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Abstract
Health insurance markets with community-rated premiums typically use risk equaliza-
tion (RE) to compensate insurers for predictable profits on people in good health and pre-
dictable losses on those with a chronic disease. Over the past decades RE models have 
evolved from simple demographic models to sophisticated health-based models. Despite 
the improvements, however, non-trivial predictable profits and losses remain. This study 
examines to what extent the Dutch RE model can be further improved by redesigning one 
key morbidity adjuster: the Diagnosis-based Cost Groups (DCGs). This redesign includes 
(1) revision of the underlying hospital diagnoses and treatments (‘dxgroups’), (2) applica-
tion of a new clustering procedure, and (3) allowing multi-qualification. We combine data 
on spending, risk characteristics and hospital claims for all individuals with basic health 
insurance in the Netherlands in 2017 (N = 17 m) with morbidity data from general prac-
titioners (GPs) for a subsample (N = 1.3 m). We first simulate a baseline RE model (i.e., 
the RE model of 2020) and then modify three important features of the DCGs. In a sec-
ond step, we evaluate the effect of the modifications in terms of predictable profits and 
losses for subgroups of consumers that are potentially vulnerable to risk selection. While 
less prominent results are found for subgroups derived from the GP data, our results dem-
onstrate substantial reductions in predictable profits and losses at the level of dxgroups 
and for individuals with multiple dxgroups. An important takeaway from our paper is that 
smart design of morbidity adjusters in RE can help mitigate selection incentives.
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Introduction

Many social health insurance systems rely on regulated competition to enhance fairness 
and efficiency in health care financing (Ash et al., 1989; Enthoven, 1988). Two typical reg-
ulatory features include premium-rate restrictions and risk equalization (RE). Rate restric-
tions—e.g. in the form of community-rating per insurance plan—protect individual afford-
ability of health insurance for high-risk people who would otherwise be charged (very) 
high premiums. RE compensates insurers for the predictable variation in individual health 
care spending using a predefined set of risk adjusters such as the age, gender and health 
status of enrollees. Appropriate compensation is required to level the playing field for com-
peting insurers, reduce the selection incentives they face and protect the functioning of 
the insurance market (Rothschild & Stiglitz, 1976; Newhouse, 1996; Van de Ven & Ellis, 
2000; Layton et al., 2018c).

Although RE systems have developed from simple demographic models (adjusting only 
for age and gender) to sophisticated morbidity-based models—containing indicators based 
on inpatient diagnoses, pharmaceutical usage and prior care spending –, recent studies have 
demonstrated that even advanced systems do not eliminate selection incentives (Van Kleef 
et al., 2018; McGuire et al., 2020). For example, the most sophisticated RE models, applied 
under the Affordable Care Act in the United States (U.S.) and in the basic health insur-
ance schemes in Germany and the Netherlands, undercompensate insurers for specific, siz-
able groups of chronically-ill consumers such as diabetics and patients with heart diseases 
(McGuire et al., 2020; Withagen-Koster et al., 2020).

Therefore, the aim of this paper is to diminish the persisting under/overcompensations 
of the Dutch RE model through the redesign of one of its key risk adjusters for morbidity, 
the Diagnosis-based Cost Groups (DCGs). This morbidity adjuster classifies individuals 
in cost groups based on inpatient and outpatient diagnoses and treatments. All selected 
codes relate to expected medical spending in the subsequent year and are grouped into 200 
clusters of diagnoses called ‘dxgroups’, based on clinical homogeneity. These dxgroups, in 
turn, are clustered into the aforementioned DCGs based on their respective residual spend-
ing from a prediction model for health spending that includes age, gender, and an adjuster 
for pharmaceutical usage (Lamers, 1998; Prinsze & Van Vliet, 2007). These DCGs are 
then used in the Dutch RE model that includes all risk adjusters. Although this approach is 
extensive, there is scope for improvement.

A potential drawback of the current DCGs is that the clustering of multiple dxgroups 
into one DCG inherently subjects the formed DCG to internal heterogeneity, resulting in 
compromised precision of compensation for specific, included diagnoses. For instance, 
Van Kleef et  al. (2020a) found leukemia patients to be substantially undercompensated 
(€3,733 on average per person per year), despite inclusion of the diagnosis ‘leukemia’ in 
one of the DCGs. A second potential drawback of the current DCGs is the limited ability 
for financial compensation of multimorbidity. Contrary to diagnosis-based risk adjusters 
applied in American and German RE models in which enrollees can qualify for multiple 
diagnostic groups (referred to as Hierarchical Conditions Categories and Hierarchical Mor-
bidity Groups respectively), Dutch enrollees are bound to a two-layered classification sys-
tem of Primary and Secondary DCGs (pDCG/sDCG) where individuals can be flagged by 
only one DCG per layer (Van Kleef et al., 2018). As a result of this restriction, individuals 
with multimorbidity are on average undercompensated (Eijkenaar et al., 2018). Moreover, 
the heterogeneity within the clusters results in imperfect compensation on the level of indi-
vidual dxgroups. With dxgroups derived from diagnoses and treatments, insurers have the 
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potential to exploit knowledge on (un)profitability of specific treatments when contracting 
care services. Through selective contracting, insurers could attempt to deter undesirable 
consumers by abstaining from contracting optimal-performing care providers for specific, 
unprofitable treatment groups (Layton et  al., 2018b). This service-level selection under-
mines the functioning of the insurance market (Layton et al., 2018a).

The contribution of this paper lies in a new method for clustering the dxgroups to 
address the issues discussed (i.e., the heterogeneity within DCGs and the lack of multi-
classification, and the selection problems that result). The essence of our approach is that 
we derive more accurate payment weights per dxgroup and use these for a more precise 
clustering into DCGs. Moreover, we allow for multi-classification: individuals appearing 
in a total of n dxgroups will qualify for n DCG flags and enable the corresponding insurer-
compensation. The expectation is that these modifications result in better compensations 
for chronically ill individuals, both on the level of dxgroups and on the level of disease 
groups. The methods we apply consist of four steps: deriving the baseline RE model as 
applied in the Netherlands for the year 2020, revising the dxgroups that are included in 
assembling the DCGs to update the 2020 model, developing and testing the updated clus-
tering method, and finally, evaluating the effects of the new method.

As another novelty, following recent advances in evaluation metrics, this study goes 
beyond analyzing the effect of improving the DCGs on traditional metrics such as the 
R-squared (R2) and Cumming’s Prediction Measure (CPM). In addition to these metrics, 
this paper examines the effect on the under/overcompensation of groups that are potentially 
vulnerable to risk selection, given the characteristics of the Dutch health insurance system. 
These include the dxgroups underlying the DCGs as well as a broader set of disease groups 
identified through patient records from Dutch general practitioners (GPs). Under/overcom-
pensation on the level of dxgroups indicate incentives for service-level selection (e.g., not 
contracting the best doctors for specific treatments) while under/overcompensation on the 
level of disease groups more generally indicate incentives for group-level selection (e.g., 
selective marketing and group discounts for supplementary insurance) (Layton et  al., 
2018a). By examining the effects of our DCG update on both types of selection incentives, 
a broader insight of its potential strength is acquired. Clearly, the findings of our study are 
directly relevant for the Netherlands. Additionally, the international relevance of our analy-
ses is to be found in the general conclusion that smart design of morbidity adjusters can 
help mitigate incentives for risk selection.

The remainder of this paper is organized as follows: first, background context of the 
history and current (2020) practice of the Dutch DCGs is provided to describe the reason-
ing for our study. Next, the data and methods are explained, followed by the outcomes 
of our analyses. The paper closes with a discussion of the conclusions and the resulting 
implications.

The Dutch DCGs: history and current practice

History

Since their initial implementation in 2004, the Dutch DCGs have seen multiple revisions 
but have always retained the clustered composition. The original 13 DCGs from 2004 con-
tained 69 dxgroups, derived from a selection of ICD-coded diagnoses from inpatient hos-
pital treatments (Prinsze & Van Vliet, 2007). However, adaptations to the funding structure 
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of hospital treatments in 2005 changed the ICD-coding to the so-called ‘diagnosis treat-
ment combinations’ (DTC), which called for a revision of the DCGs and the underlying 
dxgroups. Moreover, further changes to the DCGs were made in 2009 and 2012 to adhere 
to changes in the DTCs, seeking to capture shifting patterns in health care utilization (Van 
Kleef et  al., 2014). The update in 2012 led to discarding of the exclusivity of inpatient 
hospital diagnoses. By extending the DCGs to diagnoses from outpatient treatments by 
medical specialists, the predictive accuracy of the RE model increased and the undercom-
pensations for the chronically ill declined. The expansion of DCGs resulted in a surge in 
prevalence: 2.7% of consumers qualified for compensation through the inpatient DCGs, 
while 8.5% qualified after the modification.

In a more recent update in 2015, the number of dxgroups that make up the DCGs—
which had incrementally risen from 69 to 143—was increased to 189 in order to cover 
for expansions of the benefit package and new changes in the coding system (Van Vliet 
et al., 2015). As a result of the increase, 9.4% of the population now qualified for DCG 
compensation. The most recent update of the DCG classification was performed in 2018 
when the split was made between primary and secondary DCGs in an effort to compensate 
for comorbidity through a new maximum of two DCG flags per enrollee (before, only one 
was counted, i.e. the one with the highest mean residual spending). In addition, the number 
of dxgroups further increased from 189 to 200 (Eijkenaaret et al., 2018). With the adjuster 
now including 15 pDCGs and 7 sDCGs, 10.5% of the population qualifies for at least one 
of the DCGs.

Current practice

Since the DCGs are designed to predict health spending in the subsequent year through 
disease classification, the technique to derive an accurate estimation for the adjuster is 
both a clinical and statistical endeavor (Ash et  al., 1989; Van Kleef et  al., 2018). First, 
all relevant information on hospital care is gathered to separate the primary, unambiguous 
diagnoses, by excluding stomach complaints, for instance, and including diabetes. Second, 
a medical judgment is made by experts to select diagnoses that reflect a chronic condi-
tion and recurring health spending. The resulting diagnoses are then clustered to DCGs in 
order to minimize complexity of the RE model and simultaneously mitigate incentives for 
gaming (Prinsze & Van Vliet, 2007). Medical experts cluster the diagnoses into clinically 
more or less homogeneous dxgroups, which are subsequently clustered into DCGs by their 
respective residual spending from an Ordinary Least Squares regression for health spend-
ing. The clustering is performed with Ward’s hierarchical clustering method which contin-
uously merges two clusters whose fusion results in a minimal increase in variance in mean 
residual spending within the newly found cluster (Lamers, 1998). This way the heterogene-
ity within the new clusters (DCGs) is minimized. Thus, while the clinical funnel-approach 
serves to select medically valid, unambiguous diagnoses that relate to future spending, the 
statistical counterpart is applied to derive clusters of dxgroups that maximize model fit 
(Ellis & Ash, 1995).

Despite the careful selection of diagnoses and the statistical procedure of clustering, 
undercompensations for groups of chronically ill remain. The work by Eijkenaar et  al. 
(2018) partly addressed the heterogeneity within the DCG classification by considering 
comorbidity through a maximum of two DCGs (one pDCG and one sDCG) per person 
per year. In an effort to further improve the DCG adjuster, the authors ventured beyond 
the two-layered approach by deriving a model including all 200 dxgroups as separate risk 
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adjusters (in the form of dummy variables indicating whether or not an enrollee is flagged 
by a dxgroup). Although this strategy improved model fit and de facto eliminated het-
erogeneity among dxgroups clustered in the same DCG, it was considered too complex 
from a practical point of view given the number of variables and the instability of payment 
weights for uncommon dxgroups. Therefore, we seek to reduce heterogeneity within the 
DCG-classification without aggravating concerns related to complexity and instability.

Data

For this study, three datasets have been made available which can be merged through an 
anonymized identification key. The first dataset includes information on spending and risk 
adjusters for all roughly seventeen million individuals with basic health insurance in the 
Netherlands in 2017. This dataset has been used for the official calibration of the Dutch RE 
model for 2020. The second dataset covers the roughly twenty million individual hospital 
claims for specific hospital diagnoses in 2016, of which around five million are relevant for 
the DCG-classification of 2020. The third and final dataset includes morbidity information 
from electronic patient records of about 400 Dutch GP practices. In total these practices 
serve 1.3 million individuals. For each of these individuals the dataset includes morbidity 
information according to the International Classification of Primary Care (ICPC) (WHO, 
2021). Specifically, the dataset indicates whether or not an individual suffered from a spe-
cific chronic illness in 2016. This dataset will be used to identify disease groups for which 
we will calculate under/overcompensations using the alternative models. It is noteworthy 
that the patient records by the GP provide a valuable insight into the health status of Dutch 
individuals. In the Netherlands, the GP serves a gatekeeping role towards specialized (hos-
pital) care and prescribes the use of outpatient drugs.

Since the GP dataset is essentially a subsample of the calibration dataset (N = 1.3  m 
versus N = 17 m), the GP subsample has been rebalanced to reflect the calibration dataset. 
Through a procedure of data reconciliation, the target dataset (GP data) is made to reflect 
the initial dataset (Dutch population) in terms of a predefined set of variables (Battagliaet 
et al., 2009). The iterative fitting procedure determines a weighting factor for every obser-
vation within the target dataset based on the risk classes of the equalization model (dis-
cussed in “Methods” section) After applying the weighting per individual in subsequent 
calculations, the target dataset reflects frequencies of risk classifications and spending that 
are consistent with the total population of seventeen million (for a more detailed descrip-
tion of the procedure, see Van Kleef et al., 2020a). Moreover, the variables unique to the 
target dataset have their frequencies enlarged to an amount that reflects the complete popu-
lation, based on the weighting factors.

Methods

To modify the DCGs and to examine the effects of the modified DCGs, the methodologi-
cal buildup of this study consists of four steps: (1) derive a baseline model (i.e. the actual 
Dutch RE model for 2020), (2) revise the dxgroups underlying the DCGs and evaluate the 
effect thereof on measures of explanatory power, (3) develop a new clustering method for 
deriving DCGs and evaluate its impact on explanatory power, and (4) evaluate the effects 
of the adjustments to DCGs in terms of the under/overcompensations for subgroups that 
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are potentially vulnerable to risk selection. In the following part the respective steps are 
explained in greater detail, describing the different models used in this study.

Step 1 Deriving a baseline model: the actual Dutch RE model of 2020

In order to set up a valuable comparison between the status quo and the proposed modifi-
cations to the model, we first calibrate a baseline model. This model (which we refer to as 
Model 0, or M0) mimics the official Dutch RE model of 2020. For simplicity, we solely 
focus on the RE model for somatic care, accounting for roughly 90 percent of spending 
in basic health insurance.1 This model includes eleven risk adjuster classifications with 
nearly 200 risk classes in total (Van Kleef et al., 2018; Staatscourant, 2020). Based on the 
coefficients that result from an individual-level regression of health spending on these risk 
classes, a prediction of health spending in 2020 is made.

The risk adjusters in the baseline model include age interacted with gender, pharmacy-
based cost groups (PCGs), DCGs, durable medical equipment groups, institutional status 
interacted with age, clusters of zip-codes based on regional factors, socioeconomic status 
interacted with age, household size interacted with age, multiple-year high cost groups, 
physiotherapy diagnosis groups, and prior spending on home care (Van Kleef et al., 2018). 
Of these classifications, most are either based on demographic information or derived from 
information on hospital utilization. However, the role of primary care is implicitly consid-
ered in the model as well, since the PCGs are derived from drugs prescribed by GPs. So, 
through these PCGs the RE model compensates for the above-average spending of chroni-
cally ill people who were not treated in a hospital in the prior year but by their GP, e.g. 
(most) diabetics.

Step 2 Revision of dxgroups underlying DCGs

After deriving the baseline model, the next steps cover the adaptations to the model. In 
line with the historically recurring revisions to the DCGs, the first change to the model 
was to update the dxgroups on both clinical and statistical grounds. The revision incorpo-
rates similar criteria as used by Ellis and Ash (1995): at least a third of the patients with 
the considered diagnoses need to be diagnosed in two consecutive years, the diagnoses 
need to be unambiguous and the average related health spending and prevalence both need 
to exceed predefined thresholds. The resulting selection of diagnoses was then evaluated 
by a committee of clinical experts, leading to a clustering of the diagnoses to clinically 
meaningful dxgroups. This revision process increased the number of dxgroups from 200 to 
209—removing 10 and adding 19-, mostly because of heterogeneity in the expenditures for 
diagnoses in the same clustered dxgroup that therefore needed to be separated (for the full 
report—in Dutch—that delves deeper into the selection of dxgroups, see: Van Kleef et al., 
2020b).

To analyze the effects of the revision, we estimated an updated version of the baseline 
model. In this Model 1 (or M1), the DCGs of 2020 are replaced by the updated DCGs 
from step 2, built with the new total of 209 dxgroups. This method follows the exact same 

1  In practice, the Dutch RE model consists of three components: one model for somatic care, one for men-
tal care and one for out-of-pocket spending due to a mandatory deductible. See Van Kleef et al. (2018) for 
more detail. The DCGs discussed in this paper are part of the model for somatic care.
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route to compile DCGs as the baseline model, as discussed in the Introduction and “Cur-
rent practice” section. Therefore, M1 has the same number of primary (15) and secondary 
(7) DCGs as M0 but will inevitably have different respective coefficients. We compare the 
explanatory power of this updated model with that of the baseline model using R2 and 
CPM, which are calculated according to (1) and (2) respectively.

In both equations, yi represents the actual spending for individual i, ŷi the predicted 
value of spending for i based on the respective RE models (M0, M1, etc.) and y the aver-
age spending in the population (Layton et al., 2018a). For both measures, a value closer to 
1 indicates higher explanatory power of the model. The difference between (1) and (2) is 
that CPM handles errors in the regression model linearly whereas R2 gives a larger weight 
to larger errors.

Step 3 Developing and testing a new method of clustering dxgroups into DCGs

The third step of our empirical analysis concerns the design and evaluation of a new 
approach for clustering dxgroups into DCGs to mitigate the earlier described problems of 
heterogeneity. The new method of clustering is comprised of two phases. First, all 209 
dxgroups derived from step 2 are included as separate risk adjusters in the process of cali-
brating the actual RE model. To be precise, the 209 dxgroups serve as explanatory vari-
ables, like age, gender and PCGs, for the individual-level regression of health spending to 
obtain coefficients. By doing so, the respective coefficients for dxgroups are corrected for 
all other adjusters. In contrast, the traditional method (as used for M0 and M1, discussed in 
step (2) uses a partial model that corrects for age, gender and PCGs alone, to obtain mean 
residual spending for each separate dxgroup and clusters these to create the DCGs for the 
complete model with all adjusters. Through the new method, the respective coefficients are 
corrected for multimorbidity as well as potentially confounding effects of the other risk 
adjusters.

In the second phase of the new method, the 209 dxgroups are clustered into 26 DCGs on 
the basis of their estimated coefficients. By clustering dxgroups with an interval of roughly 
500 Euros between the lowest and highest coefficient, a manageable number of 26 DCGs 
are formed. These clusters are relatively stable and consist of dxgroups that have their pay-
ment weights adjusted for multi-qualification. Thus, the primary/secondary distinction is 
removed from the DCGs and individuals can be assigned multiple times to multiple DCGs. 
As a result, health spending of individuals with multimorbidity can be more effectively 
compensated through RE. The model containing these new DCGs will be referred to as 
Model 2 (M2). To evaluate the impact of this new clustering method on the explanatory 
power we compare the R2 and CPM of M2 with those of M1.

Moreover, to further examine the effects of the new clustering method, we evaluate the 
impact on proximations of risk selection incentives. More specifically, we calculate the 
average under/overcompensations for subgroups of the population for the different models 
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��
∑n

i=1
��yi − y��



310	 M. Oskam et al.

1 3

applied in this study. To analyze incentives for service-level selection, we calculate the 
mean financial result per dxgroup under the variousels through (3):

with g representing a particular dxgroup, ŷi the predicted health spending for individual i in 
group g, yi . the actual spending for individual i in group g, and Ng the number of individu-
als in group g. Measure (3) will be calculated for each of the 209 dxgroups and indicates 
the incentives for insurers to engage in service-level selection. More specifically, a negative 
value for the MFR for dxgroup g indicates incentives for insurers to select against users of 
treatments included in dxgroup g (e.g., by not contracting the hospitals/doctors with the 
best reputation regarding these treatments).

Step 4: Evaluating the effects of the new DCGs for selective groups

In a final empirical step of this research, the average under/overcompensations are cal-
culated for subgroups defined by chronic illnesses in the GP data. Under/overcompensa-
tion for a subgroup of people with a specific chronic illness indicates selection incentives 
towards that group. Insurers in the Netherlands have several tools to select in favor or 
against specific groups, e.g., through selective advertisement, group arrangements, supple-
mentary insurance and customer service (Van Kleef et al., 2020a; Van Veen et al., 2015). 
The GP data covers nearly 700 conditions classified by the ICPC. However, for this par-
ticular study only 109 that are labeled ‘chronic’ will be included because the RE system is 
primarily designed to account for recurring expenditures related to chronic illness. The 109 
conditions are selected for this study as they are—according to medical experts—unlikely 
to be fully recoverable from, and thus relate to future health care spending (Nielen et al., 
2019). A complete list of these ICPC conditions is provided in the appendix (Table 2).

Similar to the use of (3) for dxgroups to find the service-level selection incentives, we 
calculate the mean financial result for each of the 109 chronic conditions in the GP data 
under the various models. While the mean financial results for the dxgroups specifically 
indicate incentives for service-level selection through the direct link with treatments, the 
mean financial results for chronic conditions more generally indicate incentives for group-
level selection (Layton et al., 2018a).

Results

This section presents the results of our analyses. We first report some descriptive statistics 
of the datasets. Then, the measures of fit are reported for the various models, followed by 
the effects of the modifications to the baseline model for the dxgroups and ICPC conditions 
respectively.

Step 1: Descriptive statistics, rebalancing and the RE model of 2020

Table 1 presents a selection of descriptive statistics for both the total population and 
the GP data. Despite the notable difference in size, the GP sample differs marginally 
from the population on the underlying characteristics. The individuals in the GP data 
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are slightly older and have elevated proportions of morbidity adjuster qualifications, 
contributing to a higher mean spending. After applying the rebalancing process, as 
discussed in the Data section, the frequencies of risk classes in the GP data are identi-
cal to those of the population. Although the rebalancing process substantially reduced 
the difference in mean spending between the datasets, a difference of roughly 5 Euros 
remained. In order to offset this leftover difference, we applied a linear correction to 
the spending for the individuals included in the GP sample.

Moreover, since the GP data is based on diagnoses signaled in 2016 and the popu-
lation data refers to spending in 2017, individuals aged 0 in 2017 are excluded from 
the later dataset. Furthermore, as consumers may, for particular reasons, cancel their 
health insurance at any point in the year, the expenditures on healthcare are annualized 
and weighted by the fraction of the year the individual was enrolled. Health spending 
incurred by individuals that were only registered in the first three months, for instance, 
are therefore quadrupled and included in the analyses with a weight of 0.25.

Table 1   Descriptive statistics of the datasets

Spending is presented in euros per person per year. Frequencies are calculated as a percentage of total 
insured years in the population and (rebalanced) sample, respectively. Individuals aged 0 in 2017 are 
excluded from both datasets

Population Sample (GP data)

Number of individuals 16,873,980 1,308,301
Number of insured years 16,670,015 1,299,534
Mean spending in Euros per year €2,333 €2,388
Men, 1–17 years 9.8% 9.8%
Men, 18–34 years 10.5% 10.2%
Men, 35–44 years 6.0% 6.0%
Men, 45–54 years 7.6% 7.7%
Men, 55–64 years 6.8% 6.9%
Men, 65 years and older 8.8% 8.9%
Women, 1–17 years 9.4% 9.3%
Women, 18–34 years 10.3% 10.3%
Women, 35–44 years 6.2% 6.2%
Women, 45–54 years 7.6% 7.7%
Women, 55–64 years 6.8% 6.9%
Women, 65 years and older 10.4% 10.3%
Pharmacy-based cost groups 16.9% 17.4%
Primary Diagnosis-based cost groups 9.0% 9.2%
Secondary Diagnosis-based cost groups 3.9% 4.1%
Durable medical equipment cost groups 3.8% 3.8%
Physiotherapy diagnosis groups 1.9% 2.0%
Multiple year high cost groups 6.1% 6.3%
Prior home care spending 2.4% 2.5%
At least one morbidity adjuster 24.9% 25.4%
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Step 2: Revision of dxgroups underlying DCGs

The revision of dxgroups led to the removal of ten dxgroups and the inclusion of nineteen 
new ones. For the exact reasoning behind these modifications, we refer to the full report for 
a complete overview of the resulting 209 dxgroups (Van Kleef, 2020b). The effects of this 
seemingly minor update on the explanatory power of the model are presented in Fig. 1. The 
R2 increases by 0.4 percentage point, indicating that a larger share of variance in health 
spending is explained by the RE model. Moreover, the update of the dxgroups results in a 
0.2 percentage point decrease of absolute differences between actual and predicted health 
spending, as shown by the increased CPM.

Step 3: Developing and testing a new method for clustering dxgroups into DCGs

The update of the dxgroups and the new clustering method transformed the 15 primary 
and 7 secondary DCGs into 26 new separate DCGs that accommodate multi-classification. 
The latter means that individuals can be classified in multiple DCGs as well as multiple 
times in the same DCG (i.e., when they fall in multiple dxgroups included in that DCG). 
Moreover, the total share of the population that qualifies for compensation through DCGs 
increases from 10.5 to 11.4%. As a result, a larger portion of variance in health spending 
is explained, reflected by the increase in the measures of explanatory power: the R2 and 
CPM are respectively 0.3 and 0.2 percent point higher for M2 than for M1 (Fig. 1). The R2 
and CPM of model M2—with the 209 dxgroups clustered into 26 DCGs—appeared to be 
nearly identical to those of the same model containing each dxgroup as a separate dummy 
(results not shown here). This indicates that the new clustering method, while lifting com-
plexity and stability concerns, does not cede explanatory power.

In Fig. 2, the mean financial results (MFRs) for all 209 dxgroups are projected for M1 
and M2. The order of the dxgroups is based on the declining results under M1. Since the 
dxgroups in the figure are paired for the two models, the results for M2 do not need to fol-
low the trend for M1. In M1 44% of the dxgroups have a mean financial result between 
€500 and €-500, while in M2 over 97% fits within that range, indicating an improvement in 
predictive accuracy. Furthermore, of the total number of negative results for both models, 
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Fig. 1   R2 and CPM (both × 100) of the three simulated RE models (N = 17 m)
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114 and 119 respectively, only 26% is between €0 and €-250 for M1, while 89% of the 
undercompensations in M2 are in that bracket. By expanding the lower threshold to €-500, 
those proportions change to 41% and 98%, indicating a noteworthy improvement.

However, a few dxgroups stand out and deviate notably from zero. This is an effect of 
clustering some small dxgroups with very high coefficients that are not very close to one 
another. This inherently leads to relatively large under/overcompensations.

The outcomes in Fig. 2 can be summarized by the Weighted Mean Absolute Financial 
Result (WMAFR) across the 209 dxgroups. This overarching measure can be applied to 
reflect how capable the model is to predict the actual mean spending for the 209 groups, 
taking into account the relative size of those groups. Moving from M1 to M2 results in a 
drop of the WMAFR from €653 to €113, indicating a substantial overall improvement at 
the level of dxgroups, in line with the findings from Fig. 2.

Figure  3 presents the MFR for partitions of the population based on the number of 
dxgroups that individuals qualify for. The first group (from the left) represents people who 
are not in any dxgroup (88.7% of the population), followed by groups that are comprised of 
individuals that are in either 1, 2, 3, 4, 5, 6, 7 or 8 + dxgroups. Under Model 1, the MFRs 
for the selected groups deviate further from zero for individuals that qualify for more than 
two dxgroups. For people in more than two dxgroups, Model 2 performs substantially bet-
ter than the traditional approach of Model 1, indicating that allowing for multi-classifica-
tion improves the outcomes of RE for people with multiple morbidities.

Step 4: Evaluating the effects of the new clustering for disease groups

The final methodological step of this research repeats the preceding analyses performed 
for the 209 individual dxgroups for the 109 ICPC diagnoses extracted from the GP dataset. 
Thereby, the effects of the new clustering method are evaluated at the level of common 
chronic conditions, rather than the more specific level of hospital diagnoses. While a com-
plete overview of the results for the 109 individual ICPC groups under both the baseline 
model and M2 is provided in the appendix (Table 2), the key findings are reported below.
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€ -10,000 

€ -5,000 

€ -

€ 5,000 

€ 10,000 

€ 15,000 

€ 20,000 

Model 1: Baseline + Updated dxgroups Model 2: Baseline + Updated dxgroups + New clustering method

Fig. 2   Mean financial result per individual dxgroup (N = 17 m) Mean financial result (i.e., level of under/
overcompensation) for the 209 dxgroups, paired for the two models, based on the declining rank under 
Model 1. Mean result is calculated as the mean predicted spending per person per year minus the mean 
actual spending per person per year
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First, we made a partition between individuals that are diagnosed with at least one 
chronic illness of the ICPC list and those that have no such illness. The former group, the 
chronically ill individuals, are undercompensated by €80 on average in M0, while those 
without any diagnosis are overcompensated by €96. Model 2 produces an average result for 
these two groups of €-79 and €95 respectively, demonstrating a minimal effect of the new 
DCGs for this general partition of the population.

Figure 4 displays the MFRs derived for the 109 ICPC diagnoses for both the baseline 
model and Model 2. The results are paired and ordered based on the (declining) financial 
results of M0. The differences between the results for the two models are less obvious for 
these ICPC diagnoses than for the dxgroups shown in Fig. 2. For some of the diagnoses the 
MFR is closer to 0 for M2 than for M0; for other diagnoses, however, the opposite holds 
true. This may be explained by the fact that the new clustering method creates new clusters 

€ -9,000 

€ -8,000 

€ -7,000 

€ -6,000 

€ -5,000 

€ -4,000 
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Model 1: Baseline + Updated dxgroups Model 2: Baseline + Updated dxgroups + New clustering method

Fig. 3   Mean financial result for groups based on the number of dxgroups (N = 17 m) Mean financial result 
(i.e., level of under/overcompensation) by number of dxgroups in the population sample. Percentages refer 
to relative frequencies. Mean result is calculated as the mean predicted spending per person per year minus 
the mean actual spending per person per year

€ -8,000 

€ -7,000 

€ -6,000 

€ -5,000 

€ -4,000 

€ -3,000 

€ -2,000 

€ -1,000 

€ -

€ 1,000 

€ 2,000 
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Fig. 4   Mean financial result per individual ICPC diagnosis identified in the GP data (N = 1.3  m) Mean 
financial result (i.e., level of under/overcompensation) for the 109 ICPC groups, paired for the two models, 
based on the declining rank under Model 0. Mean financial result is calculated as the mean predicted spend-
ing per person per year minus the mean actual spending per person per year



315Improving diagnosis‑based cost groups in the Dutch risk…

1 3

of dxgroups. Assume that some dxgroups were overcompensated before as a result of the 
inherent heterogeneity problems of the old method and the new DCGs reduce these over-
compensations. ICPC diagnoses correlated to these dxgroups are compensated to a lesser 
extent, producing a different financial result on average.

Nevertheless, while the baseline model produces a statistically significant MFR 
(p < 0.01) that is below zero for 38 diagnoses, model M2 reduces that number to 33. More-
over, moving from M0 to M2 results in an MFR that is statistically significantly different 
(p < 0.05) from the respective MFR produced under the baseline model for five diagnoses. 
Four (B73, B74, F84 & R84) of these have their undercompensations reduced by roughly 
67%, tackling the problematically unprofitable aspect of these specific conditions (see the 
appendix (Table 2) for the details).

Similar to our earlier calculation for the 209 dxgroups in step 3, the impact of the new 
clustering method for the 109 ICPC diagnoses can be summarized by the WMAFR: €232 
for M0 and €225 for M2, a marginal 3% improvement. The limited effect on the WMAFR 
can be partly explained by the dissimilar impact on the 109 diagnoses. Additionally, the 
visible changes between the models at the far right of Fig. 4 are diagnoses with minor fre-
quencies, whereas the hardly changed diagnoses in the center are the most prevalent.

Figure 5 presents the MFRs for groups of individuals based on the number of ICPC diagnoses, 
ranging from 0 up to 8 + . In the figure, a modest difference can be observed between the bars for 
the subgroups of the two models. All in all, moving from the baseline model to M2 seems to have 
a minimal effect on the financial result of the selected groups based on the ICPC diagnoses, both 
in terms of multimorbidity as well as for the overall result for (not) chronically ill consumers.

Discussion

The findings of this study demonstrate how the Dutch RE model can be improved 
through a redesign of the DCGs. By applying a new clustering method and allowing 
for multi-classification, the explanatory power of the RE model at the individual level 
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€ 100 
0 (45.5%) 1 (25.4%) 2 (12.6%) 3 (6.9%) 4 (4.1%) 5 (2.4%) 6 (1.4%)  7 (0.8%)  8+ (0.8%)

Model 0: Baseline Model 2: Baseline + Updated dxgroups + New clustering method

Fig. 5   Mean financial result for groups based on the number of chronic conditions identified in the GP data 
(N = 1.3 m) Mean financial result (i.e., level of under/overcompensation) by number of ICPC diagnoses in 
the rebalanced GP sample. Percentages refer to relative frequencies. Mean result is calculated as the mean 
predicted spending per person per year minus the mean actual spending per person per year
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is increased. More specifically, we find an increase of the R2 (× 100) from 34.4 to 35.1. 
Given the level of sophistication of the Dutch model (with multiple risk adjusters that 
collectively incorporate over 200 indicators) this 0.7 increase can be considered a mean-
ingful improvement since major gains on this measure are rarely made in advanced mod-
els (Layton et  al., 2018a). At the level of dxgroups the new clustering method results 
in substantial reductions of under/overcompensation, implying that the method better 
accounts for spending heterogeneity among dxgroups. For subgroups defined by ICPC 
diagnoses from GPs, improvements are relatively minor. The main explanation is that 
the new design of the DCGs does not extend the group of people qualifying for compen-
sation through a DCG but ‘only’ improves compensation among those that already did 
qualify. In other words: the new design moves funds within the group of people qualify-
ing for a DCG but does not increase funds for this group as a whole. Although under/
overcompensations reduce for some ICPC diagnoses, they increase for others, implying 
that the overall effect for these disease groups is limited.

All in all, it can be stated that the new approach for compiling DCGs is a successful 
route to improve the predictive accuracy of the Dutch model, both at the level of indi-
viduals and at the level of subgroups. In general, these improvements mean that selec-
tion incentives for insurers will be reduced since the under/overcompensations shrink 
(Van Vliet et  al., 2015). With respect to the two sets of subgroups identified in this 
research (based on either the dxgroups or the ICPC diagnoses) we distinguish incen-
tives for service-level selection and group-level selection (Layton et  al, 2018a). With 
respect to the broader, group-level incentives derived from the ICPC diagnoses, the new 
DCGs produce marginal differences from the present (2021) model to stimuli for risk 
selection regarding disease groups. In contrast, incentives for service-level selection are 
more effectively addressed by our method. Since contracting of care is performed at the 
treatment level, the financial results for the dxgroups serve as a fitting proxy for selec-
tion incentives. By rendering the majority of dxgroups equally attractive in financial 
terms, as shown in Fig. 2, our new DCG approach thus substantially reduces incentives 
for service-level selection in Dutch basic health insurance.

Despite the advancements made in reducing under/overcompensations for treatment 
groups, the Dutch RE system persistently undercompensates the overall group of chron-
ically ill individuals, indicating that risk selection incentives towards this ambiguous 
group remain. A potential explanation could be that while—according to the GP patient 
records—55% of Dutch individuals have a chronic condition, only 25% of the popula-
tion qualifies for at least one morbidity adjuster. A substantial share of the chronically 
ill are not flagged by any morbidity indicator, resulting in inadequate financial compen-
sation. The undercompensation of diabetics (€-194 under M2), for instance, may result 
from the disparity in its prevalence between the GP data (6.1%) and its presence in the 
morbidity adjusters in the RE model (less than 5%). The resulting incentives undermine 
the goals of efficiency and fairness in the Dutch health insurance market, accentuating 
the need for further improvements of the RE model. As long as groups of consumers in 
need of specific types of care remain predictably unprofitable, insurers face a disincen-
tive to improve the quality of these specific types of care.

Additional research is required to detect the individuals that are chronically ill but are 
not found by the current RE model. While our study refines one morbidity adjuster and 
addresses the heterogeneity within, it is inadequate to eliminate undercompensations for 
all chronically ill individuals. Potentially, new risk adjusters may yield explanatory value 
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by including more extensive information on health or illness. Despite the fact that the GP 
data used in this study only covers a portion of the entire population, its usefulness should 
not be disregarded. Through the gatekeeping role of GPs in the Dutch health system, they 
possess information on the health status of individuals that may, for any particular reason, 
not use secondary care. Since the morbidity adjusters in the RE system are mostly based 
on information through hospital treatments and drug prescriptions, this could result in the 
mismatch between a signaled illness in the GP data and no compensation through RE. The 
GP data could be used for the RE model when made representative for the entire popula-
tion or efforts could be made to acquire this particular information for all individuals in 
Dutch basic health insurance. By doing so, the model can explicitly compensate chronic 
illnesses, as indicated by the GP, rather than implicitly through hospital treatments or drug 
prescriptions.

Alternatively, instead of using the ICPC information for new morbidity adjusters, 
another promising strategy to reduce the incentives for risk selection is by applying 
new estimation techniques. Constrained regression, for instance, can be used to enhance 
the financial result for specific subgroups, such as the ICPC diagnoses (Van Kleef 
et al., 2020a). The model could then be calibrated to ensure a mean financial result for 
diabetics, or any other group, of €0 or even a profit. By using the GP information in 
such ways, the selection incentives towards these groups can be diminished. Another 
alternative may lie in shifting from the prospective nature of the Dutch RE model to 
a concurrent model, not based on historical information but rather based on data from 
the current year. Information from the current year may be notably more accurately 
reflect the health status of an individual than historical data. This particular transition 
does, however, result in a larger degree of endogeneity between healthcare expenditures 
incurred and compensation received. These options are interesting directions for further 
research.

Nevertheless, by allowing for multi-classification, the Dutch DCGs become more in 
line with diagnostic classifications used in RE models in the U.S. and Germany (i.e. 
the Hierarchical Condition Categories and the Hierarchical Morbidity Groups, respec-
tively). One important difference, however, remains: while the U.S. and Germany clas-
sifications rely on direct ICD-codes, the Dutch model uses context-specific ‘diagnosis 
treatment combinations’ (DTCs). Unfortunately, these DTCs do not allow for building 
disease hierarchies that take disease severity into account. It is uncertain, however, if and 
when ICD-codes become directly available for the purpose of RE in the Netherlands; 
once they do, it should be possible to further refine the Dutch DCGs. Still, the new DCG 
approach of this study is notably effective in reducing the incentives for service-level 
selection, contributing to the functioning of the health insurance market. Although this 
study focuses on the relatively specific Dutch context, the findings and the considera-
tions for further improvement may be valuable to regulators or health insurance systems 
elsewhere seeking to apply RE to counteract risk selection incentives. The overall take-
away from our analyses is that smart design of morbidity adjusters can help mitigate 
selection incentives.

Appendix

See Table 2
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