*** 12.231 Accepted
H6 SR → MSE 0.525*** 11.046 Accepted
H7 SR → TSR 0.608*** 14.713 Accepted
H8 TSR → MSE 0.108*** 3.441 Accepted

4  There were four indirect paths between TRLA and MSE: TRLA → MI → MSE, TRLA → SR → MSE, 
TRLA → SR → TSR → MSE and TRLA → SR → MI → MSE.



	 H. Jiang et al.

1 3

and TSR5 were significant. In addition, TRLA significantly influenced MI both 
directly and indirectly.6

Discussion and Conclusions

Theoretical Contributions

This study successfully integrates the control-value theory (Pekrun, 2006; Pekrun et al., 
2011) and the self-determination theory (La Guardia & Patrick, 2008; Ryan & Deci, 

Fig. 2   The revised model with standardized coefficients

Table 4   Standardized direct, indirect, and total effects of TRLA on MI, MSE, SR and TSR

Note. *p < 0.05; **p < 0.01; ***p < 0.001

Effect TRLA on MI TRLA on MSE TRLA on SR TRLA on TSR

Direct effect 0.323*** – 0.666*** –
Indirect effect 0.360*** 0.630*** – 0.405***
Total effect 0.682*** 0.630*** 0.666*** 0.405***

5  The indirect path between TRAL and TSR was: TRLA → SR → TSR.
6  The indirect path between TRAL and MI was: TRLA → SR → MI.
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2000), and proposes and validates a novel model exhibiting the direct and indirect impact 
of TRLA on MSE, MI, SR, and TSR. To the best of our knowledge, this is the first 
empirical-based model depicting the effects of TRLA on a series of variables. Our find-
ings demonstrate the direct effects of TRLA on MI and SR and the indirect effects on 
MI, MSE, and TSR. These effects, especially indirect ones, have rarely been discussed in 
previous educational research and practice. Most importantly, this study helps extend the 
current body of knowledge in technology-enhanced learning into informal learning con-
texts. It also contributes to the emerging research field of technology-enhanced learning 
(i.e. technology-enhanced informal learning).

Prior studies confirmed that integrating ICTs into mathematics teaching and learn-
ing could increase students’ MI (e.g. Demir & Önal, 2021). Meanwhile, there are 
some inconsistencies among previous results regarding the impact of informal STEM 
learning on students’ interests. Some research indicated positive effects existed (e.g. 
Roberts et al., 2018), while others did not detect significant effects (e.g. Lock et al., 
2019). For the first time, our findings confirm that TRLA can impact MI directly and 
indirectly. This means the influences of technology-related mathematics learning 
activities on MI occur not only in formal learning settings, but also in informal learn-
ing contexts, giving further credence to technology-enhanced informal learning. As 
such, the control-value theory, which claims that interest will be impacted by learning 
settings, is confirmed in our study (Pekrun, 2006; Pekrun et al., 2011).

The direct effects of technology-related classroom learning activities on MSE 
were detected in prior studies (e.g. Fowler et  al., 2022). Simultaneously, it was 
found that informal STEM learning activities affected students’ self-efficacy, 
including MSE (Hoffman et al., 2021; Maiorca et al., 2021). Moreover, previous 
research also certified that students’ academic performance could be improved 
after participating in technology-related informal learning as students had more 
access to different subject knowledge during these activities (Goff et  al., 2018; 
Heidari et al., 2021; Mehrvarz et al., 2021). Based on these previous conclusions, 
students may be more confident in their mathematics performance and capabili-
ties after TRLA. Surprisingly, contrary to our hypothesis, the direct effects of 
TRLA on MSE are not significant. Despite this, significant indirect effects of 
TRLA on MSE, where MI, SR, and TSR are mediators, have been verified in 
this study. This is indirect evidence of technology-enhanced informal learning. In 
addition, our findings imply that the direct effects of technology-related learning 
activities in formal and informal settings may be different.

Our findings echo that incorporating ICTs in learning activities can foster 
students’ self-regulation (Bergamin & Hirt, 2018; Palalas & Wark, 2020; Seif-
ert & Har-Paz, 2020). As self-regulation involves cognition (Pintrich, 2000), the 
association between technology-related learning activities and self-regulation 
is very important in understanding technology-enhanced informal learning. In 
other words, ICTs can potentially improve students’ cognitive and affective out-
comes. In particular, we confirm such an association in the context of informal 
mathematics learning at the university level, a frequently neglected research area 
(Acioly-Regnier, 2020). Our findings also support the relationship between the 
learning environment and self-regulation in learning, as posited by the control-
value theory (Pekrun, 2006; Pekrun et  al., 2011). More importantly, our study 
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goes beyond previous studies and reveals that SR is an indispensable mediator in 
the indirect path between TRLA and TSR.

This study may be the first to obtain the results that TRLA exerts indirect effects 
on TSR. The indirect impact of TRLA on TSR is based on the integration of the con-
trol-value theory (Pekrun, 2006; Pekrun et al., 2011) and the self-determination the-
ory (La Guardia & Patrick, 2008; Ryan & Deci, 2000) as the former theory supports 
the direct impact of TRLA on SR and the latter theory supports the direct impact of 
SR on TSR. To the best of our knowledge, no prior studies of technology-enhanced 
learning have examined the effects on TSR. Notably, TSR is very helpful in support-
ing and improving students’ classroom learning (Zhou et  al., 2020). This indicates 
that if students positively participate in TRLA, their relationships with teachers may 
be better, and they are more likely to achieve better classroom learning outcomes. 
Jagušt et al. (2018) have claimed many gaps between formal and informal technol-
ogy-related learning. We argue that TSR can play essential roles in bridging the gaps 
between formal and informal learning and increasing the transferability of the effects 
of formal and informal learning.

Practical Implications

Nowadays, informal learning is much less emphasized than school learning in educational 
practice (Petkovic, 2018). Considering the effects of TRLA, much more attention should 
be paid to them. Policymakers, parents, and teachers can provide students with various 
TRLA and encourage them to participate. For instance, parents and teachers can organ-
ize out-of-school discussions or debates on specific mathematics problems through the 
Internet. In addition, parents and teachers can regularly share reading materials or stories 
about mathematics and mathematicians with students through social media. TRLA also 
provides good opportunities to develop TSR, further supporting students’ formal learning. 
In those activities, where the pressure of assessment or examinations is removed, teachers 
tend to be more easygoing and friendly. Thus, we suggest that teachers make the most of 
those informal activities, listen to their students and chat with students more freely.

Limitations and Future Directions

This study is not without limitations. Firstly, based on this proposed and validated 
model, we only examined the effects of TRLA on MI, MSE, SR, and TSR, while 
some other possible aspects were ignored. Based on this model, we are going to 
establish a more comprehensive model in the future to help understand other effects 
of TRLA. Secondly, as a quantitative cross-sectional survey study, our data were 
collected in a single time frame. Therefore, future studies can adopt longitudinal 
approaches to capture the dynamic and long-term effects of TRLA. Thirdly, in our 
forthcoming expanded project, we will further investigate the interaction between 
technology, formal learning, and informal learning to identify opportunities for their 
synergistic deployment to improve student knowledge acquisition.
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