Skip to main content

Advertisement

Log in

Identification of Novel Diagnostic Biomarkers and Classification Patterns for Osteoarthritis by Analyzing a Specific Set of Genes Related to Inflammation

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Osteoarthritis (OA) is a prevalent joint disease globally. TNFA is recognized as a crucial inflammatory cytokine that plays a significant role in the pathophysiological mechanisms that occur during the progression of OA. However, the TNFA_SIGNALING_VIA_NFKB (TSVN)-related genes (TRGs) during the progression of OA remain unclear. By conducting a combinatory analysis of OA transcriptome data from three datasets, various differentially expressed TRGs were identified. The logistic regression model was used to mine hub TRGs for OA, and a nomogram prediction model was subsequently constructed using these TRGs. To identify new molecular subgroups, we performed consensus clustering. We then conducted functional analyses, including GO, KEGG, GSVA, and GSEA, to elucidate the underlying mechanisms. To determine the immune microenvironment, we applied xCell. The logistic regression analysis identified three hub TRGs (BHLHE40, BTG2, and CCNL1) as potential biomarkers for OA. Based on these TRGs, we constructed an OA predictive model. This model has demonstrated promising results in enhancing the accuracy of OA diagnosis, as evident from the ROC analysis (AUC merged dataset = 0.937, AUC validating dataset = 0.924). We identified two molecular subtypes, C1 and C2, and found that the C1 subtype showed activation of immune- and inflammation-related pathways. The involvement of TSVN in the development and progression of OA has been established. We identified several hub genes, such as BHLHE40, BTG2, and CCNL1, that may have a significant association with the progression of OA. Furthermore, our logistic regression model based on these genes has shown promising results in accurately diagnosing OA patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data used in the present study were available from the GEO database (https://www.ncbi.nlm.nih.gov/geo/).

References

  1. Hunter, D.J., and S. Bierma-Zeinstra. 2019. Osteoarthritis. Lancet (London, England) 393 (10182): 1745–1759.

    Article  CAS  PubMed  Google Scholar 

  2. Pereira, D., E. Ramos, and J. Branco. 2015. Osteoarthritis. Acta Medica Portuguesa 28 (1): 99–106.

    Article  PubMed  Google Scholar 

  3. Pigeolet, M., A. Jayaram, K.B. Park, and J.G. Meara. 2021. Osteoarthritis in 2020 and beyond. Lancet (London, England) 397 (10279): 1059–1060.

    Article  PubMed  Google Scholar 

  4. Szilagyi, I.A., J.H. Waarsing, D. Schiphof, J.B.J. van Meurs, and S.M.A. Bierma-Zeinstra. 2022. Towards sex-specific osteoarthritis risk models: evaluation of risk factors for knee osteoarthritis in males and females. Rheumatology (Oxford, England) 61 (2): 648–657.

    Article  PubMed  Google Scholar 

  5. Sun, X., X. Zhen, X. Hu, Y. Li, S. Gu, Y. Gu, and H. Dong. 2019. Osteoarthritis in the middle-aged and elderly in china: prevalence and influencing factors. International Journal of Environmental Research and Public Health 16 (23): 4701.

    Article  PubMed  PubMed Central  Google Scholar 

  6. He, Y., Z. Li, P.G. Alexander, B.D. Ocasio-Nieves, L. Yocum, H. Lin, and R.S. Tuan. 2020. Pathogenesis of osteoarthritis: risk factors, regulatory pathways in chondrocytes, and experimental models. Biology 9 (8): 194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Han, D., Y. Fang, X. Tan, H. Jiang, X. Gong, X. Wang, W. Hong, J. Tu, and W. Wei. 2020. The emerging role of fibroblast-like synoviocytes-mediated synovitis in osteoarthritis: an update. Journal of Cellular and Molecular Medicine 24 (17): 9518–9532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Deligne, C., S. Casulli, A. Pigenet, C. Bougault, L. Campillo-Gimenez, G. Nourissat, F. Berenbaum, C. Elbim, and X. Houard. 2015. Differential expression of interleukin-17 and interleukin-22 in inflamed and non-inflamed synovium from osteoarthritis patients. Osteoarthritis and cartilage 23 (11): 1843–1852.

    Article  CAS  PubMed  Google Scholar 

  9. Young, L., A. Katrib, C. Cuello, U. Vollmer-Conna, J.V. Bertouch, P.J. Roberts-Thomson, M.J. Ahern, M.D. Smith, and P.P. Youssef. 2001. Effects of intraarticular glucocorticoids on macrophage infiltration and mediators of joint damage in osteoarthritis synovial membranes: findings in a double-blind, placebo-controlled study. Arthritis and Rheumatism 44 (2): 343–350.

    Article  CAS  PubMed  Google Scholar 

  10. Mapp, P.I., and D.A. Walsh. 2012. Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis. Nature Reviews Rheumatology 8 (7): 390–398.

    Article  CAS  PubMed  Google Scholar 

  11. Mathiessen, A., and P.G. Conaghan. 2017. Synovitis in osteoarthritis: current understanding with therapeutic implications. Arthritis Research & Therapy 19 (1): 18.

    Article  Google Scholar 

  12. Turroni, S., P. Pedersini, and J.H. Villafañe. 2021. The human gut microbiome and its relationship with osteoarthritis pain. Pain Medicine 22 (7): 1467–1469.

    Article  PubMed  Google Scholar 

  13. Chen, D., J. Shen, W. Zhao, T. Wang, L. Han, J.L. Hamilton, and H.J. Im. 2017. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Research 5: 16044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ramonda, R., P. Frallonardo, E. Musacchio, S. Vio, and L. Punzi. 2014. Joint and bone assessment in hand osteoarthritis. Clinical Rheumatology 33 (1): 11–19.

    Article  PubMed  Google Scholar 

  15. Nedunchezhiyan, U., I. Varughese, A.R. Sun, X. Wu, R. Crawford, and I. Prasadam. 2022. Obesity, inflammation, and immune system in osteoarthritis. Frontiers in Immunology 13: 907750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Robinson, W.H., C.M. Lepus, Q. Wang, H. Raghu, R. Mao, T.M. Lindstrom, and J. Sokolove. 2016. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nature Reviews Rheumatology 12 (10): 580–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Scanzello, C.R. 2017. Role of low-grade inflammation in osteoarthritis. Current Opinion in Rheumatology 29 (1): 79–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Terkawi, M.A., T. Ebata, S. Yokota, D. Takahashi, T. Endo, G. Matsumae, T. Shimizu, K. Kadoya, and N. Iwasaki. 2022. Low-grade inflammation in the pathogenesis of osteoarthritis: cellular and molecular mechanisms and strategies for future therapeutic intervention. Biomedicines 10 (5): 1109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Naumovs, V., V. Groma, and J. Mednieks. 2022. From low-grade inflammation in osteoarthritis to neuropsychiatric sequelae: a narrative review. International Journal of Molecular Sciences 23 (24): 16031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Attur, M., S. Krasnokutsky, A. Statnikov, J. Samuels, Z. Li, O. Friese, M.P. Hellio Le Graverand-Gastineau, L. Rybak, V.B. Kraus, J.M. Jordan, C.F. Aliferis, and S.B. Abramson. 2015. Low-grade inflammation in symptomatic knee osteoarthritis: prognostic value of inflammatory plasma lipids and peripheral blood leukocyte biomarkers. Arthritis & Rheumatology 67 (11): 2905–2915.

    Article  CAS  Google Scholar 

  21. Warmink, K., P. Vinod, N.M. Korthagen, H. Weinans, and J.L. Rios. 2023. Macrophage-driven inflammation in metabolic osteoarthritis: implications for biomarker and therapy development. International Journal of Molecular Sciences 24 (7): 6112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Han, Y., J. Wu, Z. Gong, Y. Zhou, H. Li, B. Wang, and Q. Qian. 2021. Identification and development of a novel 5-gene diagnostic model based on immune infiltration analysis of osteoarthritis. Journal of Translational Medicine 19 (1): 522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, W., Z. Chen, and Y. Hua. 2023. Bioinformatics prediction and experimental validation identify a novel cuproptosis-related gene signature in human synovial inflammation during osteoarthritis progression. Biomolecules 13 (1): 127.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wu, Z.Y., G. Du, and Y.C. Lin. 2021. Identifying hub genes and immune infiltration of osteoarthritis using comprehensive bioinformatics analysis. Journal of Orthopaedic Surgery and Research 16 (1): 630.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Powers, R.K., A. Goodspeed, H. Pielke-Lombardo, A.C. Tan, and J.C. Costello. 2018. GSEA-InContext: identifying novel and common patterns in expression experiments. Bioinformatics 34 (13): i555–i564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Meurer, W.J., and J. Tolles. 2017. Logistic regression diagnostics: understanding how well a model predicts outcomes. JAMA 317 (10): 1068–1069.

    Article  PubMed  Google Scholar 

  27. Aran, D., Z. Hu, and A.J. Butte. 2017. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome biology 18 (1): 220.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Griffin, T.M., and C.R. Scanzello. 2019. Innate inflammation and synovial macrophages in osteoarthritis pathophysiology. Clinical and Experimental Rheumatology 37 (Suppl 120 (5)): 57–63.

    PubMed  PubMed Central  Google Scholar 

  29. Miller, R.J., A.M. Malfait, and R.E. Miller. 2020. The innate immune response as a mediator of osteoarthritis pain. Osteoarthritis and Cartilage 28 (5): 562–571.

    Article  CAS  PubMed  Google Scholar 

  30. Molnar, V., V. Matišić, I. Kodvanj, R. Bjelica, Ž Jeleč, D. Hudetz, E. Rod, F. Čukelj, T. Vrdoljak, D. Vidović, M. Starešinić, S. Sabalić, B. Dobričić, T. Petrović, D. Antičević, I. Borić, R. Košir, U.P. Zmrzljak, and D. Primorac. 2021. Cytokines and chemokines involved in osteoarthritis pathogenesis. International Journal of Molecular Sciences 22 (17): 9208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kapoor, M., J. Martel-Pelletier, D. Lajeunesse, J.P. Pelletier, and H. Fahmi. 2011. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nature Reviews Rheumatology 7 (1): 33–42.

    Article  CAS  PubMed  Google Scholar 

  32. Rauschert, S., K. Raubenheimer, P.E. Melton, and R.C. Huang. 2020. Machine learning and clinical epigenetics: a review of challenges for diagnosis and classification. Clinical Epigenetics 12 (1): 51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Holder, L.B., M.M. Haque, and M.K. Skinner. 2017. Machine learning for epigenetics and future medical applications. Epigenetics 12 (7): 505–514.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Huber, R., C. Hummert, U. Gausmann, D. Pohlers, D. Koczan, R. Guthke, and R.W. Kinne. 2008. Identification of intra-group, inter-individual, and gene-specific variances in mRNA expression profiles in the rheumatoid arthritis synovial membrane. Arthritis Research & Therapy 10 (4): R98.

    Article  Google Scholar 

  35. Zafar, A., H.P. Ng, G.D. Kim, E.R. Chan, and G.H. Mahabeleshwar. 2021. BHLHE40 promotes macrophage pro-inflammatory gene expression and functions. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology 35 (10): e21940.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, Y., M. Yang, S. Zhang, Z. Yang, Y. Zhu, Y. Wang, Z. Chen, X. Lv, Z. Huang, Y. Xie, and L. Cai. 2022. BHLHE40 promotes osteoclastogenesis and abnormal bone resorption via c-Fos/NFATc1. Cell & Bioscience 12 (1): 70.

    Article  Google Scholar 

  37. Kim, S.H., I.R. Jung, and S.S. Hwang. 2022. Emerging role of anti-proliferative protein BTG1 and BTG2. BMB Reports 55 (8): 380–388.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang, X.Z., M.J. Chen, P.M. Fan, W. Jiang, and S.X. Liang. 2022. BTG2 serves as a potential prognostic marker and correlates with immune infiltration in lung adenocarcinoma. International Journal of General Medicine 15: 2727–2745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang, W., C. Wei, J. Cheng, R. Ding, Y. Li, Y. Wang, Y. Yang, and J. Wang. 2023. BTG2 and SerpinB5, a novel gene pair to evaluate the prognosis of lung adenocarcinoma. Frontiers in Immunology 14: 1098700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wagener, N., J. Bulkescher, S. Macher-Goeppinger, I. Karapanagiotou-Schenkel, G. Hatiboglu, M. Abdel-Rahim, H. Abol-Enein, M.A. Ghoneim, P.J. Bastian, S.C. Müller, A. Haferkamp, M. Hohenfellner, F. Hoppe-Seyler, and K. Hoppe-Seyler. 2013. Endogenous BTG2 expression stimulates migration of bladder cancer cells and correlates with poor clinical prognosis for bladder cancer patients. British journal of cancer 108 (4): 973–982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang, Q., L. Jin, Q. Ding, W. Hu, H. Zou, M. Xiao, K. Chen, Y. Yu, J. Shang, X. Huang, and Y. Zhu. 2022. Novel therapeutic mechanism of adipose-derived mesenchymal stem cells in osteoarthritis via upregulation of BTG2. Oxidative Medicine and Cellular Longevity 2022: 9252319.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Redon, R., T. Hussenet, G. Bour, K. Caulee, B. Jost, D. Muller, J. Abecassis, and S. du Manoir. 2002. Amplicon mapping and transcriptional analysis pinpoint cyclin L as a candidate oncogene in head and neck cancer. Cancer Research 62 (21): 6211–6217.

    CAS  PubMed  Google Scholar 

  43. Muller, D., R. Millon, S. Théobald, T. Hussenet, B. Wasylyk, S. du Manoir, and J. Abecassis. 2006. Cyclin L1 (CCNL1) gene alterations in human head and neck squamous cell carcinoma. British Journal of Cancer 94 (7): 1041–1044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang, H., B. Liu, D. Liu, Z. Yang, S. Zhang, P. Xu, Y. Xing, I. Kutschick, S. Pfeffer, N. Britzen-Laurent, R. Grützmann, and C. Pilarsky. 2022. Genome-wide CRISPR screening identifies DCK and CCNL1 as genes that contribute to gemcitabine resistance in pancreatic cancer. Cancers 14 (13): 3152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Peng, L., M. Yanjiao, W. Ai-guo, G. Pengtao, L. Jianhua, Y. Ju, O. Hongsheng, and Z. Xichen. 2011. A fine balance between CCNL1 and TIMP1 contributes to the development of breast cancer cells. Biochemical and Biophysical Research Communications 409 (2): 344–349.

    Article  PubMed  Google Scholar 

  46. Zeng, X., Z. Hu, Y. Shen, X. Wei, J. Gan, and Z. Liu. 2022. MiR-5195-3p functions as a tumor suppressor in prostate cancer via targeting CCNL1. Cellular & Molecular Biology Letters 27 (1): 25.

    Article  CAS  Google Scholar 

  47. Li, M., H. Yin, Z. Yan, H. Li, J. Wu, Y. Wang, F. Wei, G. Tian, C. Ning, H. Li, C. Gao, L. Fu, S. Jiang, M. Chen, X. Sui, S. Liu, Z. Chen, and Q. Guo. 2022. The immune microenvironment in cartilage injury and repair. Acta Biomaterialia 140: 23–42.

    Article  CAS  PubMed  Google Scholar 

  48. Woodell-May, J.E., and S.D. Sommerfeld. 2020. Role of inflammation and the immune system in the progression of osteoarthritis. Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society 38 (2): 253–257.

    Article  PubMed  Google Scholar 

  49. Nie, F., F. Ding, B. Chen, S. Huang, Q. Liu, and C. Xu. 2019. Dendritic cells aggregate inflammation in experimental osteoarthritis through a toll-like receptor (TLR)-dependent machinery response to challenges. Life Sciences 238: 116920.

    Article  CAS  PubMed  Google Scholar 

  50. Li, Y.S., W. Luo, S.A. Zhu, and G.H. Lei. 2017. T Cells in osteoarthritis: alterations and beyond. Frontiers in Immunology 8: 356.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, H., D. Cai, and X. Bai. 2020. Macrophages regulate the progression of osteoarthritis. Osteoarthritis and Cartilage 28 (5): 555–561.

    Article  CAS  PubMed  Google Scholar 

  52. Loukov, D., S. Karampatos, M.R. Maly, and D.M.E. Bowdish. 2018. Monocyte activation is elevated in women with knee-osteoarthritis and associated with inflammation, BMI and pain. Osteoarthritis and Cartilage 26 (2): 255–263.

    Article  CAS  PubMed  Google Scholar 

  53. Wang, G., W. Jing, Y. Bi, Y. Li, L. Ma, H. Yang, and Y. Zhang. 2021. Neutrophil elastase induces chondrocyte apoptosis and facilitates the occurrence of osteoarthritis via caspase signaling pathway. Frontiers in Pharmacology 12: 666162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jayaram, P., G.E. Kang, B.L. Heldt, O. Sokunbi, B. Song, P.C. Yeh, M. Epstein, T.B. Shybut, B.H. Lee, and B. Najafi. 2021. Novel assessment of leukocyte-rich platelet-rich plasma on functional and patient-reported outcomes in knee osteoarthritis: a pilot study. Regenerative Medicine 16 (9): 823–832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Songsheng Li wrote the manuscript. Lige Ma analyzed the data and produced the figures. Ruikai Cui reviewed and edited the manuscript.

Corresponding author

Correspondence to Songsheng Li.

Ethics declarations

Ethics Approval and Consent to Participate

This study was approved by the Ethics Committee of the Fifth Clinical Medical College of the Henan University of Chinese Medicine (ethic number: 2023(012)). Written informed consent to participate in this study was obtained from the patients/participants.

Consent for Publication

Not applicable.

Conflict of Interest

All authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1280 KB)

Supplementary file2 (XLSX 82 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Ma, L. & Cui, R. Identification of Novel Diagnostic Biomarkers and Classification Patterns for Osteoarthritis by Analyzing a Specific Set of Genes Related to Inflammation. Inflammation 46, 2193–2208 (2023). https://doi.org/10.1007/s10753-023-01871-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01871-w

KEY WORDS

Navigation