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Abstract
The present paper addresses numerical calculations on the eigenvalues of hybrid modes in
corrugated circular waveguides with varying diameter and corrugation depth. Such
calculations are essential for the numerical optimization of advanced mode converters
and diameter tapers for future low-loss high-power microwave applications, like broad-
band high-power radar sensors for space debris observation in low earth orbit (LEO).
Corresponding mode converters and diameter tapers may be synthesized based on
coupled mode theory. Of particular importance here is the ability to consider varying
mode eigenvalues along the perturbed waveguide. The procedure presented here is able to
consider arbitrary variations of the corrugation depth as well as the waveguide diameter
and therefore is highly flexible. The required computational effort is low. Limitations of
the method are discussed.

Keywords High-power microwaves . Corrugated waveguides . Hybridmodes . Coupledmode
theory .Mode converters . Diameter tapers

1 Introduction

As already predicted in the late 1970s [1], space debris become a major issue for the use
of satellites [2, 3]. In particular, the amount of space debris in low earth orbit (LEO) is
increasing rapidly [3]. To detect and map space debris, high performance radar sensors
can be used [3, 4]. Due to the enormous progress in the field of high-power microwave
technology [5, 6], corresponding radar sensors can also be operated in high frequency
bands such as the W-band [7, 8]. Due to the high bandwidth available there, very high
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resolutions can be achieved [7–9]. In near future, even W-band transmission powers in
the range of 100 kW may be achieved [10]. To realize a W-band radar sensor with such a
high transmission power, a suitable high-power amplifier as well as an appropriate
transmission line is required. The transmission line connects the output of the high-
power amplifier with the antenna feed. Due to the high power, oversized transmission
lines are required. A suitable transmission mode is the HE11 hybrid mode in a corrugated
circular waveguide [11–13]. Low ohmic loss, small mode conversion, and low-sidelobe
radiation patterns can be achieved [11–13]. Important components of an overmoded
transmission line are miter bends [14, 15], polarizers [16, 17], rotary joints [18], and
waveguide diameter tapers [19, 20]. For design verification of such components, low
power measurements are required. Here, the fundamental TE10 mode within a rectangular
waveguide, provided by a microwave extension module [21] of a Network Analyzer
(NWA), has to be converted into the HE11 hybrid mode within a highly oversized
corrugated circular waveguide. In a simple way, this may be realized by a corrugated
horn antenna [22, 23], illuminating the aperture of a highly overmoded circular wave-
guide [24, 25]. However, since the component behavior under test may be sensitive in
respect to the mode content [14, 15], a mode purity as best as possible is required, within
the considered frequency range. A concept based on a corrugated horn is limited in
respect of the mode purity [24, 25]. Therefore, a waveguide mode converter is preferred
here, which may attain a significant better mode purity [24]. Such a mode converter may
consist of (1) commercial rectangular TE10 ↦ circular TE11 transition and (2) customized
TE11 ↦HE11 mode converter, based on tapered variation of the corrugation depth [26,
27], integrated within a waveguide diameter up-taper.

For the numerical synthesis of such an advanced mode converter with broadband
frequency behavior, coupled mode theory [28–30] may be applied. However, in calcu-
lations on a perturbed corrugated waveguide, varying eigenvalues are of particular
importance to consider. The present paper addresses fast numerical calculations on
eigenvalues of a corrugated waveguide with varying diameter and corrugation depth.
To the best knowledge of the authors, similar calculations along an arbitrary perturbation
were not published yet.

The paper is organized as follows: Section 2 introduced the coupled mode formal-
ism, able to calculate mode conversion within multimode waveguides. In Section 3,
fundamentals of corrugated waveguides and their eigenvalues are discussed. Section 4
addresses numerical calculations on the eigenvalues of a corrugated waveguide with
varying diameter and corrugation depth. Section 5 closes with the conclusion and an
outlook for future research activities.

2 Coupled Mode Theory

The principle concept of the coupled mode theory is to expand an electromagnetic field
within a perturbed waveguide as superposition of eigenmodes of a uniform reference
waveguide, with the same cross section [28–30]. Neglecting ohmic wall losses and
backward travelling waves due to reflections (highly oversized waveguide) as well as
restricting to adiabatically varying waveguide parameters (characteristic length of vari-
ation large compared to the wavelength), the corresponding mode amplitudes satisfy the
first-order differential equation [28–30]:
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d

dz
In zð Þ ¼ − jβn � In zð Þ þ ∑

n≠m

m
Κnm � Im zð Þ ð1Þ

with In(z) as complex mode amplitude at the position z, βn as corresponding phase
constant, and Κnm as coupling coefficient [30–32] between the nth and mth eigenmode
of the uniform reference waveguide. To eliminate fast varying phase terms, the substi-
tution In(z) = An(z) · exp[−jβn · z] is introduced with An(z) as slowly varying complex
mode amplitude. Using the Runge-Kutta integration method [33], such a substitution
reduces the required step width and therefore the required computational effort. It
follows:

d

dz
An zð Þ ¼ ∑

n≠m

m
Κnm � exp −jΔβ � z½ � � Am zð Þ ð2Þ

with

Δβ ¼ βn−βm ð3Þ
In general, the exponent in Eq. (2) has to be substituted by [11, 34]:

− j∫L0Δβ dz ð4Þ
with L as the perturbation length. This allows consideration of varying phase constants, for
example, caused by a varying waveguide diameter.

In matrix representation, Eq. (2) reads:

d

dz
Υ zð Þ ¼ H �Υ zð Þ ð5Þ

with

Υ zð Þ ¼
A1 zð Þ
A2 zð Þ
⋮

AN zð Þ

0
BB@

1
CCA ð6Þ

and

hij ¼
0 for i ¼ j

Κnm � exp − j∫L0 βi−β j

� �
dz

h i
for i ≠ j

(
ð7Þ

as the coefficients of the coupling matrix H.
Equations (5)–(7) show that knowledge about varying phase constants is of particular

importance to control mode conversion within a perturbed waveguide. This results in the
particular importance of varying mode eigenvalues since the phase constant depends on the
waveguide diameter as well as on the mode eigenvalue [11]:

β ¼ k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

X
ka

� �2
s

ð8Þ

with a as the waveguide diameter, k = 2π/λ as the free-space wavenumber, and X as the mode
eigenvalue.
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3 Corrugated Waveguide

Figure 1 shows a simplified sketch of a corrugated waveguide with the radius a, the
corrugation period c, the slot width b, and the corrugation depth d.

Typically, hybrid modes of a corrugated waveguide are referred according to the balanced
hybrid mode condition [22]:

ϑm Xð Þ ¼ �m ð9Þ
with

ϑm Xð Þ ¼ X � J
0
m Xð Þ

Jm Xð Þ ð10Þ

The function Jm(x) is the Bessel function of the first kind and the order m. The function J
0
m xð Þ

is its first derivation in respect of x. For the nth root and +/−, HEmn / EHmn modes occur [22,
35]. Equation (9) is valid for a highly oversized waveguide (ka = 2π · a/λ↦∞) having a
longitudinal wall surface impedance Zs = − Ez/Hφ ≠ 0. For ka ≠ ∞, the surface-impedance
model [11, 22, 31, 32], which assumes a uniform surface impedance, is widely used.
Corresponding calculations lead to [35]:

ϑm Xð Þ−
meβ� �2

ϑm Xð Þ ¼ X
ka

� �2

� Sm ka; k aþ dð Þð Þ ð11Þ

with

eβ ¼ β=k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

X
ka

� �2
s

Sm x; yð Þ ¼ x � J
0
m xð Þ Ym yð Þ−Jm yð Þ Y 0

m xð Þ
Jm xð Þ Ym yð Þ−Jm yð Þ Ym xð Þ

ð12Þ

The function Ym(x) is the Bessel function of the second kind and the order m, and Y
0
m xð Þ is its

first derivation in respect of x.
In principle, Eq. (11) is derived as [35–39] (1) calculation of the field components for r ≤ a

as superposition of transversal electric (TE) and transversal magnetic (TM) field components,

Fig. 1 Corrugated waveguide with the waveguide radius a, the corrugation period c, the slot width b, and the
corrugation depth d
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(2) calculation of the field components for a < r < (a + d) as a pure TM mode with Ez = const.,
and (3) matching the field components at r = a.

A pure TM mode within the corrugation requires b < λ/2. In this way, a radial TE mode
cannot be supported, and no Bragg reflection [40, 41] occurs [42, 43]. The longitudinal surface
impedance Zs at r = a can be represented as [35, 44]:

Zs ¼ − jZ0 � ka
Sm ka; k aþ dð Þð Þ ≈ jZ0 tan kdð Þ ð13Þ

For ka↦∞ and Zs ≠ 0, Eq. (11) merges into Eq. (9).
Note that the surface-impedance model neglects space harmonics [45, 46] and therefore is

restricted to c ≈ b (thin corrugation ridges) and b ≪ λ/2 (large number of corrugation slots per
wavelength) [22, 23, 35–39]. In more general calculations, space harmonics within r ≤ a as
well as a < r ≤ (a + d) have to be considered. Corresponding calculations lead to rather
elaborate equations [22] which are out of scope of the present paper. Simplified equations
result for the restriction to K space harmonics within r ≤ a. Corresponding calculations lead to
[22]:

b
c
� ∑

K

N¼−K

1

η

� �2

� ϑm ηð Þ−
meβN

� �2

ϑm ηð Þ

2
64

3
75 �

sin βN � b
2

� �

βN � b
2

� � ¼ Sm ka; k aþ dð Þð Þ
kað Þ2 ð14Þ

In principle, the derivation of Eq. (14) is identical to the mode matched procedure introduced
for the surface-impedance model. But now, for r ≤ a, space harmonics are considered with

βN = β +N · 2π/c, eβN ¼ βN=k, and η ¼ a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2−β2

N

q
[22, 45, 46]. For K = 0 (fundamental

space harmonic), c ≈ b, and b ≪ λ/2, Eq. (14) merges into Eq. (11).
Figure 2 compares calculated eigenvalues for m = 1 (HE1n / EH1n modes) and X ∈ [0, 7],

based on Eq. (14) with K = 1 (first spatial harmonic) and the surface-impedance model, given
in Eq. (11). The blue data points are calculated using the surface impedance model. The yellow
data points are calculated with ka = 10, b = 0.1 · λ/2, and c = 1.1 · b, fulfilling the terms and
conditions of the surface-impedance model (c ≈ b, b ≪ λ/2), whereas the brown data points are
calculated with ka = 10, b = 0.4 · λ/2, and c = 2 · b, violating the terms and conditions of the
surface-impedance model. Figure 2 shows good agreement of the surface-impedance model
and Eq. (14), as long as those terms and conditions are fulfilled. Otherwise, significant
deviations occur.

The curves in Fig. 2 were calculated using the Newton-Raphson method, addressed in
Section 4.1. Calculations with K = 1 and K = 2 revealed that the consideration of an increasing
number of space harmonics leads just to small variations compared with the calculations based
on the first space harmonic.

In the following, the consideration is restricted to the surface-impedance model. The
explicit corrugation geometry is omitted here which leads to a more descriptive representation
of the principle procedure. However, this requires that the terms and conditions of the surface-
impedance model (c ≈ b, b ≪ λ/2) are fulfilled (see Fig. 2). In the case, that they cannot be
fulfilled; only Eq. (11) must be replaced by Eq. (14).
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4 Numerical Calculations

To calculate the variation of the eigenvalues along an arbitrary perturbation, Eq. (11) is solved
numerically. In Subsection 4.1, the Newton-Raphson method is introduced, which here is used
for numerical calculations. Subsection 4.2 addresses corresponding results.

4.1 Newton-Raphson Method

The principle concept of the Newton-Raphson method is to linearize the considered function
f(x) at a starting point x0 and use those roots as improved starting point of a second iteration
[47, 48]. It follows:

xnþ1 ¼ xn þΔx ð15Þ
with

Δx ¼ −
f xnð Þ
f 0 xnð Þ ð16Þ

The iteration is aborted when the rate of change of the approximated solution falls below a
specified value.

Fig. 2 Calculated eigenvalues for m = 1 (HE1n / EH1n modes), X ∈ [0, 7], and ka = 10 for varying corrugation
depth d, considering the first space harmonic (K = 1, yellow and brown curves) and the surface-impedance model
(blue curve)
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For numerical calculations, the central difference quotient can be used [49]:

f
0
xð Þ≈ f xþ hð Þ− f x−hð Þ

2h
ð17Þ

To avoid tripping due to a too small h and a not sufficient accuracy through a too large h,
h ¼ ffiffiffiffiffiffiffiffi

eps
p

is used here, with eps as floating point relative accuracy (for double precision:
eps = 2−52) [50].

To find all solutions of interest, the Newton-Raphson method is calculated multiple times
with random initialization within the range of interest.

4.2 Results

Figure 3 shows the calculated eigenvalues for m = 1 (HE1n / EH1n modes), X ∈ [0, 7], and very
large ka = 1000 (b¼∞, blue curves), as well as for ka = 10 (brown curves) in dependence of the
corrugation depth d ∈ [0, λ/2]. For ka↦∞, the eigenvalues are close to constant. For moderate
ka, the eigenvalues depend strongly on the corrugation depth. However, for d ≈ λ/4, in each
case, broadband frequency behavior is shown, with a relative bandwidth far beyond 10%. For
d↦ 0 or λ/2, Eq. (13) gives Zs = 0, and the HEmn / EHmn modes merge into ordinary TEmn /
TMmn modes [51, 52]. As shown in Fig. 3, this transition is abrupt at large ka. For a TE11↦
HE11 mode converter, discussed in Section 1, this is critical in respect of parasitic mode
conversion [27, 51, 52].

Fig. 3 Eigenvalues for ka↦∞ and ka = 10 in dependence of the normalized corrugation depth d
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To ensure a high mode purity, a customized variation as well on the corrugation depth [26,
27, 51, 52] as the waveguide diameter may be used. However, this requires the ability to
calculate the variation of the eigenvalues along an arbitrary perturbation with low computa-
tional effort. This is possible with the presented procedure here. As example, Fig. 4 shows
numerical calculations for m = 1 (HE1n / EH1n modes), X ∈ [0, 7], and ka = 50 (blue color)
along a tapered variation of the corrugation depth (brown color), with:

d

dz
d zð Þ∝sin2 π

L
z

� �
ð18Þ

Figure 4 shows that due to the tapered variation of the corrugation depth, the strong variation at
d↦ 0 or λ/2 could be smoothened. The eigenvalues change slowly along the perturbation,
which leads to low parasitic mode conversion. For a TE11↦HE11 mode converter, discussed in
Section 1, this is essential [26, 27, 51, 52]. For a numerical synthesis, an even more optimized
tapering of the corrugation depth may be applied. However, this is out of scope of the present
paper. For comparison, Fig. 5 shows the eigenvalues along a perturbation with ka = 50 and a
constant rate of change (linear progression).

5 Conclusion

The present paper addresses fast numerical calculations on the eigenvalues of hybrid
modes in corrugated circular waveguides with arbitrary perturbation of the waveguide
diameter and the corrugation depth, in case that the surface-impedance model is valid.

Fig. 4 Eigenvalues for ka = 50 and a tapered rate of change of the varying corrugation depth d
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Such calculations are essential for the synthesis of optimized mode converters and
diameter tapers within corrugated waveguides.

Future research activities will address the embedding of the outlined procedure into the
numerical synthesis of broadband corrugated waveguide mode converters and diameter tapers.
Such passive microwave components will be essential for future broadband high-power
microwave applications.
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