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Abstract
This paper implies a prototype for a broad-band log periodic dipole antenna (LPDA) 
with dimensions of 20 × 40 × 0.508 mm3 equipped with directors. The LPDA is 
based on Roger’s RT5880 with εr = 2.2. The 4-arms with alternative stubs consti-
tute the LPDA, which is evenly spaced on both lines. At the substrate’s back, the 
50Ω main feeder line is placed on partial ground. The directors are also incorporated 
and studied in a regular matrix at a predetermined distance to improve gain, further 
reduce side lobes, and widen the frequency band. The performance of the antenna 
covers a wide spectrum of millimeter waves ranging from 26 up to 44 GHz. The 
realized gain for the antenna is 8.97, 11.96, 13.96, and 14.29 dB at 28 GHz, 35 GHz, 
38 GHz, and 43 GHz, respectively. The total gain is 14.29 dB as a peak gain. The 
antenna was designed and tested for 5G communication applications in autono-
mous vehicles, and the design cost for the antenna is low in comparison to dielectric 
lenses. The model exhibits symmetrical radiation patterns for the antenna range. The 
results of the simulations and the testing of the implemented antenna elements coin-
cide quite well. The proposed design outperforms earlier work in this field.
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1  Introduction

Antenna systems were developed to transport signals at a speedy rate with a lot 
higher capacity, thanks to antennas with a broad range and high gain as well as 
the quick development of communication technology. The suggested AVA is 
manufactured on RT 5880 and has the following dimensions: 30 mm × 12 mm 
× 0.5 mm. The deformations increase the gain of the simple Fermi-Dirac pro-
cess AVA with a gain ranging from 7.2 to 13.1 dBi. A pair of components with 
two bands, 5G proposed to use MIMO antenna. The microstrip design has been 
engineered to function at the resonant frequencies of 26 to 30 GHz, 36 to 41.5 
GHz, and beyond [1, 2]. An array antenna of 1 × 8 is created. The observed 
range is from 43 to 48 GHz, and the impedance spectrum of the array includes 
14.8% between 41.9 and 48.6 GHz [3]. The planned AVA works in the micro 
and millimeter wave parts of the spectrum, spanning 2.6 GHz to the above 
300 GHz. The AVA offers a consistent radiation pattern. The purpose of the 
“V”-shaped metamaterial is to increase gain [4]. The millimeter-wave antenna 
design process has exploded with the advancement of 5G networks, leading to 
the release of a range of MM-Wave antenna arrays. Since matching is essen-
tial for enhanced gain and spectrum, the Mmw is used to improve these sys-
tems. For a 5.8 GHz wireless local area network, an fr-4 substrate and an NZIM 
array configuration improves gain [5, 6]. Nevertheless, log periodic filters were 
employed to lessen the significant degradation in the Mm-wave bandwidths 
brought on by waves absorbing in the propagation channel. Dipole arrays are 
particularly important because of their greater range, greater gain, and con-
sistent radiation [6]. These have been utilized in a number of smartphone plat-
forms, such as base stations (BTS) and phased array antennas [7]. The notion 
is that the range of an LPDA array could be radically boosted by adding addi-
tional dipoles to it. Since the lowest frequency reacts to the longest dipole, a 
larger size is designed to increase the range toward the lower frequency [8]. 
LPDA antenna feeder techniques were also the focus of many studies. A rec-
ommended study on Mm-wave telecommunications bands around 24–28 GHz 
and 37–40 GHz maximizes the use of coaxial feed [9]. Patches are used to cre-
ate a frequency that is lower than the outcomes from the first element. Using 
gap capacitive and capacitance, an extra resonance point is produced in accord-
ance with the series resonance theory. It may also be viewed as a dimension 
decrease in order to reach a lower frequency range without needing a bigger 
total area [10]. A U-shaped slot with SIW LPDA is suggested at 28 GHz. Nev-
ertheless, no built model is offered in these studies, and neither is the corre-
sponding measurement data reported [11]. The 5 bent arms of the LPDA layout 
could be compared to a Rogers in LPDA design. The circular patch array for 
the wide spectrum LPDA for MMW is constructed and tested for 5G telecom-
munications at a frequency spectrum of 25–35.5 GHz [12, 13]. A prototype for 
an LPDA Microstrip covering a range of 28 GHz that is appropriate for 5G was 
created utilizing HFSS. The wide range actually caused the gain to decrease, 
but the frequency can be compressed to increase the gain [14]. A dipole strip 
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with periodic elements is used to create the Yagi-antennas in order to increase 
gain and line impedance. It is designed to operate at a frequency of 28–38 GHz 
[15]. An 11-element LPDA array with a total area of 90 × 52 mm2 is built on 
a thin substrate. Between 2.75 and at 3.53 GHz, and at 4 and 6.2 GHz, were 
the antenna bands [16]. A dual-band single-fed circular polarized dielectric 
resonator antenna was created for dual-purpose communication, like GPS [17]. 
I-shaped slots are suggested for use in 5G MIMO antenna systems operating at 
sub-6 GHz. The antenna is designed with pairs of folded radiating petals, each 
of which has a base buried within a double layer of FR-4 substrate. The two lay-
ers are separated by a common ground plane [18]. Carrel’s hypothesis served 
as the foundation for the design of a single-element antenna, which was then 
enhanced with a 50-microstrip feed-line with two orthogonal branches, pri-
marily improving the broadside radiation pattern and diversity characteristics 
[19]. Narrow bandwidth and poor radiation efficiency are drawbacks of on-chip 
antennas. In order to develop high-performance on-chip antennas for millime-
ter-wave and terahertz integrated-circuit applications [20]. This led to the crea-
tion of a small, architecturally straightforward, wideband, and highly effective 
antenna for use in V-band communication devices. A standard circle patch is 
used to design the antenna, and it is then modified using a second fractal circu-
lar patch [21]. A revolutionary new 3-D shared aperture 3 × 3 matrix antenna-
array for 5G wireless networks operating in the 26 GHz band. The radiation ele-
ments are hexagonal patches just above the general dielectric substrate and are 
activated by a metallic rod across 24.0–28.4 GHz [22]. It is suggested to use an 
ultra-wideband multiple-input multiple-output antenna based on a small copla-
nar waveguide method. A wide impedance bandwidth ranging from 3 to 11 GHz 
defines the design. The design is an ideal fit for portable electronics and ultra-
wideband wireless communication systems [23]. It is a linear multiple-input 
multiple-output antenna system that has been scaled down for 5G applications 
that operates at 28 GHz and 24.8 GHz. The antenna can operate between 28 
and 24.8 GHz with a 15 dB gain for each frequency and a bandwidth of 2.1 
and 1.9 GHz [24]. The pattern is a shortened patch in the form of a bear. The 
ground is sotted to generate a broadsided directional radiation pattern, and the 
radiator is composed of two circular slots and one rectangular slot at the feet of 
the patch. The directional antenna dimensions are 7 by 7 by 0.254 mm3, and its 
estimated bandwidth ranges between 0.86 and 1.08 GHz [25]. With an empha-
sis on graphene enabled antennas, absorbers, and sensors, this article offers an 
operational view of advanced graphene-based electromagnetic devices and ana-
lyzes the advantages and disadvantages of alternative design techniques [26]. 
Dual-band, eight-element, MIMO antenna in the shape of an H for use in sub-6 
GHz (5G) smartphone applications. The parts are positioned on both sides of 
the substrate and are designed for the side edge frame of smartphones. Ensur-
ing low mutual interaction between antenna elements [27]. The antenna oper-
ates between 1.173 and 1.210 THz at 1.19 THz, 1.270 and 1.320 THz at 1.3 
GHz, and 1.368 to 1.346 THz at 1.3 GHz (at 1.4 GHz). The antenna is manu-
factured on silicon with a 20-micrometer thickness and a dielectric constant of 
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11.9. By varying the chemical potential in terms of the graphene, parameters of 
the antenna such as frequency, gain, and efficiency were adjusted [28]. This is 
a broadband, four-port (MIMO), S-shaped mmWave antenna with a frequency 
range of 25–39 GHz. The S-shape antenna has a single element dimension of 
10 mm by 12 mm and a four-port MIMO configuration dimension of 24 mm by 
24 mm by 0.25 mm. The gain obtained overall is 7.1 dBi [29]. A smart phone’s 
dual broadband sub-6GHz (MIMO) antenna setup. The antenna is made out of 
FR4. There are eight antennas and feedings. The designs are 150 × 75 × 0.8 
mm and 150 × 6 × 0.8 mm in size, respectively. At 3.5 and 5 GHz, the system 
resonated [30]. The following will be covered in this essay: “Antenna configu-
ration and layout with no directors” is discussed in Section 2. Section 3 should 
present the antenna design with a director matrix. Section 4 should include the 
details on the parametric studies for LPDA. Section 5 should present the discus-
sions and observations. Section 6 should cover the antenna performance as well 
as the radiation characteristics. Section 7 should include the conclusions.

2 � Antenna Design Without Directors

The LPDA array is imprinted on the RT5880. The entire antenna size is 40 × 20 
mm, including all the length of the feed. The metallic depth is t = 0.035 mm, the 
thickness of the substrate is h = 0.508 mm, of tanδ = 0.0009, a relative permittiv-
ity of εr = 2.2. The bending arms provide the highest range while minimizing the 
total dimensions of the antenna. The reverse is meant by a partial ground plane to 
achieve UWB behavior. Partial ground planes are crucial. In essence, incomplete 
grounds release some of the substrate energy. The quality factor decreases as a 
result of the decreased energy storage in the substrates. The bandwidth increases 
as the Q factor falls. The geometrical factor is the proportion of each adjacent 
item’s length to width at the headmost location, along with the dipole elements N 
as well as the spacing factor r. The largest array’s length, L1, may be calculated 
from its lowest resonance frequency, fmin, and the spacing factor r, which deter-
mines how far apart the dipole components are from one another. The top and 
bottom viewpoints of an actual LPDA design having 4 bending arms but no direc-
tors are shown in Fig. 1a and b. The nth dipole element of the designed LPDA 
antenna has the following parameters: Ln, Wn, and Sn. The micro-strip feeder 
width is abbreviated as Wf. The feeding Zo was adjusted by the dipole array to be 
roughly 50 ohm to match the vector network analyzer’s readings. It is important 
to determine the geometrical constant, the number of dipole elements N (the sug-
gested LPDA element has N = 4 elements), and the separation factor r. The sepa-
ration parameter is the spacing between relative dipole elements, while the geo-
metric constant is represented as the proportion of the widths and lengths of the 
relative dipole elements. The 50-ohm feeding line covers a section of the ground 
plane at the substrate’s backside. All of the dipole arms are arranged uniformly 
along a parallel microstrip transmission line on both sides of the substrate.
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Antennas are designed using parameters such as dipole length Ln, width Wn, and 
the distance Sn between two dipoles. The other elements are calculated using the 
be-low-mentioned geometrical ratio once the length of the L1 has been established:

Fig. 1   a LPDA Array Schematic 
Diagram without Directors with 
50-Ω line feeding; top view; (b) 
back view
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The spacing factor is defined as: where Fn+1 is bigger than fn and the parameter 
is:

To find the LPDA number of dipole elements, we must use the following formula:

According to the following formula, starting from the shortest (Lmin) element, 
the total length can be configured to the longest element (Lmax):

To ascertain the bandwidth of the active region (BAR), the following formula can 
be used to determine the effective dielectric constant εreff:

3 � The Proposed LPDA Loaded with Directors

Along the y-axis, the directors’ elements are stimulated. The optimum parameters 
for directors can be seen in Tables  1 and 2. It is possible to concentrate the cur-
rent from the antenna through all these directors by forming the matrix of direc-
tors, which increases gain and decrease side lobes. To provide high performance for 
the array and enhance the high gain for the antenna, the directors were designed as 
microstrip patches in a circular shape and placed along the antenna at a y-axis on the 
front side at a parametrically studied distance from the antenna, beginning with 1 
director and forming a row of them with a studied displacement between each direc-
tor and each row. The effect of the director is shown in Table 3. We observe that the 
beam is focused forward as a result of the addition of directors. Directors will there-
fore improve the antenna’s gain. They alter the radio waves’ radiation patterns by 
re-radiating them with a new phase. As a result, “constructive interference” occurs, 
resulting in a stronger total signal and hence reducing the side lobes and enhancing 
the gain.

As stated, circular directors are advocated for the LPDA arrays. The same radia-
tion effectiveness could well be reached because the current produced on the arms 
is more suitable for wave propagation than radiation. The first miniature LPDA is 
based on the arms shown in Fig. 2. The antenna with infused straight directors is 

(1)τ = Ln∕(L(n + 1)) = Sn∕(S(n + 1)) = Wn∕(W(n + 1)) = Fn∕(F(n + 1))

(2)σ = ((S(n + 1) − S(n))∕(2L(n + 1)))

(3)N = 1 + (Ln(Bs))∕(Ln(1∕τ))

(4)L = λmax(1 − 1∕Bs)cotα

(5)λmax = 2Lmax =
V

fmin

(6)εreff =
��
εr + 1

�
∕2

�
+
��
εr − 1

�
∕2

�
1∕

√�
1 + 12h∕W

1

�

(7)Bs = BBAR = B[1.1 + 7.7(1 − τ2)cotα]
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equivalent to the unloaded antenna in Fig. 1, with the exception that the directors 
are contributed as a matrix in front of the antenna with fifteen concurrent straight 
rows to increase gain while also improving efficiency. For improved radiation and 
gain enrichment, the distance among director units and the diameter of the direc-
tors are also tuned. The directors are made to replace metamaterials and dielectric 
lenses in order to increase gain by producing a director’s impact. Metamaterials 
inspire new ways of thinking about conventional electromagnetic ideas. The biggest 
downsides are the resonant properties of the metamaterial structures and some of the 
ensuing bandwidth restrictions. Antennas inspired by metamaterials often have low 
gain. The main difficulties are caused by the resonant properties of the metamaterial 
structures and certain resulting bandwidth restrictions. While metamaterials are the 

Table 1   Dimensions of LPDA 
without Directors

Symbol Value (mm)

W 20
L 40
Wf 0.76
Wg 10
Lg 10.23
L1 1.31
L2 0.631
L3 0.433
L4 0.3
W1 0.626
W2 0.256
W3 0.255
W4 0.24
S1 0.7
S2 0.433
S3 0.455
S4 0.256
L1_1 0.21
W1_1 0.21
h 0.508

Table 2   Optimized dimensions 
for directors

Parameter Value (mm)

r_Directors 0.5
Sp_Dir 0.3
Sp0_ Dir 0.506578
W_ Dir 11.40
L_ Dir 19.20
d_ Dir 1
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greatest candidates for 5G technologies, there are a few drawbacks that should be 
noted. (Metamaterials work over a restricted range of wavelengths, are challenging 
to create in large quantities, cannot change shape while operating, and are lossy. Our 
proposed work with directors outperforms metamaterial in terms of performance. 
[14].) The antenna configuration for dielectric lenses is heavy and large since lens 
antennas are used at low frequencies. For the same gain and bandwidth, these anten-
nas cost more than reflector antennas for the same gain and bandwidth. The direc-
tor’s inclusion improves the antenna’s range and impedance matching. The coupling 
between directors makes the spacing of the directors a significant element because 
it affects the reflection at the input. The spectrum and gain are drastically decreased 
with even a small amount of separation between directors. There will be substantial 
losses if the directors are too far apart.

4 � Parametric Study

The directors are discretely incorporated in front of the antenna and are placed 
uniformly. The director, the reflectors, the dipole, and a section of the feeder line 
are imprinted on the upper layer of the substrate, as seen in Fig. 2. The gain in 
the antenna range increases only marginally when this configuration is modelled 
with a single set of directors placed far from the antenna at an optimal separa-
tion, with a 1.2 mm gap among directors. The gain was discovered to rise pre-
cisely at the highest frequency. Three additional directors were added. However, 

Table 3   Realized gain values 
after studying the LPDA 
Directors

No. of Director Realized gain(dB)

1 Director 11.47
3 Director 11.64
5 Directors 11.67
(1 Row) contain (9) Directors
1 Row 11.68
2 Row 11.82
3 Row 12.20
4 Row 12.32
5 Row 12.59
6 Row 12.67
7 Row 12.93
8 Row 13.03
9 Row 13.21
10 Row 13.40
11 Row 13.44
12 Row 13.58
13 Row 13.70
14 Row 13.88
15 Row 14.29
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this had no good effects other than a slight increase in gain. As each row had 
nine items, the number of directors was extended by one row at a time. It created 
a 0.5 mm-diameter circle. The first row, which had an impact just on the anten-
na’s gain, was indeed the subject of parametric research. On the basis of that, 

Fig. 2   a LPDA Array Schematic Diagram with Directors; top view; (b) Back view

Fig. 3   Chart for gain vs. increas-
ing directors
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Fig. 4   (a), (b), (c) S11 parametric study for increasing Directors numbers

Fig. 5   S11 for simulated LDPA 
in Wg without Directors
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another row was added, and we discovered another rise in gain until there were 
15 rows. After examining 15 rows, the gain began to progressively fall as the 
current concentration and energies fell, a reduction in the side lobe level (SLL), 
and an increase in the efficiency of the antenna. As a result, the maximum gain 
of the antenna is 14.29 dB, as depicted in Table  3 and Figs.  3. Additionally, 
there is a slight modification to s11 in Figs. 4, 5 and 6. It is clear from the LPDA 
parameters that once the variable Wg is changed, the side lobes of the recom-
mended LPDA antenna must change to the Wg parameter’s best-optimized value. 
It ought to be clear that the parametric analysis led to the optimum Wg value 
being set at 10 mm, as illustrated in Fig.  6. The performance of the antenna, 
particularly its radiation characteristics, is significantly impacted by the smaller 
ground width. Numerous parametric experiments were carried out using the 
MWSCST 2019 program to investigate the effects of a critical parameter, such 

Fig. 6   S11 for simulated LDPA 
in Wg with Directors

Fig. 7   Total gain without dir. 
vs Wg
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as the partial ground Wg, on the gain, bandwidth, and (SLL). By using built-in 
optimization methods within the CST, other variables can be enhanced and pre-
pared for better matching bandwidth and high gain.

Figure 3 shows the curve or graph for increasing the directors’ number step by 
step while the simulation process and parametric study for the directors, but Figs. 7, 
8 and 9, shows the total realized gain for simulated and measured gain.

5 � Results and Discussions

The S11 of the built-in LPDA was measured using a Vector Network Analyzer 
ZVA 67 and a port impedance of 50 ohm. All test results are adjusted for the 
50-ohm feeding line losses as shown in Fig. 10 and 11. Figure 12 compared the 

Fig. 8   Total gain with dir. vs 
Wg

Fig. 9   LPDA Total Realized 
gain
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Fig. 10   Photograph of the prac-
tical LPDA prototype antenna 
S-parameters measurements

Fig. 11   Photograph of the Fabri-
cated LPDA model
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outcomes of the simulation with and without directors to the observed S11 up 
to 43 GHz. The test findings show that the antennas conform well and operate 
for 5G operations in a broad frequency range, between 26 and 44 GHz, with 
an S11 below −10 dB as seen in Fig. 13. The proposed model has a measured 
S11 of around −36.48 dB at 43 GHz compared to the modelling results of the 
MWSCST software, which were −28.99 dB. Simulation models typically pro-
duce consistent outcomes. The inconsistency in observed results is brought on 
by fabrication accuracy and the frequency-dependent permittivity behaviour 
of the substrate at higher frequencies, which could not be reliably simulated. 
In Fig. 12, in comparison to the LPDA without it, the simulation result of the 
scheme with directors exhibits the best result. Furthermore, the impedance fre-
quency band has S-parameters ranging from 26 to 44 GHz. The overall gain 
from choosing to use fabrication to experimentally validate the simulations. 

Fig. 12   S11 for LDPA with and 
without directors

Fig. 13   S11 for simulated and 
measured LDPA with Directors
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Furthermore, the gain is improved and raised to 14.29 dB at 43 GHz with full 
directors. The antenna clearly covers a broad frequency range with S11 around 
−26.95 dB, with antenna performance spanning from 26 to 44 GHz. It is clear 
from Fig. 13 that the S-parameter only slightly changes, but the gain rises due 
to the directors’ presence and the surface current that passes through them, low-
ering loss. It was discovered that the S11 value had reached about −28.99 dB.

When the director’s matrix was incorporated into the design, as illustrated in 
Fig.  4, it was noticed that the S-parameter in the parametric studies had slightly 
changed. However, it was found that by altering the value of the variable Wg in the 
presence and absence of directors, the best choice was found to be 10 mm, as seen in 
Figs. 5 and 6. Also, Tables 4 and 5 show the numerical values for the total gain and 
S11 resulting from the intensive parametric study for the chosen convenient value for 
Wg.

6 � Antenna Gain and Radiation Pattern Measurements

The gain of LPDA was calculated using the radiation pattern measurements. Two 
consecutive and equivalent horn antennas that were put up in an aligning configu-
ration that was line-of-sight at a separation of R were used to determine the gain. 
While another is used for receiving, the first is utilized for transmitting. They 
must be separated by a distance greater than or equal to R = 2D2/λ

O
 , where D and 

λ
O

 are the antenna’s greatest aperture dimensions and the wavelength for free-
space at the operating frequency f, in order to satisfy the far-field requirement.

Table 4   The impact of Wg 
without directors on S11

Wg S11 (dB) Total gain
(dB)

2  − 20.459 11.31
4  − 22.908 11.01
6  − 26.55 11.16
8  − 26.162 11.32
10  − 26.716 11.48

Table 5   S11 with the impact of 
directors on Wg

Wg S1

1 (dB)
Total gain (dB)

2  − 21.439 12.59
4  − 28.15 13
6  − 26.97 12.97
8  − 25.428 11.32
10  − 29.98 14.29
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Power sent and received are denoted by Pt and Pr, respectively. Due to the 
similarities of the two antennas, the observed transmission coefficient from the 
VNA is represented by the power ratio Pr/Pt. within Fig.  9. The simulation’s 
results indicate improved concordance between both the simulated and meas-
ured gains. The antenna’s total gain has been calculated to be 14.29 GHz at 43 
GHz, 13.44 GHz at 38 GHz, 11.44 dBi at 35 GHz, and 8.60 GHz as shown in 
Tables 6 . Since the accuracy of the measurement equipment diminishes with 
frequency, there is a mismatch between what was modelled and what was meas-
ured. Scattering and reflection from the environment also contribute to this. 
Prior to measurements, there was no absorbent material covering the Antenna 
under test (AUT). However, the total realized gain without directors has almost 
reached 11.48 dB with the best value for Wg in Fig.  7. It is evident that the 
LPDA gain has increased by about 3 dB overall.

An AUT is installed on a revolving surface and rotated around at an azi-
muth to produce a 2D pattern. The antenna’s two primary axes are frequently 
measured to obtain details such as the beam’s breadth in the H and E planes 
in Figs.  14 . A 360-degree rotating rod is installed for attaching the antenna 
under test. A second pole with the regular transmitting horn antenna attached 
to it is situated about 20 cm away. Multiple data sets must be acquired every 
5° throughout time to measure the radiation pattern. This suggested configura-
tion is used to plot the actual radiation patterns of the implemented antenna. 
Figs.  15 and 16 shows the modelled and measured radiation patterns of the 
antenna in the E-plane and H-plane at 28, 35, and 38 GHz. It is evident that 
the suggested antenna produces a consistent radiation pattern over the reported 
bandwidth. The radiation patterns in the H-plane and E-plane are depicted in 
Figs. 17 and 18, where better side-lobe suppression is demonstrated by the pro-
posed LPDA antenna.

The director’s matrix, which improves and enhances the high gain and sta-
ble radiation pattern antenna used for 5G applications, also covers a broadband 
range and wide bandwidth. The antenna also has better efficiency. The antenna 
has small dimensions, and the design cost for the antenna is low in comparison 
to dielectric lenses. Our proposed work has the highest gain compared to the 
previous work. This is the novelty and contribution of this work compared with 
previous works as shown in  Table 7.

(8)Pr∕Pt = |S21|2 = GtGr(λO∕4πR)
2

Table 6   Simulated and 
measured LPDA realized gain

Frequencies
(GHz)

Simulated
gain (dBi)

Measured 
gain (dBi)

28 8.97 8.60
35 11.96 11.44
38 13.96 13.44
43 14.29 13.98
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Fig. 14   LPDA radiation effi-
ciency

Fig. 15   Schematic diagram for 
measurements setup

Antenna under test 
(Proposed Antenna) 

Transmitting Horn 

                     Distance 

Rotating Disk 

7 � Conclusions

In this paper, a millimeter-wave functioning LPDA antenna was proposed. The 
wideband performance of the suggested architecture spans frequencies of 26 GHz 
to well over 45 GHz. At 43 GHz, the LPDA attained a total realized peak gain 
of 14.29 dBi. The LPDA enriches the gain at 28  GHz, 35  GHz, 38  GHz, and 
43 GHz by 8.97 dB, 11.96 dB, 13.96 dB, and 14.29 dB, respectively. The antenna 
achieved a better efficiency of 96%. The impedance match for the array is nearly 
52%. The proposed directors improved the bandwidth while also increasing the 
gain and antenna efficiency. The proposed antenna’s radiation pattern and realized 
gain are simulated and measured. Numerous benefits, including a high antenna 
measured gain, wide band, a consistent radiation pattern, and good SLLs, are 
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Fig. 16   Radiation pattern meas-
urements setup

(a)E-plane 28GHz (b) E-plane 35GHz (c) E-plane 38GHz 

Fig. 17   Simulated vs. Measured Radiation pattern of LPDA E-Plane at: (a) 28  GHz, (b) 35  GHz, (c) 
38 GHz

(a) H-plane 28GHz (b) H-plane 35GHz (c) H-plane 38GHz 

Fig. 18   Simulated vs. Measured Radiation pattern of LPDA H-Plane at: (a) 28 GHz, (b) 35 GHz, (c) 38 GHz
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confirmed by simulation using MWSCST software. According to simulated and 
measured data, the prototype antenna exhibits better properties than the current 
antennas in the literature. We claim that the proposed LPDA is one of the viable 
options for use in 5G autonomous vehicle applications.
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