Skip to main content

Advertisement

Log in

Decreased Imiquimod-Induced Psoriasis-Like Skin Inflammation in a Novel MvdF250S/+ Knock-In Mouse Model

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The mevalonate-diphosphate decarboxylase (MVD) gene, a member of the mevalonate pathway, plays a critical role in regulating the biosynthesis of cholesterol, steroid hormones, and non-steroid isoprenoids. Previous studies have suggested that the MVD c.746 T > C mutation is a major pathogenic gene of porokeratosis (PK), an autoinflammatory keratinization disease (AIKD) with unclear pathogenesis, few effective treatments, and no suitable animal model. To investigate the function of MvdF250S/+ mutation, we developed a novel MvdF250S/+ mouse model carrying an equivalent point mutation to the most common genetic variation among Chinese PK patients (MVDF249S/+) using CRISPR/Cas9 technology, which exhibited reduced cutaneous expression of Mvd protein. In the absence of external stimulation, MvdF250S/+ mice did not display specific phenotypes. However, upon induction with imiquimod (IMQ), MvdF250S/+ mice exhibited decreased susceptibility to skin acute inflammation compared to wild-type (WT) mice, as evidenced by reduced cutaneous proliferation and lower protein levels of IL-17a and IL-1β. Additionally, after IMQ induction, the MvdF250S/+mice exhibited downregulated collagen generation and upregulated expression of Fabp3 compared to WT mice, whereas no significant changes in the key genes related to cholesterol regulation were found. Furthermore, the MvdF250S/+ mutation activated autophagy. Our findings provided insights into the biological function of MVD in the skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

MVD:

Mevalonate diphosphate decarboxylase

PK:

Porokeratosis

AIKD:

Autoinflammatory keratinization disease

IMQ:

Imiquimod

WT:

Wild type

sgRNA:

Single-guide RNA

PASI:

Psoriasis area and severity index

DEGs:

Differentially expressed genes

ECM:

Extracellular matrix

References

  1. Wong, W., Y. Huang, Z. Wu, et al. 2021. Mvda is required for zebrafish early development. Biological Research 54: 17. https://doi.org/10.1186/s40659-021-00341-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Martín Sánchez, C., J.M. Pérez Martín, J.-S. Jin, et al. 2015. Disruption of the mevalonate pathway induces dNTP depletion and DNA damage. Biochimica et Biophysica Acta 1851: 1240–1253. https://doi.org/10.1016/j.bbalip.2015.06.001.

    Article  CAS  PubMed  Google Scholar 

  3. Faulkner, R., Y. Jo. 2022. Synthesis, function, and regulation of sterol and nonsterol isoprenoids. Frontiers in Molecular Biosciences. 9: 1006822. Published 2022 Oct 5. https://doi.org/10.3389/fmolb.2022.1006822.

  4. Zhang, Z.,  C. Li, F. Wu, et al. 2015. Genomic variations of the mevalonate pathway in porokeratosis. Elife 4: e06322. https://doi.org/10.7554/eLife.06322.

  5. Li, M., Z. Li, J. Wang, et al. 2016. Mutations in the mevalonate pathway genes in Chinese patients with porokeratosis. Journal of the European Academy of Dermatology and Venereology 30: 1512–1517. https://doi.org/10.1111/jdv.13653.

    Article  CAS  PubMed  Google Scholar 

  6. Leng, Y., L. Yan, H. Feng, et al. 2018. Mutations in mevalonate pathway genes in patients with familial or sporadic porokeratosis. Journal of Dermatology 45: 862–866. https://doi.org/10.1111/1346-8138.14343.

    Article  CAS  PubMed  Google Scholar 

  7. Tao, L., Y.K. Huang, K.X. Yan, et al. 2022. A preliminary study of peripheral T-cell subsets in porokeratosis patients with MVK or MVD variants. Skin Health Disease 2: e82. https://doi.org/10.1002/ski2.82.

  8. Takeichi, T., and M. Akiyama. 2019. Familial or sporadic porokeratosis as an autoinflammatory keratinization disease. Journal of Dermatology 46: e125–e126. https://doi.org/10.1111/1346-8138.14666.

    Article  PubMed  Google Scholar 

  9. Atzmony, L., and K.A. Choate. 2019. Second-hit somatic mutations in mevalonate pathway genes underlie porokeratosis. The Journal of Investigative Dermatology 139: 2409–2411. https://doi.org/10.1016/j.jid.2019.07.723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Atzmony, L., H.M. Khan, Y.H. Lim, et al. 2019. Second-hit, postzygotic PMVK and MVD mutations in linear porokeratosis. JAMA Dermatology 155: 548–555. https://doi.org/10.1001/jamadermatol.2019.0016.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Biswas, A. 2015. Cornoid lamellation revisited: Apropos of porokeratosis with emphasis on unusual clinicopathological variants. American Journal of Dermatopathology 37: 145–155. https://doi.org/10.1097/DAD.0000000000000039.

    Article  PubMed  Google Scholar 

  12. Touitou, I. 2022. Twists and turns of the genetic story of mevalonate kinase-associated diseases: A review. Genes Dis 9: 1000–1007. https://doi.org/10.1016/j.gendis.2021.05.002.

    Article  CAS  PubMed  Google Scholar 

  13. Hivnor, C., N. Williams, F. Singh, et al. 2004. Gene expression profiling of porokeratosis demonstrates similarities with psoriasis. Journal of Cutaneous Pathology 31: 657–664. https://doi.org/10.1111/j.0303-6987.2004.00247.x.

    Article  PubMed  Google Scholar 

  14. Wang, M., S. Zhang, G. Zheng, et al. 2018. Gain-of-function mutation of Card14 leads to spontaneous psoriasis-like skin inflammation through enhanced keratinocyte response to IL-17A. Immunity 49: 66-79.e5. https://doi.org/10.1016/j.immuni.2018.05.012.

    Article  CAS  PubMed  Google Scholar 

  15. Son, S.-E., J.-M. Koh, and D.-S. Im. 2022. Free fatty acid receptor 4 (FFA4) activation ameliorates imiquimod-induced psoriasis in mice. International Journal of Molecular Sciences 23: 4482. https://doi.org/10.3390/ijms23094482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Islam, A., Y. Kagawa, K. Sharifi, et al. 2014. Fatty acid binding protein 3 Is involved in n-3 and n-6 PUFA transport in mouse trophoblasts. Journal of Nutrition 144: 1509–1516. https://doi.org/10.3945/jn.114.197202.

    Article  CAS  PubMed  Google Scholar 

  17. Pang, B., Z. Zhu, C. Xiao, et al. 2021. Keratin 17 is required for lipid metabolism in keratinocytes and benefits epidermal permeability barrier homeostasis. Frontiers in Cell and Developmental Biology 9: 779257. https://doi.org/10.3389/fcell.2021.779257.

  18. Wang, J., N. Kaplan, S. Wang, et al. 2020. Autophagy plays a positive role in induction of epidermal proliferation. The FASEB Journal 34: 10657–10667. https://doi.org/10.1096/fj.202000770RR.

    Article  CAS  PubMed  Google Scholar 

  19. Song, J., J. Jiang, L. Kuai, et al. 2022. TMT-based proteomics analysis reveals the protective effect of Jueyin granules on imiquimod-induced psoriasis mouse model by causing autophagy. Phytomedicine 96: 153846. https://doi.org/10.1016/j.phymed.2021.153846.

  20. Pohl, C., and I. Dikic. 2019. Cellular quality control by the ubiquitin-proteasome system and autophagy. Science 366: 818–822. https://doi.org/10.1126/science.aax3769.

    Article  CAS  PubMed  Google Scholar 

  21. Chowdhari, S., and N. Saini. 2016. Gene expression profiling reveals the role of RIG1 like receptor signaling in p53 dependent apoptosis induced by PUVA in keratinocytes. Cellular Signalling 28: 25–33. https://doi.org/10.1016/j.cellsig.2015.10.015.

    Article  CAS  PubMed  Google Scholar 

  22. Tian, R., Y. Li, X. Yao. 2016. PGRN suppresses inflammation and promotes autophagy in keratinocytes through the Wnt/β-catenin signaling pathway. Inflammation 39: 1387–1394. https://doi.org/10.1007/s10753-016-0370-y.

  23. Lee, H.-M., D.-M. Shin, J.-M. Yuk, et al. 2011. Autophagy negatively regulates keratinocyte inflammatory responses via scaffolding protein p62/SQSTM1. The Journal of Immunology 186: 1248–1258. https://doi.org/10.4049/jimmunol.1001954.

    Article  CAS  PubMed  Google Scholar 

  24. Kuzuyama, T., and H. Seto. 2012. Two distinct pathways for essential metabolic precursors for isoprenoid biosynthesis. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences 88: 41–52. https://doi.org/10.2183/pjab.88.41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Buhaescu, I., and H. Izzedine. 2007. Mevalonate pathway: A review of clinical and therapeutical implications. Clinical Biochemistry 40: 575–584. https://doi.org/10.1016/j.clinbiochem.2007.03.016.

    Article  CAS  PubMed  Google Scholar 

  26. Fu, Y., J.D. Sander, D. Reyon, et al. 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology 32: 279–284. https://doi.org/10.1038/nbt.2808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shan, H., Z. Liu, Y. Jia, et al. 2021. Reduced off-target effect of NG-BE4max by using NG-HiFi system. Mol Ther Nucleic Acids 25: 168–172. https://doi.org/10.1016/j.omtn.2021.05.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Buccitelli, C., and M. Selbach. 2020. mRNAs, proteins and the emerging principles of gene expression control. Nature Reviews Genetics 21: 630–644. https://doi.org/10.1038/s41576-020-0258-4.

    Article  CAS  PubMed  Google Scholar 

  29. Schroll, S., T.J. Lange, M. Arzt, et al. 2013. Effects of simvastatin on pulmonary fibrosis, pulmonary hypertension and exercise capacity in bleomycin-treated rats. Acta Physiologica 208: 191–201. https://doi.org/10.1111/apha.12085.

    Article  CAS  PubMed  Google Scholar 

  30. Kim, MJ., KL. Bible, M. Regnier, et al. 2019. Simvastatin provides long-term improvement of left ventricular function and prevents cardiac fibrosis in muscular dystrophy. Physiological Reports 7: e14018. https://doi.org/10.14814/phy2.14018.

  31. Jang, Y.O., S.H. Kim, M.-Y. Cho, et al. 2018. Synergistic effects of simvastatin and bone marrow-derived mesenchymal stem cells on hepatic fibrosis. Biochemical and Biophysical Research Communications 497: 264–271. https://doi.org/10.1016/j.bbrc.2018.02.067.

    Article  CAS  PubMed  Google Scholar 

  32. Acikgoz, Y., B. Can, K. Bek, et al. 2014. The effect of simvastatin and erythropoietin on renal fibrosis in rats with unilateral ureteral obstruction. Renal Failure 36: 252–257. https://doi.org/10.3109/0886022X.2013.836936.

    Article  CAS  PubMed  Google Scholar 

  33. Gesta, S., K. Guntur, I.D. Majumdar, et al. 2016. Reduced expression of collagen VI alpha 3 confers resistance to inflammation-induced MCP1 expression in adipocytes. Obesity (Silver Spring) 24: 1695–1703. https://doi.org/10.1002/oby.21565.

    Article  CAS  PubMed  Google Scholar 

  34. Kobayashi, S., H.T. Phung, Y. Kagawa, et al. 2021. Fatty acid-binding protein 3 controls contact hypersensitivity through regulating skin dermal Vγ4+ γ/δ T cell in a murine model. Allergy 76: 1776–1788. https://doi.org/10.1111/all.14630.

    Article  CAS  PubMed  Google Scholar 

  35. Meng, Y., S. Heybrock, D. Neculai, and P. Saftig. 2020. Cholesterol handling in lysosomes and beyond. Trends in Cell Biology 30: 452–466. https://doi.org/10.1016/j.tcb.2020.02.007.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Zhenghua Zhang as the leader of our team. Besides, we are grateful to Prof. Daqiang Li (Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University) and his lab for providing the experimental platform and guidance. And we thank Shanghai Model Organisms Center, Inc., and Genesky Biotechnologies Inc., (Shanghai, China) for their excellent technical support.

Funding

This work was supported by the National Natural Science Foundation of China (81974471).

Author information

Authors and Affiliations

Authors

Contributions

Zhenghua Zhang conceived this work and provided funding; Yumeng La performed experiments and wrote the original manuscript; Wenghong Wong also participated in experiments; Zhen Tian, Kexiang Yan, and Jing Luan provided technical assistance; Kexin Peng and Ruilin Sun performed statistical analysis; Qiaoan Zhang and Jiewen Pan performed pathology analysis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhenghua Zhang.

Ethics declarations

Ethics Approval and Consent to Participate

Ethical clearance was obtained from the Animal Ethics Committee of Huashan Hospital, Fudan University.

Consent for Publication

All authors consent to publish this manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 36049 KB)

Supplementary file2 (DOCX 608 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

La, Y., Wong, W., Peng, K. et al. Decreased Imiquimod-Induced Psoriasis-Like Skin Inflammation in a Novel MvdF250S/+ Knock-In Mouse Model. Inflammation 46, 1575–1586 (2023). https://doi.org/10.1007/s10753-023-01828-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01828-z

KEY WORDS

Navigation