Skip to main content
Log in

Paraffin-Embedded Prostate Cancer Tissue Grading Using Terahertz Spectroscopy and Machine Learning

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

The automatic classification of paraffin-embedded prostate cancer tissue biopsy samples in terms of the Gleason scale is proposed using terahertz (THz) spectroscopy and machine learning. The samples with normal tissues (N=80) and prostate cancer tissues corresponded to the Gleason 4 (N=10), and 8 (N=13) scores, were analyzed. Absorption spectra of paraffin-embedded prostate cancer and healthy tissues were measured in the 0.2–1.5 THz range. The principal component analysis, support vector machine (SVM), and “majority vote” classification were applied to analyze experimental data. The original algorithm of spatial regions of interest selecting was developed to reduce the influence of the plastic base of a paraffin block on the results of a sample classification. The predictive model of the experimental spectral data of the paraffin blocks in the THz range was created using a set of the “One-Vs-One” binary SVM classifiers. We used multiple random splitting of the spectral data on the training and testing sets in 60%:40% proportion to teach the SVM classifiers. Validation of the predictive model showed 100% accuracy of the classification of the samples from the testing set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, and A. Jemal, “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA Cancer J Clin. 68(6), 394–424 (2018). https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  2. J. Bancroft, A. Stevens, eds. The theory and practice of histological techniques, 2nd ed. (Longman Group Limited, 1982).

  3. D. J. Luthinger and M. Gross, “Gleason grade migration: changes in prostate cancer grade in the contemporary era,” PCRI Insights 9, 2–3 (2006).

    Google Scholar 

  4. C. Mosquera-Lopez, S. Agaian, A.Velez-Hoyos and I.Thompson, “Computer-aided prostate cancer diagnosis from digitized histopathology: a review on texture-based systems,” IEEE Reviews in Biomedical Engineering, (2014). https://doi.org/10.1109/RBME.2014.2340401

  5. J. Xu, T. Yuan, S. Mickan, and X.-C. Zhang, “Limit of spectral resolution in terahertz time-domain spectroscopy,” Chines Phys Lett. 20 (8), 1266–1268 (2003). https://doi.org/10.1088/0256-307X/20/8/324

    Article  Google Scholar 

  6. E.P.J. Parrott, Y. Sun, and E. Pickwell-MacPherson, “Terahertz spectroscopy: its future role in medical diagnoses. J Mol Struct. 1006 (1–3), 66–76 (2011). https://doi.org/10.1016/j.molstruc.2011.05.048.

    Article  Google Scholar 

  7. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).

    Article  Google Scholar 

  8. Y. Sun, M. Y. Sy, Y.-X. J. Wang, A. T. Ahuja, Y.-T. Zhang, and E. Pickwell-Macpherson, “A promising diagnostic method: terahertz pulsed imaging and spectroscopy,” World J. Radiol. 3(3), 55–65 (2011).

    Article  Google Scholar 

  9. G. J. Wilmink et al., “Development of a compact terahertz time-domain spectrometer for the measurement of the optical properties of biological tissues,” J. Biomed. Opt. 16(4), 047006 (2011).

    Article  Google Scholar 

  10. I. Echchgadda et al., “Using a portable terahertz spectrometer to measure the optical properties of in vivo human skin,” J. Biomed. Opt. 18(12), 120503 (2013).

    Article  Google Scholar 

  11. R. M. Woodward et al., “Terahertz pulse imaging of ex vivo basal cell carcinoma,” J. Invest. Dermatol. 120(1), 72–78 (2003).

    Article  MathSciNet  Google Scholar 

  12. R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging of skin cancer with time and frequency domain,” J Biological Phys. 29, 257–261(2003). https://doi.org/10.1023/A:1024409329416

    Article  Google Scholar 

  13. E. Pickwell, B. Cole, A. J. Fitzgerald, and M. Pepper, “In vivo study of human skin using pulsed terahertz radiation,” Phys Med Biol 49, 1595–1607 (2004).https://doi.org/10.1088/0031-9155/49/9/001

    Article  Google Scholar 

  14. E. P. MacPherson, V. P. Wallace, A. J. Fitzgerald, B. E. Cole, R. J. Pye, and T. Ha, “Simulating the response of terahertz radiation to human skin using ex-vivo spectroscopy measurements,” J Biomed Opt. 10, 64021 (2005). https://doi.org/10.1117/1.2137667

    Article  Google Scholar 

  15. V. Wallace, A.J. Fitzgerald, E. Pickwell, R.J. Pye, P.F. Taday NF and TH. Terahertz pulsed spectroscopy of human basal cell carcinoma. Appl Spectrosc. 60(10), 1127–1133 (2006). https://doi.org/10.1366/000370206778664635

    Article  Google Scholar 

  16. P. C. Ashworth, E. P. MacPherson, E. Provenzano, S. E. Pinder, and V. P. Wallace, “Terahertz pulsed spectroscopy of freshly excised human breast cancer,” Opt Express. 17 (15), 12444–12453 (2009). https://doi.org/10.1364/OE.17.012444

    Article  Google Scholar 

  17. G. M. Png et al., “Terahertz spectroscopy of snap-frozen human brain tissue: an initial study,” Electron. Lett. 45(7), 343–344 (2009).

    Article  Google Scholar 

  18. T. Bowman and M. El-Shenawee, “Terahertz spectroscopy for the characterization of excised human breast tissue,” Proc. IEEE MTT-S Int. Microw. Symp. (IMS), Tampa, FL, 1–4 (2014).

  19. T. C. Bowman, “Experimental terahertz imaging and spectroscopy of ex-vivo breast cancer tissue”, M.S. thesis, Dept. Elect. Eng., Univ. Arkansas, Fayetteville, AR, (2014).

  20. F. Wahaia et al., “Detection of colon cancer by terahertz techniques,” J. Mol. Struct. 1006(1–3), 77–82 (2011).

    Article  Google Scholar 

  21. T. Enatsu et al., “Terahertz spectroscopic imaging of paraffin-embedded liver cancer samples,” in 2007 Joint 32nd Int. Conf. on Infrared and Millimeter Waves and the 15th Int. Conf. on Terahertz Electronics, IEEE, 557–558 (2007).

  22. P. C. Ashworth et al., “Terahertz pulsed spectroscopy of freshly excised human breast cancer”,Opt. Express, 17(15), 12444–12454 (2009).

    Article  Google Scholar 

  23. V. P. Wallace et al., “Terahertz pulsed spectroscopy of human basal cell carcinoma”, Appl. Spectrosc., 60(10), 1127–1133 (2006).

    Article  Google Scholar 

  24. D. Y. S. Chau, A. R. Dennis, H. Lin, J. A. Zeitler, and A. Tunnacliffe, “Determination of water content in dehydrated mammalian cells using terahertz pulsed imaging: a feasibility study,” Curr. Pharm. Biotechnol. 17(2), 200–207 (2015).

    Article  Google Scholar 

  25. F. Wahaia, I. Kasalynas, D. Seliuta, G. Molis, A. Urbanowicz, C. D. Carvalho Silva, and P. L. Granja, “Study of paraffin-embedded colon cancer tissue using terahertz spectroscopy,” Journal of Molecular Structure 1079, 448–453 (2015). https://doi.org/10.1016/j.molstruc.2014.09.024

    Article  Google Scholar 

  26. I.Catapano, and F.Soldovieri, “A data processing chain for terahertz imaging and its use in artwork diagnostics”, Journal of Infrared, Millimeter, and Terahertz Waves 38(4), 518–530 (2017).

    Article  Google Scholar 

  27. Y. Chen, S. Huang, and E. Pickwell-MacPherson, “Frequency-wavelet domain deconvolution for terahertz reflection imaging and spectroscopy,” Optics express 18(2), 1177–1190 (2010).

    Article  Google Scholar 

  28. D. M.Mittleman, R. H.Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE Journal of selected topics in quantum electronics 2(3), 679–692 (1996).

    Article  Google Scholar 

  29. R. Galvão, S. Hadjiloucas, J. Bowen, and C. Coelho, “Optimal discrimination and classification of THz spectra in the wavelet domain,” Opt Express 11(12), 1462-73(2003)

    Article  Google Scholar 

  30. A. Buades, B. Coll, and J. M. Morel, “A review of image denoising algorithms, with a new one,” Multiscale Model.Simul. 4, 490–530 (2005).

    Article  MathSciNet  Google Scholar 

  31. P. Perona, and J. Malik, “Scale space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell., 12(7) 629–639 (1990).

    Article  Google Scholar 

  32. H.Ballacey et al. “Automated data and image processing for biomedical sample analysis”. Paper presented at the International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz, (2016). https://doi.org/10.1109/IRMMW-THz.2016.7758882

  33. Y. V. Kistenev, A. V. Shapovalov, A. V. Borisov, D. A. Vrazhnov, V. V. Nikolaev, and O. Y. Nikiforova, “Applications of principal component analysis to breath air absorption spectra profiles classification,” Proc. of SPIE, 9810 (2015).

  34. J. Shikata, K. Kawase, T. Taniuchi, H. Ito, “Fourier-transform spectrometer with a terahertz-wave parametric generator”, Japanese Journal of Applied Physics 41(1).

  35. Y. Watanabe, et al. “Spatial pattern separation of chemicals and frequency-independent components by terahertz spectroscopic imaging”, Appl Opt. 42(28), 5744–8 (2003)

    Article  Google Scholar 

  36. Ch. Tanford, “Protein denaturation,” Advances in Protein Chemistry 23, 121–282, (1968). https://doi.org/10.1016/S0065-3233(08)60401-5

    Article  Google Scholar 

  37. Yu.V. Kistenev, A.V. Borisov, D.A. Kuzmin, O.V. Penkova, N.Yu. Kostyukova, and A.A. Karapuzikov, “Exhaled air analysis using wideband wave number tuning range infrared laser photoacoustic spectroscopy,” J. Biomed. Opt. 22 (1), 017002 (2017). https://doi.org/10.1117/1.JBO.22.1.017002

    Article  Google Scholar 

  38. Y. Kistenev, A. Borisov, A. Shapovalov, O. Baydik, and M. Titarenko, “Diagnostics of oral lichen planus based on analysis of volatile organic compounds in saliva,” Proc. SPIE. 10063, 100630R.(2017). https://doi.org/10.1117/12.2252131

    Article  Google Scholar 

  39. Yu.V. Kistenev, D.A. Kuzmin, D.A. Vrazhnov, and A.V. Borisov, “Classification of patients with broncho-pulmonary diseases based on analysis of absorption spectra of exhaled air samples with SVM and neural network algorithm application,” Proc. SPIE 10035, 1003507 (2016)

    Article  Google Scholar 

  40. G.Bianchi, and R. Sorrentino, “Electronic filter simulation & design,” McGraw-Hill Professional. 17–20. ISBN 978-0-07-149467-0

  41. J. W. Tukey, “Exploratory data analysis,” Reading, Mass: Addison-Wesley Pub. Co, (1977)

  42. A. Savitzky, and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Analytical chemistry 36(8), 1627–1639 (1964)

    Article  Google Scholar 

  43. Ch. Shekhar, “On simplified application of multidimensional Savitzky-Golay filters and differentiators,” Progress in Applied Mathematics in Science and Engineering. AIP Conference Proceedings. 1705 (1), 020014 (2015).

    Google Scholar 

  44. B. Moore, “Principal component analysis in linear systems: Controllability, observability, and model reduction,” IEEE transactions on automatic control 26(1), 17–32 (1981).

    Article  MathSciNet  Google Scholar 

  45. L. Pomerantsev, and O. Ye. Rodionova, “concept and role of extreme objects in PCA/SIMCA” Journal of Chemometrics 28(5), 429–438 (2014).

    Article  Google Scholar 

  46. T.Chen, Z. Li, and W.Mo, “Identification of biomolecules by terahertz spectroscopy and fuzzy pattern recognition,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 106, 48–53 (2013).

    Article  Google Scholar 

  47. S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, “Supervised machine learning: a review of classification techniques,” Emerging artificial intelligence applications in computer engineering 160, 3–24 (2007).

    Google Scholar 

  48. V. Vapnik, and S. Mukherjee, “Support vector method for multivariate density estimation,” Advances in neural information processing systems, 659–665 (2000).

  49. Y.V.Kistenev, A.V.Shapovalov, D.A.Vrazhnov, V.V.Nikolaev, O.Y. Nikiforova, "Comparison of classification methods used for analysis of complex biological gas mixtures by means of laser spectroscopy", Proc. SPIE, 9680, 968049–1 (2015).

    Article  Google Scholar 

  50. C. Beleites, U. Neugebauer, T.Bocklitz, C. Krafft, and J. Popp,” Sample size planning for classification models,” Analytica Chimica Acta. 760, 25–33 (2013).

    Article  Google Scholar 

  51. R. S. Boyer, J. S. Moore, “MJRTY - A Fast Majority Vote Algorithm”, in Boyer, R. S. (ed.), Automated Reasoning: Essays in Honor of Woody Bledsoe, Automated Reasoning Series, Dordrecht, (The Netherlands: Kluwer Academic Publishers, 1991), p. 105–117

    Chapter  Google Scholar 

  52. Y. V. Kistenev, A. V. Borisov, A. I. Knyazkova, E. E. Ilyasova, E. A. Sandykova, A. K. Gorbunov, L. V. Spirina, “Possibilities of cytospectrophotometry of oncological prostate cancer tissue analysis in the TGz spectral range,” Proc.SPIE. 10614, 106141T (2018).

    Google Scholar 

Download references

Acknowledgments

This work was performed within the frame of the Fundamental Research Program of the State Academies of Sciences for 2013-2020, line of research III.23.

Funding

The reported study was partially funded by the Russian Foundation for Basic Research (grant No.17-00-00186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yury V. Kistenev.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knyazkova, A.I., Borisov, A.V., Spirina, L.V. et al. Paraffin-Embedded Prostate Cancer Tissue Grading Using Terahertz Spectroscopy and Machine Learning. J Infrared Milli Terahz Waves 41, 1089–1104 (2020). https://doi.org/10.1007/s10762-020-00673-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-020-00673-7

Keywords

Navigation