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Abstract
In a chirped pulse experiment, the strength of the signal level is proportional to
the amplitude of the electric field, which is weaker in the millimeter-wave or
submillimeter-wave region than in the microwave region. Experiments in the mil-
limeter region thus require an optimization of the coupling between the source and
the molecular system and a method to estimate the amplitude of the electric field as
seen by the molecular system. We have developed an analytical model capable of
reproducing the coherent transient signals obtained with a millimeter-wave chirped
pulse setup operated in a monochromatic pulse mode. The fit of the model against
the experimental data allowed access to the amplitude of the electric field and, as a
byproduct, to the molecular relaxation times T1 and T2.

Keywords Chirped pulse · Coherent transients · Polarization · Relaxation time ·
Rabi frequency · Bloch equations

1 Introduction

Recent developments in electronics allow the realization of new kinds of experiments
which were difficult to perform during the previous millennium [1–5]. In particular
the existence of arbitrary wave generators in the microwave region associated with
amplified frequency multiplier chains and high-speed giga-sampling oscilloscopes
make it possible to shape any type of electromagnetic pulse with a time precision of
the order of a nanosecond. These improvements in microwave and millimeter-wave
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sources allow the design of chirped pulse (CP) experiments routinely used nowadays
in high resolution rotational molecular spectroscopy. They allow the bandwidth and
available power of modern millimeter sources to be exploited. High instrument sen-
sitivity is achieved by efficient averaging of many cycles made possible by the phase
repeatable pulses and the coherent nature of the molecular reemission. This gives
experiments able to provide a rotational spectrum over a few tens of GHz in a minute.
On the other hand, the nanosecond temporal accuracy of CP gives access to kinetic
or transient experiments [6]. In the millimeter-wave and submillimeter-wave ranges
[3, 4, 7], the source power is often weak, suggesting the use of slow CPs to enhance
the signal. The drawback in this case is the dependence of the line intensity on its
temporal position within the pulse. However, a heuristic correction to this problem
has been proposed by our group [8].

A typical CP measurement cycle consists of two steps. In the first step, a gas
sample is polarized by the CP. In the second step, the source is switched off and the
emission of the molecules, corresponding to the Free Induction Decay (FID) signal,
is recorded. The spectrum of the molecular emission is then recovered by the use of
a Fourier transform. The polarization of the sample reached at the end of the CP and
thus the Free Induction Decay signal depends on the Rabi frequency Ω0 = μab E0

�
,

where μab is the transition dipole moment and E0 the electric field amplitude seen
by the molecular system [8–10].

In most millimeter-wave CP experiments, the electromagnetic field felt by the
molecular system is not amplified by a resonant cavity unlike experiments in the
1980s for which molecular beams were coupled to resonant cavities [11–13]. At mil-
limeter wavelengths, the available power is limited by the power handling capacity of
the frequency multipliers. A technique to characterize and optimize the electric field
observed by the molecular system at these frequencies is then desirable.

Park et al. [4] proposed to measure the source power coupling by using coherent
transients experiments. It consists of exciting a transition with a resonant single-
frequency pulse and recording the amplitude of the FID signal as a function of the
pulse duration. They use a molecular beam expansion under collision-free conditions
which allows them to neglect the relaxation time of the population difference T1. The
resulting characteristic of the FID signal is a damped oscillation driven by the Rabi
frequency (see Eq. (1) of [4]). The first maximum can be considered as a “π

2 pulse”
[14] and would be a direct image of the amplitude of the electromagnetic field seen
by the molecular system. In our experiment [7], we are not dealing with a molecu-
lar beam and our data does not fit the model used by Park et al. This motivated us
to develop a model which takes into account the two relaxation times T1 and T2 in
order to reproduce the coherent transient signals obtained with our millimeter-wave
CP instrument operated in a monochromatic pulse mode. We are then able to evaluate
the Rabi frequency Ω0 and the amplitude of the electric field E0 using a least squares
procedure. The data analysis gives access as a byproduct to the molecular relaxation
times T1 and T2. It comes as an alternative to previous experimental methods that
fully characterize the dynamics of molecular systems, i.e., to measure jointly the
relaxation times of populations (T1) and phases (T2): coupling of pump-probe tech-
niques and photon echoes in the condensed phase [15], femtosecond time-resolved
four-wave mixing experiments in the diluted phase [16]. Older experiments on optical
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nutation, optical precession and photon echoes in the mm-wave domain have also
been performed more than 40 years ago by a few groups (e.g., [10, 14, 17]).

2 Experimental Setup

The experimental setup in Fig. 1 has been described in detail in a precedent pub-
lication [7]. The excitation source is an amplified multiplier chain (AMC, Virginia

Fig. 1 Millimetre wave chirped pulse instrument. Emission of a chirped pulse in the range 190 to 210
GHz generated at microwave frequency by the first channel of the arbitrary wave generator. The pulse is
propagated through a measurement cell allowing the interaction with a gaseous sample. The Free Induc-
tion Decay signal after the pulse is measured using an heterodyne detection scheme and a high-speed
oscilloscope
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Diodes Inc.) that has an overall frequency multiplication factor of 24. An input fre-
quency range of 7.9–8.7 GHz to the AMC linearly addresses the final frequency
output range of 190–210 GHz. The output power is 30–50 mW across the 190–
210 GHz frequency range. Chirped pulse generation uses a high-speed (12 GS/s)
arbitrary waveform generator (AWG, Tektronix 7122C). Waveforms, in the frequency
range of 2.0–3.5 GHz, are created by the AWG. They are upconverted to the required
7.9–8.7 GHz AMC input range by mixing with a synthesizer operating at a fixed
frequency between 9 and 12 GHz. The upper sideband is selected by a bandpass
filter and amplified to ensure the RF input power complies with safe operation of
the AMC. The time and frequency scales of all instruments are derived from a GPS
timing signal distributed locally via a 10 MHz carrier.

3 Theory

3.1 From a 2-Level System to Optical Bloch Equations

The molecular interaction with an electromagnetic wave has been extensively
described in the literature [9, 18–20]. We discuss for simplicity a two-level isolated
molecular system, given by its energy levels Ea and Eb with Ea − Eb = �ω0. We
consider the interaction between the electric dipole moment of this 2-level system
and an electric field with angular frequency ω(t) given by

E(y, t) = 1

2
E0e

−i[ω(t)t−ky] + cc. (1)

The evolution of the system is described by the evolution of its density matrix. Intro-
ducing relaxation mechanisms by γ1 = 1

T1
and γ2 = 1

T2
(respectively, the inverse

of the decay time of the population difference and the inverse of the dipole dephas-
ing time), Weq the population difference at thermodynamic equilibrium, we get the
generic form of the optical Bloch equations [8] (see Appendix 1):

⎧
⎪⎨

⎪⎩

dz

dt
= −(γ2 + iω0)z(t) − iE(t)W(t)

dW

dt
= −γ1(W(t) − Weq) + 1

2i
(E(t)∗z(t) − E(t)z(t)∗)

, (2)

where W(t) and z(t) = P(t)/(Nμab) correspond to the difference of population
and the pseudopolarization, respectively, with P(t) being the polarization. E(t) =
e−iα(t)Ω0 is a complex-valued function representing the interaction of the dipole
moment with the electric field, where Ω0 = μab E0

�
is the Rabi frequency and α(t) a

generic function of time [8].
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3.2 Bloch Equations in the “Rotating Frame”

We define a new variable ξ(t) = eiα(t)z(t) to simplify the equations of motion,
corresponding to the rotating frame. We introduce the detuning from the resonant
frequency by δ(t) = ω0 − dα

dt
. Equation (2) becomes:

⎧
⎪⎨

⎪⎩

dξ

dt
= − [γ2 + iδ(t)] ξ(t) − iΩ0(t)W(t)

dW

dt
= −γ1(W(t) − Weq) + Ω0(t)

2i
(ξ(t) − ξ(t)∗)

. (3)

Let ξ(t) = Û (t) − iV̂ (t) to get the optical Bloch equations in the “rotating frame”

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dÛ

dt
= −γ2Û (t) − δ(t)V̂ (t)

dV̂

dt
= −γ2V̂ (t) + δ(t)Û (t) + Ω0(t)W(t)

dW

dt
= −γ1(W(t) − Weq) − Ω0(t)V̂ (t)

. (4)

3.3 Monochromatic Source—Coherent Transients

The molecular polarization in the case of the linear CP has been studied in a recent
publication [8]. Here, we are dealing with the source at a fixed frequency to measure
the Rabi frequency and then deduce the electric field E0 seen by the molecular sys-
tem. We consider the case α(t) = (ω0 − δ)t (δ, the “detuning,” is a constant), the
initial conditions U(0) = V (0) = 0 (non polarized molecules) and W(0) = Weq

(thermalized sample). The system of differential equations (4) is then linear with
constant coefficients and has the form

dX(t)

dt
= AX(t) + b, (5)

where X(t) = (U(t), V (t), W(t))T is the Bloch vector, b(t) = (0, 0, Weqγ1)
T , and

A =
⎛

⎝
−γ2 −δ 0
δ −γ2 Ω0
0 −Ω0 −γ1

⎞

⎠ . (6)

The solution of the system is given by

X(t) = exp(tA)(X(0) + A−1b) − A−1b. (7)

The components of X(t) are linear combinations of eλi t plus a constant term, with λi ,
i = 1, 2, 3, eigenvalues of A. In particular, taking into account our initial conditions,
we have:

Xi(t) = a1e
λ1t + a2e

λ2t + a3e
λ3t − (a1 + a2 + a3) + Xi(0). (8)
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The general solution, involving the eigenvalues and eigenstates of a 3 × 3 matrix, is
complicated. We can however compute the equilibrium state X (∞) defined by

AX (∞) + b = 0, (9)

that is
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

U(∞) = − T 2
2 δΩ0Weq

1 + T 2
2 δ2 + T1T2Ω

2
0

V (∞) = T2Ω0Weq

1 + T 2
2 δ2 + T1T2Ω

2
0

W(∞) = (1 + T 2
2 δ2)Weq

1 + T 2
2 δ2 + T1T2Ω

2
0

(10)

3.3.1 Resonant Case

For the resonant case, δ = 0, i.e., when the exciting field has the same frequency
as the transition of the 2-level system, U(t) is decoupled from the other variables.
Taking the same initial conditions, U(t) = 0 and the two eigenvalues that drive the
dynamics of V and W are λ± = −γ+ ± iΔ where

⎧
⎪⎨

⎪⎩

γ± = γ1 ± γ2

2

Δ =
√

Ω2
0 − γ 2−

(11)

so that
{

V (t) = e−γ+t (ρc cos(Δ t) + ρs sin(Δ t)) − ρc

W(t) = e−γ+t (σc cos(Δ t) + σs sin(Δ t)) − σc + Weq

(12)

This is an expression appropriate for Δ real, i.e., Ω0 ≥ γ−. Otherwise, Δ should

be chosen as Δ =
√

γ 2− − Ω2
0 and the trigonometric functions in the expressions

for V (t) and W(t) should be replaced by their corresponding hyperbolic functions.
Through diagonalization of A it is possible to find explicit expressions for ρc,s and
σc,s parameters,

ρc = − γ+ + γ−
Δ2 + γ 2+

WeqΩ0

ρs = Δ2 − γ+γ−
Δ

(
Δ2 + γ 2+

)WeqΩ0

σc = Δ2 + γ 2−
Δ2 + γ 2+

Weq

σs = Δ2 + γ 2−
Δ(Δ2 + γ 2+)

Weqγ+

. (13)
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4 Comparison with Experimental Data

Our experiments are performed in the resonant case. We measure the FID signal S(t)

which is proportional to V (Tp) given by Eq. (12) where Tp is the pulse duration.
Neglecting the Doppler effect, the FID signal can be written as [8]:

S(t) =
[
e−γ+Tp (ρ̂c cos(Δ Tp) + ρ̂s sin(Δ Tp)) − ρ̂c

]
e−γ2t cos (ωIF t + ϕ) , (14)

where ωIF is the intermediate frequency corresponding to the resonant molecular
frequency and

(
ρ̂c, ρ̂s

) = C (ρc, ρs) are experimental quantities for some C > 0.
By applying a Fast Fourier Transform on the FID signal, we are able to recover
the amplitude V (Tp). We recorded this amplitude versus the pulse duration to get
the curve V (Tp) (see Fig. 2). We then applied a least squares procedure against the
model of Eq. (12) to fit the parameters Δ, ρ̂c, ρ̂s and γ+. The other parameters can
be written as:

γ− = ρ̂cΔ + ρ̂sγ+
ρ̂cγ+ − ρ̂sΔ

Δ

C = Δρ̂s − γ+ρ̂c

WeqΩ0

. (15)

The absolute value of Ω0 can be obtained from the relationship Ω2
0 = Δ2 + γ 2−.

Using the value of μab, it is then immediate to recover the values of E0, T1 = 1/γ1
and T2 = 1/γ2.

We studied the rotational transition J = 17 → 16 of the OCS molecule at the fre-
quency ν0 = 206.745 GHz, for which the Doppler line width is 160 kHz (HWHM) at
300 K. We recorded the FID signals obtained after an excitation pulse at the resonant
frequency ν0 for different pulse durations Tp and different gas pressures. Figure 2
shows the comparison between the amplitude of the experimental FID signals and
the fit of Eq. (12) for 10 µbar, 50 µbar and 200 µbar of OCS pressure. The validity of
the model is checked by comparing the fitted T2 relaxation times with previous data
based on collisional self-broadening measurements in the spectral domain [21]. We
find that the model fits well the experimental data as soon as the gas pressure is higher
than 50 µbar. For 10 µbar, the Doppler line broadening is larger than the collisional
broadening (50 kHz) suggesting that our model which neglects the Doppler effect
is insufficient. We attempted to develop a model to take into account the Doppler
effect but the fit procedures did not converge correctly and therefore could not bring
any improvement on the fitted parameters. We have therefore decided to retain the
model presented here keeping in mind that the Doppler broadening must be negli-
gible against the collisional one. This limitation is experimentally easy to respect.
Table 1 summarizes the fit results where the first line gives the HWHM of the colli-
sional broadening and the second line, the theoretical value of T2, both using the self
collisional broadening of the OCS line taken from ref. [21].

The electric field polarizing the molecular system can be determined using Ω0 =
μab E0

�
where the value of μab = 0.3 D is calculated as described in Appendix 2. Tak-

ing Ω0 = 3.3 MHz from an averaging of fitted values for 50 µbar and 200 µbar, we
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Fig. 2 Amplitude of the FID
signal as a function of the pulse
duration Tp for the
J = 17 → 16 rotational
transition of the OCS molecule
at the frequency
ν0 = 206.745 GHz at three
different OCS pressures: a
10 µbar, b 50 µbar and c
200 µbar. Dots are experimental
data, curves are the fits using the
model of Eq. (14) and squares
are the residuals
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Table 1 Calculated (see text) and fitted parameters of OCS for the J = 17 → 16 rotational transition at
ν0 = 206.745 GHz.

OCS: J = 17 → 16, ν0 = 206.745 GHz

Parameters Type P (μbar)

10 50 200

Δνcoll (MHz) 0.047 0.235 0.94
Calculated

T2 (µs) 2.9 0.6 0.15

T2exp (µs) 1.2 ± 0.3 0.638 ± 0.007 0.173 ± 0.004

T1exp (µs) Fitted 0.40 ± 0.03 0.2670 ± 0.0008 0.1360 ± 0.0001

Ω0exp (MHz) 2.8 ± 0.1 3.33 ± 0.05 3.4 ±0.2

find E0 = 3.75 V cm−1. We use a 30 mW source. Considering ref. [22], the conver-

sion value between the electric field and the power is
[

E0
V cm−1

]
= 27.45

√[
P

W cm−2

]
.

We calculate the theoretical value of the electric field, assuming a perfect coupling
of the source and a 1 cm beam diameter, to get E0th = 5.36 V cm−1. We can then
estimate a coupling ratio E0

E0th
of 70% in our experiment which is equivalent to a 50%

power coupling efficiency.

5 Conclusion

We show that the model established for the polarization in the case of a monochro-
matic source is able to reproduce the data obtained if the gas pressure is sufficiently
high to be able to neglect Doppler broadening. The model takes into account the two
relaxation times T1 and T2 which can then be determined by the fit procedure. It is
also well suited to determine the electric field seen by the molecular system by fitting
the Rabi frequency. Using only those measurements for which Doppler broadening is
negligible compared with collisional broadening, we were able to establish that 70%
of the source electric field amplitude was coupled to the molecular system.
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Appendix 1. Optical Bloch Equations

To establish the optical Bloch equations, we consider a two isolated level system
(|a〉, |b〉) given by their energy level Ea and Eb with Ea − Eb = �ω0. The system
is subjected to a pulsed electromagnetic field, polarized parallel to Oz, propagating
following Oy, with an angular frequency ω(t) which can be a function of time as
in the chirped pulse experiment. |a〉 and |b〉 are eigenstates for H0 and E(t) is a
complex-valued function representing the perturbation of the system.

Description of the System

〈a|H0|a〉 = Ea + Eb

2
+ �ω0

2
,

〈b|H0|b〉 = Ea + Eb

2
− �ω0

2
,

〈a|V (t)|b〉 = −�

2
E(t),

〈a|V (t)|a〉 = 〈b|V (t)|b〉 = 0.

(16)

The hamiltonian of the system is then given by:

H = H0 + V (t) =
[

Ea+Eb

2 + �ω0
2 −�

2 E(t)

−�

2 E(t)∗ Ea+Eb

2 − �ω0
2

]

(17)

The system can be described by the density matrix ρ(t). From its diagonal and off-
diagonal elements, the time dependent functions W(t) and z(t) corresponding to the
difference of population and the pseudo polarization (z(t) = P(t)

N μab
) are defined as:

W(t) = 〈a|ρ(t)|a〉 − 〈b|ρ(t)|b〉,
z(t) = 2〈a|ρ(t)|b〉. (18)

Taking into account that its trace is unity, we get:

{
〈a|ρ(t)|a〉 − 〈b|ρ(t)|b〉 = W(t)

〈a|ρ(t)|a〉 + 〈b|ρ(t)|b〉 = 1
⇒

{
2〈a|ρ(t)|a〉 = 1 + W(t)

2〈b|ρ(t)|b〉 = 1 − W(t)
. (19)

Finally, taking into account that the density matrix is hermitian, we can write it as:

ρ(t) = 1

2

(
1 + W(t) z(t)

z(t)∗ 1 − W(t)

)

, (20)

where the asterisk denotes the complex conjugate.

1018 International Journal of Infrared and Millimeter Waves (2020) 41:1009–1021



Evolution of the System

The evolution of the system is driven by the Von Neumann equation:

dρ

dt
= −i

�
[H(t), ρ(t)]. (21)

Developing the commutator of the hamiltonian and the density matrix, we get:

1

2

(
W̊ (t) z̊(t)

z̊(t)∗ −W̊ (t)

)

=
( −1/4 i

(
E (t)∗ z (t) − E (t) z (t)∗

) −1/2 i (E (t) W (t) + z (t) ω0)

1/2 i
(
E (t)∗ W (t) + z (t)∗ ω0

)
1/4 i

(
E (t)∗ z (t) − E (t) z (t)∗

)

)

(22)

where the z̊ and W̊ are the temporal derivatives. We can then write:
⎧
⎨

⎩

z̊(t) = −iω0z(t) − iE(t)W(t)

W̊ (t) = 1

2i
(E(t)∗z(t) − E(t)z(t)∗)

. (23)

Introducing relaxation mechanisms by γ1 = 1
T1

and γ2 = 1
T2

(respectively, the inverse
of the decay time of the population difference and the inverse of the dipole dephasing
time) and Weq , the population difference at thermodynamic equilibrium, we get the
generic form of the optical Bloch equations [8]:

⎧
⎨

⎩

z̊(t) = −(γ2 + iω0)z(t) − iE(t)W(t)

W̊ (t) = −γ1(W(t) − Weq) + 1

2i
(E(t)∗z(t) − E(t)z(t)∗)

. (24)

Appendix 2. Transition Dipole Momentμab for a Linear Molecule

Two orthonormal frames are introduced to discuss the dipole moment of a
molecule. The first frame

(	ex, 	ey, 	ez

)
is a laboratory-fixed frame. The second frame

(	eX, 	eY , 	eZ) is attached to the molecule.
The interaction of the molecule with the electric field 	E(y, t) = E0(y, t) 	ez

polarized along 	ez is then described by the −	̂μ · E0 	ez term.
We can decompose the dipole moment operator 	̂μ of the molecule in either the

laboratory-fixed or the body-fixed frame:

	̂μ = μ̂x 	ex + μ̂y 	ey + μ̂z	ez = μ̂X	eX + μ̂Y 	eY + μ̂Z	eZ .

The interaction term is thus proportional to 	̂μ · 	ez = μ̂z = −μ̂X	eX · 	ez + μ̂Y 	eY ·
	ez + μ̂Z	eZ · 	ez. For a linear molecule, μ̂X = μ̂Y = 0 if the nuclei of the atoms are on
the Z-axis and the interaction term is then proportional to μ̂z = 	̂μ · 	ez = μ̂Z	eZ · 	ez

with 	eZ · 	ez = cos θ =
√

4π
3 Y1,0 (θ, ϕ) the direction cosine between the z-axis and

the Z-axis and Y1,0 (θ, ϕ) is the spherical harmonic function.
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The transition dipole moment is defined as T
j2,m2
j1,m1

= 〈j2, m2|μ̂z|j1, m1〉. T
j2,m2
j1,m1

is computed as follows:

T
j2,m2
j1,m1

=
√

4π

3
μ̂Z

∫ π

0

∫ 2π

0
Yj2,m2 (θ, ϕ)∗ Y1,0 (θ, ϕ) Yj1,m1 (θ, ϕ) sin θdθdϕ

= (−1)m2

√
4π

3
μ̂Z

∫ π

0

∫ 2π

0
Yj2,−m2 (θ, ϕ) Y1,0 (θ, ϕ) Yj1,m1 (θ, ϕ) sin θdθdϕ

= (−1)m2

√
4π

3

√
3 (2j2 + 1) (2j1 + 1)

4π

(
j2 1 j1

−m2 0 m1

)(
j2 1 j1
0 0 0

)

μ̂Z

= (−1)m2
√

(2j2 + 1) (2j1 + 1)

(
j2 1 j1

−m2 0 m1

) (
j2 1 j1
0 0 0

)

μ̂Z

The transition dipole moment is zero if m1 
= m2 due to the 3jm coefficient(
j2 1 j1

−m2 0 m1

)

. We define an averaged transition dipole moment as:

〈
T

j2,m2
j1,m1

〉
= 1

2j1 + 1

m=j1∑

m=−j1

T
j2,m
j1,m

=
√

2j2+1

2j1+1

(
j2 1 j1
0 0 0

)

μ̂Z

m=j1∑

m=−j1

(−1)m
(

j2 1 j1
−m 0 m

)

.

(25)
For example, the permanent dipole moment of OCS is μZ = 0.70 D [21] and the

transition dipole moment for the J = 17 → 16 rotational transition is calculated to
μab = 0.28 D according to Eq. 25.
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