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Abstract
This article describes part of the findings of a teaching experiment whose objective is to
investigate the algebraic abilities of elementary students when they solve situations that
involve a functional relationship. In particular, we focus on describing the use and
meanings attributed to letters by third-year primary school students when faced with
verbal problems related to the generalisation of a functional relationship. Drawing from
the functional approach to early algebra and set in Spain, the study expands on earlier
research conducted on primary school students’ use of letters in algebraic contexts.
Their initial reactions to the use of letters to represent indeterminate quantities and how
those reactions changed in the course of three sessions are described. Analyses of the
students’ written answers together with their participation in group discussions yield
qualitative data on how students associate the idea of variability with indeterminate
quantities and use letters, numbers or both to represent that notion.

Keywords Algebraicsymbolism.Algebraic thinking.Earlyalgebra .Functional thinking.

Variables

Research on the feasibility of introducing algebra in primary education has been
ongoing since the 1990s. Early algebra, the curricular proposal stemming from that
research, seeks to further modes of algebraic thinking and enhance primary school
students’ ability to understand and express generalisation (Brizuela & Blanton, 2014).
The impact of these ideas on curricular guidelines in countries such as Australia, China,
Japan, Portugal, Spain and the USA has determined a need for surveys of primary

International Journal of Science and Mathematics Education (2020) 18:1271–1291
https://doi.org/10.1007/s10763-019-10012-5

* Cristina Ayala-Altamirano
cayala.altamirano@gmail.com

Marta Molina
martamolina@usal.es

1 Universidad de Granada, Cuesta del Hospicio s/n, 18071 Granada, Spain
2 Universidad de Salamanca, Travesía Madrigal de las Altas Torres, 3, 05003 Ávila, Spain

The Author(s) 2019, corrected publication 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s10763-019-10012-5&domain=pdf
http://orcid.org/0000-0002-9165-9470
mailto:cayala.altamirano@gmail.com


school students’ first conceptions and reactions when interacting with algebraic ele-
ments (Merino, Cañadas, & Molina, 2013; Molina, Ambrose, & del Río, 2018).

The country’s curricular guidelines recommend that primary school students should
be able to ‘describe and analyse change in situations, identify patterns, regularities and
mathematical laws in numeric, geometric and functional contexts’ (Ministerio de
Educación, Cultura y Deporte, 2014, p. 19387). Research is consequently needed to
inform the application of such guidelines in an education system accustomed to a
traditional approach to algebra instruction.

Functional thinking is a major gateway to algebraic thinking (Carraher &
Schliemann, 2007). Precedents have shown that affording students the opportunity to
discuss functional tasks leads to an understanding of variability (Brizuela, Blanton,
Gardiner, Newman-Owens, & Sawrey, 2015; Cañadas, Brizuela, & Blanton, 2016).
Building on that premise, this article aims to contribute to the understanding of the
meanings and use attributed by primary school students to letters to represent variable
quantities when solving problems involving functional relationships.

Letters in a Functional Approach to Algebra

Functional thinking, a component of algebraic thinking, involves working with func-
tions and families of functions in real life situations (Cañadas & Molina, 2016). It
includes generalising relationships between quantities that vary jointly; the expression
of such relationships in natural language, symbols, tables or graphs; and the use of such
expressions to analyse functional behaviour (Blanton, Levi, Crites, & Dougherty,
2011). Smith (2008) identified three types of functional relationships: (a) recursive
patterning, (b) covariation and (c) correspondence. Blanton et al. (2011), noting that
recursive patterning is a limited application that implies no inter-variable relationships
as it refers to only one of the variables, deemed it to be a first step to making sense of
the data.

Kaput, Blanton, and Moreno (2008) described symbolisation as a social process
closely related to generalisation. It is also a dynamic process, for by symbolising
general ideas students build a new platform for expressing and thinking about
unfamiliar situations. As a result, symbols and what they represent may be
experienced separately. Radford (2011, 2018) contended that algebraic thinking con-
sists in reasoning with indeterminate quantities analytically and that people can think in
terms of indeterminate quantities before having symbols to express them. Pursuant to
that author’s (Radford, 1999) premises, the perspective adopted in this study is that
learning algebra entails the formulation of signs in specific mathematical activities, in
which the application and formulation of meanings are individual and social processes
associated with other systems of signs used in the classroom. From that perspective,
signs are not cognitively neutral. In this study, letters acquired meanings for students,
albeit not necessarily the ones expected, and induced them to certain types of action.

When representing indeterminate quantities, letters may be associated with different
meanings depending on the context: generalised numbers, variable quantities, un-
knowns or parameters. Students must be afforded the opportunity to participate in a
diversity of learning experiences to help them generate substance-rich, wide-ranging
meanings (Schoenfeld & Arcavi, 1988; Ursini, 1994).
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Previous Research

The earliest studies on the meanings attributed by students to indeterminate quantities
and their representation with literal symbols (Booth, 1988; Küchemann, 1981;
MacGregor & Stacey, 1997) are focused on secondary education and general arithmet-
ic. They observed that students found it difficult to interpret letters as variable quan-
tities, tending to adopt a static perspective, associating letters with specific objects or
ignoring them when performing algebraic tasks (Küchemann, 1981). MacGregor and
Stacey (1997) found that students interpreted letters in a variety of ways, suggesting
that the origin of such interpretations might be: (a) intuitive assumptions and pragmatic
reasoning around the new notation; (b) analogies with familiar systems; (c) interference
from new learning; and (d) deceptive teaching materials.

In a study on sixth- to eighth-year students’ understanding of equivalence and letters
to denote indeterminate quantities, Knuth, Alibali, McNeil, Weinberg, and Stephens
(2011) stressed that helping students acquire that understanding and grasp the idea that
letters may adopt multiple values might contribute to the development of algebraic
thinking. They also recommended teaching students to use letters at earlier ages.

Building on the conclusions of such studies, later authors explored the use of letters by
primary school students in the context of early algebra and described their capacities in
that regard. Blanton, Stephens, Knuth, Gardiner, Isler, and Kim (2015) compared the
traditional approach with early algebra and its impact. Based on an analysis of students’
answers to a pre- and post-test questionnaire, they concluded that the third-year students
participating in the experience were able to correctly represent unknown quantities,
generalise, relate natural language to algebraic notation and use the latter to represent
functional relationships. Other reports concurred that students in different years of primary
school accepted the use of letters and that their ideas around their use changed over time as
they participated in further learning experiences. Students were observed to spontaneously
assign values to literal symbols in keeping with their position in the alphabet or, whilst
acknowledging that they may represent different values, attribute specific, randomly
chosen values to them when performing explicit tasks (Brizuela & Blanton, 2014;
Brizuela et al., 2015; Cañadas et al., 2016). Blanton, Brizuela, Gardiner, Sawrey, and
Newman-Owens (2017) described a possible progression in first-year primary school
students’ thinking about variables and their notation. They designed a two-cycle instruc-
tional sequence consisting in 16 lessons and three semi-clinical individual interviews
(before cycle 1, between cycles 1 and 2 and after cycle 2). After analysing the interviews,
they concluded that the difficulties experienced by students in assimilating symbolism
were associated less with age than with the way notation clashed with their prior
experience and understanding. They identified six levels of progression in the understand-
ing of variables and their notation, the first two of which involved internalising the
meaning of letters as variables. Students failed to think of the variable amount as an
unknown or indeterminate quantity and therefore sought ways to find a numerical value
that would enable them to complete the task, including counting, measuring or other more
familiar methods of quantification. From the third to the fifth level, meaning was
condensed; students began to understand variability and the notion that letters may
represent an unknown, variable quantity. Reification occurred on the sixth level, in which
children mathematised unknown quantities and realised that they could be regarded as
objects in and of themselves or even combined with others.
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Research Goal

This study forms part of a research project that explores the algebraic capacities of Spanish
primary school pupils in tasks involving functional relationships. Within this project,
previous studies have described fifth graders’ (10 to 11 years old) ability to generalise,
identifying the functional relationships they applied and the types of representation they
used to express them (Pinto & Cañadas, 2018a; b). In this study, they describe the type of
questions in which students respond in a generalised manner and the patterns/structures
that students recognise. The ability to generalise and represent generalisations of fourth-
grade students (9–10 years old) and the interviewer’s mediator role in interacting with
these students (Ureña, Ramírez, & Molina, 2019) have also been described.

The studies cited in the earlier section clearly showed that primary school students can
understand letters as representations of variableswhen afforded the opportunity to participate
in tasks and discussions about functions and their representation. They are also a source of
examples of tasks that can be used to those ends and describe students’ progression in their
understanding of letters in algebraic contexts. In this article our aim is to compare some of
the data contained in two Blanton et al. (2015, 2017) papers to findings in Spain for students
who had no previous experience with either generalisation or functional tasks.

In particular, our study was designed not only to ascertain the meaning given to
letters and whether students used them but also to determine how they used them to
represent the dependent variable when they were given the independent variable
represented with a letter. This is part of the process of generalisation of the functional
relationship involved in the problem situations presented. The aim was to supplement
previous studies interpretations of the use of letters by relating such use to the meanings
given to literal symbols by students through joint analysis of their written answers and
their participation in group dLnts generalise functional relationships and use letters to
represent the dependent variable, how is this use related to the meanings they give the
letters that represent the independent variable?

Third-year primary school students were chosen for the study for two reasons. Firstly, the
aim was to compare the findings with those of previous studies on the issue. Secondly, the
curricular guidelines in place in a number of countries (e.g. Chile, USA) recommend the
introduction of (particularly the literal) representation of indeterminate quantities from the age
of 8 or 9 (Ministerio de Educación de Chile, 2012, p. 33; National Governors Association
Center for Best Practices&Council of Chief State School Officers [NGA&CCSSO], 2010).

The answers to both research questionsmay inform the design of teachingmethods geared
to introducing the notation of variables from a functional approach in the primary years.

Methodology

A qualitative, exploratory and descriptive study, this classroom teaching experiment
(Cobb & Gravemeijer, 2008), was conducted with 251 third-year primary school students
(8–9 years old) enrolled in a private school in southern Spain. This experiment had a
wider objective than that of this paper: to globally explore students’ functional thinking

1 The total number of students in the class was 25, but in the second and third sessions, 24 and 23 students
participated, respectively.
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including various dimensions such as the patterns/structures that they recognise, their
capacity to generalise and express generalisations, as well as their understanding and use
of letters, in this context, as representations of indeterminate quantities.

Like most Spanish third graders, the students had never performed tasks involving
functions or used letters to represent indeterminate quantities, for although the legisla-
tion in place defines functional relationships as a curricular requirement, those provi-
sions have yet to have any significant effect on classroom practice.

Design and Implementation of the Teaching Experiment

The teaching experiment consisted in four classroom sessions lasting around 90 min
each. In each session, a task was proposed to the students. It consisted in a word problem
that involved a linear function with a single unknown, natural numbers and a several
related questions. This paper discusses the data collected in the first three sessions as the
use of letters was absent in the questions posed in the fourth. Some characteristics of the
word problems are summarised in Table 1. Although the background information used
in the second and third sessions was the same, the questions differed.

A team of researchers with different roles collected the data, one as researcher-teacher,
the second as support teacher and observer and the third as video-camera operator. The
students’ classroom teacher was present during the sessions as an observer only because
she did not have time to become more involved in the research process. In a teaching
experiment, the person acting as a teacher has to be fully involved in the study. Research
objectives take precedence over what from the teacher’s point of view might be most
appropriate for students (Kelly & Lesh, 2000). This is why it is usually one of the
researchers who does the interventions in the classroom rather than the usual teacher.

The data were collected from students’ written worksheets and video recordings
taken both with a fixed camera located at the back of the classroom and a mobile
camera that recorded some of the groups as they worked.

Moments of the Sessions. Each of the session was composed of three moments: (a)
Presentation of the background information of the task to the whole group, (b) work in
small groups or individually in one or several worksheets and (c) whole group discussions of
the answers. Thesemoments were not done in a linear way, after a group discussion the class
could end, return to work in small groups or present a new question.

When initially presenting the background information, the objective was to corrob-
orate that everyone understood the proposed task. In discussions, the students could
present their ideas, ask another student to explain something or suggest ways to
improve an answer. The role of the researcher-teacher was to encourage students to
participate actively in the activities, clarify their doubts about the tasks and encourage
interaction between students. In the discussions, the researcher-teacher got involved
with the students’ contributions, posed questions that allowed the students to reflect on
the tasks and their answers, evaluate if they were correct or not, and thus, as a whole, be
able to solve the activities.

Students were seated in their usual classroom arrangement, in groups of three or
four, and allowed to work individually or in groups, at their discretion, to ensure they
felt at ease throughout. They had opportunities to talk to one another whilst problem
solving as well as discussing their ideas in the whole class discussion.
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The possibility to discuss either in small or large groups is very important in the
design of the teaching experiment. Students’ participation in discussions of mathemat-
ics is the central activity of learning (Boaler & Greeno, 2000). Social interaction with
others helps students modifies their ways of symbolising and their mathematical
meanings (Cobb, Yackel, & McClain, 2012).

Design of Worksheets. The design of the tasks (e.g. the functional relationship in-
volved, the representation used) was inspired by previous studies on functional thinking
previously cited, but contexts and vocabulary were chosen to be familiar to the
participating students. The tasks were organised around the inductive reasoning model
proposed by Cañadas and Castro (2007). The first questions referred to specific cases
presented non-consecutively so as not to foster recursive reasoning. Students were then
asked to verbalise the relationships observed and check their validity. Letters were
subsequently introduced to represent indeterminate quantities and the students encour-
aged to use them to verbally generalise the relationship observed. Letters were intro-
duced at the same time as students were asked to deal with and express variability.
According to research on secondary students’ understanding of letters and of variables
and their notation (Fernández-Millán & Molina, 2016; Furinghetti & Paola, 1994;
Küchemann, 1981; Molina, Rodríguez-Domingo, Cañadas, & Castro, 2017) in alge-
braic contexts, traditional approaches to algebra instruction have proved unsuccessful
in helping them satisfactorily develop such an understanding. Those findings are an
indication that students need more opportunities and more time if they are to reach that
goal. So, we introduced the use of letters to provide students with opportunities to
grapple with algebraic notation and build on their incipient ideas. Learning to use
symbols allows students to participate in communication; symbols are an integral part
of individual and collective activity (Cobb et al., 2012). In this case, symbols allow
students to work with the idea of indeterminate quantities.

Questions addressed the correspondence relationship (primarily) and covariation
(Smith, 2008) and revolved around both direct (how the dependent was related to the
independent variable) and inverse (how the independent was related to the dependent
variable) functional relationships.

The ‘siblings’ problem was introduced in the first session. It was deemed to be
accessible for students because age differences and the change in age over time were
believed to be ideas familiar enough to engage them in the task and make them think
about variations in quantities that differ by a constant amount. In Table 2, we describe
the tasks presented in the first session and relate them to the phases of Cañadas and

Table 1 Background information for word problems

Session Function Name Background

1 F(x) = x + 5 Siblings’ age María and Raúl are siblings who live in La Zubia.
María is 5 years older than Raúl.

2 and 3 F(x) = 3x T-shirt sales Carlos wants to earn money selling T-shirts with
the school’s emblem to go on a trip with the
rest of the class. He earns 3 euros for every T-shirt sold.
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Castro’s (2007) inductive model. In this and the following sessions, the intention of
each task is a suggestion to guide the process; however, the students could generalise in
phases prior to the suggested one.

The T-shirt problem was introduced in the second session. The students were
also deemed to be familiar with situations involving product sales. In this task,
true/false sentences were proposed. In our experience, they are useful to help
primary school students focus on relations and leave aside the computational
mindset that they tend to show in arithmetic settings (Molina, Castro, & Mason,
2008). The independent variable was only represented by the letter Z, and the
dependent variable was represented in different ways: by the letters Z, N or Y
(see Table 3). Sentences 7 and 14 could be true or false depending on the
conditions to be met by letters N and Y .

Students also worked on the T-shirt problem in the third session. In this case, various
letters were proposed to represent the dependent or independent variable (see Table 4).

Data Analysis

The review of the information from each session included a detailed analysis of
students’ written work as well as the classroom interventions. The transcripts of the
sessions recorded with the stationary and mobile cameras and the students’ written
work were coded qualitatively. First, the episodes involving indeterminate quantities
and letters were identified in each medium used to collect the data. The transcripts were
reviewed line by line. In the students’ written work, the units of analysis were students’
written answers, which were contrasted with the video recordings. Students’ anonymity
was ensured by assigning each a code: Ei where i = 1 ... 25. The researchers were
identified as Ri (i = 1 or 2).

Table 2 Tasks presented in a worksheet, session 1

Model Description of task

Observation of particular cases 

and identification of structures 

The next question is raised by considering three different cases (7, 15 and 80 

years old). When Raúl is 7 years old, how old is María? How do you know?

Conjecture formulation 4. I found a picture of a birthday of Raúl, how can I know how old María is? 

On the cake you can see how old Raúl is.

Conjecture validation 5. Complete some rows of the table with quantities that may be true. 

Remember that María is 5 is older than Raúl. (In the table they can complete 

seven rows, for example as follows)

Raul’s age Calculation of María’s 

age

María’s age

7 7 + 5 12
70 70 + 5 75
A A + 5 F

Conjecture generalization 6. Choose a letter to indicate Raúl's age. Place the letter in the grey table row 

next to the white date. Next to the grey date, write how to use the letter to 

calculate María's age.
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The categories discussed below were formulated on the grounds of an inductive analysis
of the data collected. Two groups of categories were established, one for the meanings
attributed to letters and the other for the ways indeterminate quantities were represented.

The categories referring to meanings were defined in keeping with earlier research
(Blanton et al., 2017; Küchemann, 1981; Molina et al., 2018) and organised by

Table 3 Tasks presented in a worksheet, session 2

Model Description of task

Observation of particular cases and
conjecture formulation

The students propose particular cases and conjecture their relationship
by asking: How much money can Carlos earn?

Conjecture validation The students were asked to answer and explain their answers to 15
true/false questions (e.g. ‘when Carlos sells five T-shirts, he earns
10 euros’).

Conjecture generalisation The following sentences involved the use of letters.
6. When Carlos sells Z T-shirts, he earns 3 × Z euros.
7. When Carlos sells Z T-shirts, he earns N euros.
14. Carlos wants to earn Z euros. That means he must sell Y T-shirts.
15. Carlos wants to earn Z euros. That means he must sell Z T-shirts.

Table 4 Tasks presented in a worksheet, session 3

Model Description of task

Observation of particular cases 

and organization

Fill in the table with the amount that may be true. (In the table they can 

complete nine rows, for example as follows)

Number of T-shirts 

sold

Calculation of money 

earned

Euros earned

50 50 x 3 = 150 150€
Identification of structures and 

conjecture formulation

1. Look at the numbers in the third column, what could you say about 

those numbers?

2. Explain the relationships you see between the numbers in the table.

3. What relationship do you observe between the numbers that appear in 

the first column and those that appear in the third column?

Conjecture validation 4. The following table shows some information about the number of T-

shirts sold by Carlos and the money he has earned from them. Fill in the 

gaps. 

Number of T-shirts sold Euros earned

3 9
6 18

100 3 x 100

900:3 300

Conjecture generalization At the bottom of the table, four cases involving letters were presented.

Number of T-shirts sold Euros earned

N

3 x Y

Z:3

D
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complexity, ranging from the dismissal of letters to their acceptance as indeterminate,
variable quantities. The general and specific sub-categories are listed in Table 5. Impre-
cise replies were coded using general categories (e.g. ‘use of letter accepted’), whereas
more complete replies were classified under the respective specific sub-categories (e.g.
‘letter as variable/generic example’).

The definitions of the categories for representing indeterminate quantities listed in
Table 6 were based both on earlier research (Blanton et al., 2015; Molina et al., 2018)
and the characteristics of students’ answers. The focus was on how students represented
the dependent variable, given a symbolic representation for the independent variable.
Broad categories were defined and sub-divided into more specific categories because it
was not always possible to determine why students proposed a specific number or letter.

Results

The following discussion addresses first the meanings attributed to letters and then the
representations used to designate the dependent variable.

Meanings Attributed to Letters

This section begins with an overview of the meanings put forward by students in
classrooms discussions and their written answers. The specific categories are discussed
in greater depth below, with examples drawn from the students’ explanations.

Meanings Observed by Session. In classroom discussions, 15 students (out of 25)
spoke a total of 31 times: 8 times in session 1, 16 times in session 2 and 7 times in
session 3. Their classification is shown in Fig. 1. Interventions (I1 to I31, numbered
chronologically) were associated with the meanings described in Table 5, which were
indicated by the symbol “X” in Fig. 1. In cases where student interventions relate to
two meanings, the first observed meaning was indicated by “Xa” whilst the next was

Table 5 Meanings attributed to letters: categories

Category Description

D. Letter dismissed Letters cannot be used because they mean nothing.

A. Use of letter accepted Letters are used to perform the proposed tasks.

A.1 Letter as label or object Letters are used as labels for objects (e.g. ‘M isMaría’, with no mention of
its use to represent María’s age in years).

A.2 Letter as value or variable Letter related to a fixed or indeterminate quantity.

A.2.1 Letter attributed a value
for some reason

Letter assigned a unique value for some reason (e.g. its position in the
alphabet, its value as a Roman numeral).

A.2.2 Letter as
variable/generic example

Letter understood to represent different values, with examples; frequent
mention of ‘for instance’ (e.g. ‘Z can be 5, for instance, so since each
T-shirt costs 3 euros, 3 × 5 is 15, for instance’).

A.2.3 Letter as
variable/indeterminate value

Letter used to represent different values, without applying a specific
number to explain the answer but expressing the reply in general terms
(e.g. ‘it’s whatever number you want it to be’).
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indicated by “Xb”. On the whole, students tended to consider letters either as values or
as variables (category A.2). All but one accepted the use of letters and only four used
them as labels or objects (category A.1) across the three sessions.

The frequency of the meanings gleaned from the written answers and shown in
Fig. 2 is consistent with the data on the classroom discussions described above.
Meanings were observed to be diverse and change across the three sessions.

Table 6 Categories of representations used to denote variables

Code Description

L. Letter Use of letter to represent the dependent variable.

L.1 Related letter Use of one letter to represent the independent variable and an expression
bearing the same letter to describe its relationship to the dependent
variable (e.g. in the T-shirt problem, N was proposed as the number of
shirts and 3 ×N as the amount of euros earned).

L.2 New unrelated letter Use of different, unrelated letters to refer to each variable (e.g. in the sibling’s
problem, R and M).

L.3 New related letter Use of different letters for each variable, explaining the relationship between
the two (e.g. letters E and J because they are 5 positions apart in the
alphabet: E, F, G, H, I, J)a.

L.4 Repeated letters Use of the same letter to represent both variables (e.g. N T-shirts sold and N
euros earned).

N. Number Use of a number to represent the dependent variable.

N.1 Number related to a value
for a reason

Given a letter to represent the independent variable, use of a number to
represent the dependent variable, calculated by attributing a numerical
value to the independent variable for some reason, such as its position in
the alphabet (e.g. B T-shirts sold means 6 euros earned, because B is the
second letter in the alphabet and 2 times 3 is 6).

N.2 Number as generic
example

Given a letter to represent the independent variable, use of a random number
to represent the dependent variable (e.g. given earnings of S euros, the
number of shirts is 100 because S can be any number).

a Traditionally, the Spanish alphabet had 30 letters: the 26 in the English language alphabet, plus ‘ch’ between
‘c’ and ‘d’, ‘ll’ between ‘l’ and ‘m’, ‘ñ’ between ‘n’ and ‘o’ and ‘rr’ between ‘r’ and ‘s’, although in keeping
with a decision adopted in 1994, only the third is still regarded as a separate letter in dictionaries. Some
students in this study used the traditional and others the modern version

1280 C. Ayala-Altamirano, M. Molina
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The data in Fig. 2 show that students accepted the use of letters in the first session,
attributing them meanings based on familiar references such as the alphabet or
assigning them a numerical value in pursuit of an arithmetic solution.

Some of the students’ written answers in session 2 denoted dismissal of the use of
letters. As in the classroom discussions, when letters were accepted, they were most
frequently interpreted as indeterminate quantities (category A.2.3). Students most
commonly contended that letters can represent ‘whatever number you want’. That
interpretation generated misconceptions in connection with the last T/F question
(‘Carlos wants to earn Z euros so he has to sell Z T-shirts’). As the same letter cannot
represent different quantities in the same situation, here the correct answer was ‘false’.
Only three students (of the ten who answer this question) answered correctly to this
sentence: two who interpreted the letter as an indeterminate quantity and one who
assigned it the value of its position in the alphabet.

No specific pattern was discerned in students’ answers to the third session tasks and,
as written explanations were lacking on the worksheets for that session, the meanings
attributed to the letters could not be identified. In the classroom discussion (see Fig. 1)
two students resorted to the alphabet to attribute a value to the letter representing the
independent variable, which they then multiplied by 3 to find the value of the dependent
variable. One student dismissed the use of letters and two interpreted them to be any
number.

A comparison of the results for sessions 2 and 3 suggest that the latter task was more
difficult for students althoughmore students answered. There they again resorted to familiar
elements to express their ideas, such as alphabetical order and arithmetic notions, whilst
persistently interpreting letters to be whatever number you want. True/false questions seem
to help students broaden their understanding of the use of letters, with a substantial
proportion of answers inferring that they interpreted letters as indeterminate values (A.2.3).

Meanings Attributed to Letters in Functional Contexts by Primary... 1281
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Description of Meanings. Like the subjects of earlier studies (Brizuela & Blanton,
2014; Cañadas et al., 2016; MacGregor & Stacey, 1997), some students interpreted
letters to be labels or objects. In session 2, students sought words related to the letters: N
to mean ‘nothing’, for instance. In session 1, the letters chosen were the initials for
characters’ names, with students contending that they represented the names and
showing no signs of references to quantities. By way of example, E5 explained:

E5: Here I wrote ‘R’ for Raúl (pointing to the first column) and here a ‘C’ for 52

(pointing to the second),
R: ‘C’ for five, why did you write a ‘C’ for 5?
E5: Because you had to add 5 to everything.
R: Okay, and if ‘R’ is Raúl’s age, how would you write María’s age?
E5: ‘M’.
R: Why?
E5: Because it’s her initial.

Interestingly, here the initials of key words were on occasion used to refer to determi-
nate quantities. One example can be found in E15’s session 1 (Fig. 3) choice of R for
Raúl. In the video, she explained that R was 19, its position in the alphabet. Her answer
was classified as ‘letter attributed a value for a reason’.

The recording of the conversations between E15 and the other members of her working
group showed that they initially represented Raúl’s age as R and María’s as ‘M’ and
sought numbers beginning with those letters to attribute the respective values. As that
strategywas unsuccessful, they decided that the value of Rwas its position in the alphabet.
No value was attributed to M, initially chosen to represent María’s age. They calculated
her age by adding five to the value of R, i.e. by applying the functional relationship.

The researcher’s discussion with this group of students also showed that they
accepted the idea that the problem could have different answers. They noted that
María’s age could be any number, which would depend on the letter chosen. That
denoted an understanding of variability, mirrored in their use of different letters to
describe the situation, as in the following excerpt from a conversation with E15.

R: If we don’t know how old Raúl is, ‘R’ could be another number, no?
E15 [nods assent].
R: How could you find María’s age, if Raúl is ‘R’ (years old)?
E15: I’d say she’s twenty-four.
R: Why?
E15: María, and Raúl is nineteen.
R: But we don’t know. He might be older.
E15: If you choose A, for instance, the number would be smaller.

As in previous studies, letters were observed here to be assigned numbers based on
their position in the alphabet. Not all these cases implied a lack of awareness of the

2 The Spanish word for five is ‘cinco’, hence the ‘C’.
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variable character of the dependent and independent variables. In the following excerpt
from the session 1 discussion, E4 made no reference to a specific age, whilst nonethe-
less using alphabetical order to choose the letters to represent the two quantities.

R: A plus five equals E. Explain how you got that answer.
E4: From A to E goes five.

This use of alphabetical order entailed construing letters to have an indetermi-
nate value and their position in the alphabet a mere reference to express the
functional relationship (as in E4’s explanation above). Alphabetical order was
also used to assign a unique, fixed value to letters, although possibly associated
with variability. These findings corroborated other authors’ reports (Brizuela &
Blanton, 2014; Cañadas et al., 2016; MacGregor & Stacey, 1997) in which the
use of alphabetical order was viewed as a natural and spontaneous tendency
among primary school students, although they associated it with the assignment
of (fixed) numerical values.

Students also showed that they recognised the variability represented by
letters in other ways. In those cases, their answers were classified under
category A.2.2 (letter as variable/generic example) or A.2.3 (‘letter as
variable/indeterminate value’). The subcategory letter as variable/generic exam-
ple grouped answers in which students’ use of examples denoted an under-
standing that letters can represent different values. In the session 1 classroom
discussion, E6 referred to letters as representing different quantities, attributing a
numerical value to the letter by way of example only: ‘A plus five. And I say
for instance 45’. In other words, she did not rule out the possibility of some
other amount.

A second example arose in the session 3 discussion. E4 referred to the letter
as an indeterminate number, noting that it could be whatever number you want.
His explanation that the independent variable had to be multiplied by three
constituted recognition of the existence of a relationship between the two
variables. He ultimately attributed the letter a numerical value to clarify his
argument.

E14: I wrote N and then I wrote S, I think.
R1: Another letter, S.
E14: Yes, I used N which is, say, the number that we want. I used S because I
think N would be the number and then the result would be a different number.
That’s why I wrote S.
R: You wrote S because it’s a different number. Fine.
R2: And that number, E14, could it be any number?
E14: Yes, for instance, N could be three and S could be nine, for instance.
R2: And how would you always find that S, E14?
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Fig. 3 E15’s answer in session 1



E14: Multiplying N times three.

Students first verbalised the idea of letters being whatever number you want in session
2 (Table 7 lists further examples in the students’written work), such as in the discussion
of the statement ‘Carlos sells Z T-shirts and earns N euros’. E7 and E14 verbalised that
argument, as shown in the following excerpt.

E7: I say it’s true because if Carlos sells Z T-shirts, Z is a number and he earns N
euros, N is another number. If he sells Z T-shirts, he earns N euros. Then I think
that if Carlos sells whatever number, he earns a different number of euros.
R: If the two are different, then, you say it’s true.
E7: Yes.
E14: True because Z can be whatever number you want and N can also be any
number you want. If Carlos has however many T-shirts you want, then he can
earn however much you want.

The idea that letters can be any number led some students to conclude that the
statements in questions 7, 14 and 15 were (always) true (e.g. see E14’s answers in Table 7).
Some students nevertheless realised that the two quantities had to be related as per the
functional relationship specified (e.g. E4 and E17 in session 1).

Representation of Indeterminate Quantities: The Dependent Variable

This section analyses how students represented the dependent variable when the
independent variable was represented symbolically. As noted above, whereas students
were asked to represent the dependent variable in sessions 1 and 3, in session 2, the
researchers themselves proposed the representations. In this later case, we analyse

Table 7 Meanings attributed to letters in true/false questions: letter as variable/indeterminate value

Questions Example

E R Student’s explanation

6 E17 T Z is a number and you have to multiply it times 3.

E4 T Z can be a number and if you multiply it times 3, he earns the (result of the)
multiplication.

7 E9 T Z and N are whatever number you want.

E14 T Z and N are the number you want.

14 E17 T Z and Y are whatever number you want.

E14 T Z is whatever number you want and Y also.

15 E7 F The euros earned are not the same as the T-shirts he sells.

E5 F He has to sell triple.

E9 T Z can be whatever number you want.

E14 T Because Z can be 13 or whatever number you want.

E, student; R, reply; T, true; F, false
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students’ explanations to determine how they interpreted and used letters. As the
categories discussed above showed, students used letters, numbers or both to represent
the dependent variable. Whilst the use of letters prevailed in the first session, in session
3 numbers acquired a certain predominance (see Table 8).

Use of a Letter to Represent the Dependent Variable. Students represented the functional
relationship in one of two ways. In some answers, classified as ‘related letter’, the indepen-
dent variable formed part of the (not necessarily syntactically correct) expression used. The
examples in Fig. 4 were taken from E19’s answers in session 1 and E4’s in session 3.

E4’s explanation, reproduced below, of why he repeated the independent variable
three times to represent the dependent variable, attested to his interpretation of the
former as a variable with an indeterminate value.

E4: If it were multiplied times three, you add N three times.
R: Then N three times [writing on the blackboard].
E4: N plus N plus N, three Ns.
R: What does that mean? Can you explain, E4?
E4: It’s as if you were multiplying. Three Ns because it’s multiplied times three.

In other answers classified as ‘new related letter’, students took the alphabet as a
reference to choose a letter for the dependent variable and express the functional
relationship. For example, in session 1 three students chose a letter located five
positions after the letter denoting the independent variable to represent the function
x + 5 (see Fig. 5).

This is complemented by what E5 points out in the discussion of session 1. There, E5

made no reference to a specific age, whilst nonetheless using alphabetical order to
choose the letters to represent the two quantities. The argument was that if Raúl was Z
years old, as ‘Z’ is the last letter of the alphabet, María’s age would have to be found by
going back to ‘A’; María would be D years old. These students did not replace letters
with numerical values.

Some of the session 2 answers were also classified under new related letter. When
representing the functional relationship, some students used a different letter for the
dependent variable, contending that different letters represented different quantities and

Table 8 General categories for representation used to denote the dependent variable

Category Session 1 Session 3

Q6 N 3 × Y Z:3 D

L. Letter 10 6 (4) 5 (3) 5 (3) 5 (4)

N. Number 5 8 (7) 6 (6) 7 (6) 7 (4)

Total 15 14 11 12 12

Note. The values in parentheses indicate the frequencies not classified under other sub-categories

Qi, question i; N, sold N T-shirts; 3 × Y, sold 3 × Y T-shirts; Z:3, earned Z:3 euros; D, earned D euros
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that letters can represent whatever number you want, an argument that, as noted in the
preceding section, implies viewing letters as variable and indeterminate quantities
(category A.2.3). Some students (e.g. E7) applied that argument broadly whilst others
(e.g. E1) did so more restrictively, noting that although a given letter can be any number
the functional relationship between the two variables had to hold. They were nonethe-
less unable to express that relationship with letters. The following excerpts exemplify
these arguments.

E7: I say it’s true because if Carlos sells Z T-shirts, Z is a number and he earns N
euros, N is another number. If he sells Z T-shirts, he earns N euros. Then I think if
Carlos sells whatever number, he earns a different number of euros.
E1: It’s true. Because if Z is a lot,N has to be a large number. And if Z is small, then
the other number also has to be small. For instance, if Z is 20, twenty times 3 would
be 60. And you write 60 for N. And it would be 60 and that’s why I say it’s true.

Another example of the new related letter category, taken from the session 3 discussion,
was E11’s reason for choosing the letter S, claiming that since he deemed N to be 15 the
answer after multiplying was a different number, so he chose another letter, different
from N.

In contrast, some students used different, unrelated letters. Such replies were
classified under the category ‘new unrelated letter’. In the first session, for instance,
two students (E21 and E25) used letters as labels, choosing R and M, the initials of the
names of the two siblings (Fig. 6).

Some students were also observed to believe that a given letter could represent both
the dependent and the independent variables in the function and different amounts in
one and the same situation. Four students claimed that true/false question 15 was true.
E14 asserted that it was true ‘because Z can be 13 or whatever number you want’. They
contended that letters could be whatever number you want, interpreting them as
indeterminate quantities.

Use of a Number to Represent the Dependent Variable. The criteria for choosing
numbers to represent the dependent variable were not always verbalised. Where they
were, two categories could be distinguished: random and alphabet related. Sometimes,
students assigned a value to the independent variable and after applying the functional
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E19

E4

Fig. 4 Excerpts from E19’s and E4’s written answers in session 3

E8

E10

Fig. 5 Excerpts from E8’s and E10’s written answers in session 1

relationship used the result to represent the dependent variable. That is illustrated in Fig. 7,
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where E5 wrote in the values for the letters N and D in the margin and used them to fill in
the table by applying the direct and inverse functional relationships to the assigned values.

Some students’ explanations suggested that the number chosen was used as a
generic example (category N.2). The mobile recording of session 1 included a conver-
sation in which student E10 explained why she used the number 100 to represent the
variable. She construed the letter to be a variable and explained that 100 was just an
example, because letters can represent ‘any number’.

In other students’ explanations the number was alphabet-related (category N.1). In
the session 3 discussion, E3 contended that she thought N was 14 because of its position
in the alphabet and therefore represented the dependent variable as 42 (= 3 × 14).

Discussion and Conclusions

The first question posed in this study sought to determine the meanings attributed by
students to letters when exploring the functional relationships between two quantities.
The meanings detected were as a label, value and variable. They varied across the
sessions.

The Blanton et al. (2017) contention that progression in thinking about variables and
their notation is non-linear, with meanings varying with the task involved, was both
confirmed by the present findings and shown to apply to third-year students. Most of
the students used familiar elements in the first session, in keeping with observations by
Radford (2000), who noted that when students attribute meanings to symbols they seek
recognisable references. In the first session, meanings alluding to areas previously
worked on by the students, such as alphabetical order or arithmetic, prevailed. Previous
studies interpret this as a tendency to assign fixed values to unknown quantities and to
not perceive variability (Blanton et al., 2017); however, our data show that this is not
always the case. We discuss it below when we talk about students’ representations of
the dependent variable.

E21

E25

Fig. 6 Excerpts from E21’s and E25’s answers in session 1

Fig. 7 Excerpt from E5’s answers in session 3



In the second session, the meaning of letters as variables with indeterminate values,
associated with the idea that letters can be whatever number you want, prevailed. Students
tended to support their letter as variable/indeterminate value reasoning with reference to
specific quantities. That category would therefore be closely related to letter as variable/
generic example, in which students realised that letters could represent different amounts,
but proposed a set quantity as an example. Whilst able to express the algebraic relation-
ship correctly, it seems that they fail to deem the answer as suitable because arithmetic
logic induces them to seek numerical solutions. They might also resort to examples due to
limitations in their competence to express their thinking in abstract terms.

In the third session, where a more open task was considered, the meanings observed
varied, with five of the eight contributions to the discussion attributing a value to the
letter to explain the answer.

Students tended to represent more the direct than the indirect relationship no matter
which of these relations was ask for. When in session 2 the dependent variable was
shown in connection with the operation relating it to the independent variable (such as
in T/F question 6), the students viewed the latter as an indeterminate quantity, validated
with previously generalised procedures based on tasks involving specific numbers. In
contrast, when the dependent variable was expressed as a letter (T/F question 7), they
tended to represent the other variable with a letter as well. They construed letters as
indeterminate quantities, although in general they deemed that the two amounts had to
be different and since the letters were different, the respective statements would be true.

The second research question posed the possible relationship between the meanings
given to letters and their use to represent indeterminate quantities. That issue was
explored with an in-depth analysis of how students represented the dependent variable
when the independent variable was a letter. This study furnishes new information on
students’ tendency to relate letters to their alphabetic order and use them as indetermi-
nate quantities. Earlier studies revealed that students innately attributed numbers to
letters according to their position in the alphabet. Here, further exploration of that idea
showed that whilst students sometimes used alphabetical order to replace letters with
numbers (letter attributed a value for a reason), in others they applied that criterion only
to choose the letter representing the dependent variable. They then assigned variables
indeterminate values to express the functional relationship (letter as variable/
indeterminate value). In other cases, whilst attributing a unique value to each letter in
keeping with its alphabetical order, they acknowledged that values could vary depend-
ing on the letter chosen to represent the independent variable. Such answers are an
indication that, even when resorting to alphabetical order, students realised that the
answer could involve more than one indeterminate quantity. They nonetheless lacked a
system of symbols with which to express that variability with a single notation.

The study also revealed that representation of the dependent variable was affected by
the meaning category letter as variable/indeterminate value. Students used the same or
different letters to represent the two variables, reasoning that letters can be whatever
number you want or contending that they can represent any number. Whilst some felt
no need to include the functional relationship in their representation, others tried to
explain that letters cannot adopt just any number but were governed by that
relationship.

When students represented the dependent variable as a number they might be
thought to be assigning the letter a fixed value, confirms the static view of letters
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described by Küchemann (1981). However, the analysis of students’ explanations for
choosing a given number to represent a letter, showed that they deemed the choice to be
a mere example, for in their belief that letters can be any number they assumed that
replies involving a specific case would not be wrong.

Although in all three sessions at least one student dismissed the use of letters, on the
whole they acknowledged the idea of variability which they associated with indeterminate
quantities. Nonetheless, they deployed a personal system of symbols consisting in letters,
numbers or both. These findings support Blanton et al.’s (2017) and Kaput et al.’s (2008)
argument to the effect that variability as a notion and its symbolic representation can be
experienced separately. An aware and effective reference to letters by students of this age is
not so quickly approachable. Few children appropriate variable notation readily. Let us
remember that our results come from just three 90-min sessions. Nevertheless, our descrip-
tion provides interesting examples of how students might make sense of this notation.

Students, who had no prior introduction to algebra, were able to reason abstractly
and associate letters with indeterminate quantities. That was favoured by tasks involv-
ing true/false sentences but not so much in those in which they had to represent
functional relationships by themselves. This study showed that participants could use
letters in ways reported by earlier authors.

The categories defined here were useful for analysing students’ replies and may be
applicable in future research. Whilst based on earlier studies, they were supplemented and
adapted here to the data collected. The originality of this study rests in part on the categories
proposed to analyse representation of the dependent variable when the independent variable
is given as another letter, for this particular has not been previously addressed.

Further research along the present lines would include the exploration of other
meanings related to indeterminate quantities, such as unknowns. Here, students indi-
cated that letters can represent indeterminate quantities and argued that they can be
whatever number you want, but that is not true in other contexts.
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