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Abstract— Hypoxia-inducible factors (HIFs) are transcription factors critical for the adaptive 
response to hypoxia. There is also an essential link between hypoxia and inflammation, and 
HIFs have been implicated in the dysregulated immune response to various insults. Despite the 
prevalence of hypoxia in tissue trauma, especially involving the lungs, there remains a dearth of 
studies investigating the role of HIFs in clinically relevant injury models. Here, we summarize 
the effects of HIF-1α on the vasculature, metabolism, inflammation, and apoptosis in the lungs 
and review the role of HIFs in direct lung injuries, including lung contusion, acid aspiration, 
pneumonia, and COVID-19. We present data that implicates HIF-1α in the context of argu-
ments both in favor and against its role as adaptive or injurious in the propagation of the acute 
inflammatory response in lung injuries. Finally, we discuss the potential for pharmacological 
modulation of HIFs as a new class of therapeutics in the modern intensive care unit.
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HYPOXIA‑INDUCIBLE FACTORS

Hypoxia-inducible factors (HIFs) are a family of 
nuclear transcription factors that serve as the master regula-
tor of the adaptive response to hypoxia. These transcription 
factors, including HIF-1, HIF-2, and HIF-3, control the tran-
scription of numerous genes involved in metabolism, angio-
genesis, erythropoiesis, and other adaptations to hypoxia. 
Hypoxia-inducible factor 1 (HIF-1) is composed of HIF-1 
alpha and HIF-1 beta subunits. The basis of oxygen sensing 
for all three HIFs is the hydroxylation of proline residues 

in the oxygen-dependent degradation (ODD) domain by 
dioxygenase prolyl hydroxylase (PHD) [1–3] (Fig. 1). PHDs 
require an iron cofactor for their catalysis and, therefore, also 
function as sensors for intracellular iron [4]. Additionally, 
hydroxylation of the proline residues serves as an interaction 
scaffold for recognition of the Von Hippel–Lindau (VHL)-
containing E3-ligase complex and the following degrada-
tion by the proteasome, but hydroxylation of the asparagine 
residue leads to the inhibition of Histone acetyltransferase 
p300 and cyclic adenosine monophosphate response element 
binding protein (p300/CBP) recruitment [5, 6].

In the setting of hypoxia, HIFs are stabilized and 
translocated to the nucleus, where they heterodimerize 
with the aryl hydrocarbon nuclear translocator (ARNT), 
also known as HIF-1β [7]. This heterodimer complex 
binds to the core DNA sequence 5′-TAC GTG -3′ within 
the hypoxia response element (HRE) of target promoters 
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in conjunction with the p300/CBP complex and other 
co-activators [8, 9]. HIF-1α is the most prominent iso-
form implicated in the pathogenesis of inflammatory 
lung injury [10]. It binds to the core DNA sequence 
within the HRE of target promoters and causes the acti-
vation of over 200 genes involved in various pathways, 
including inflammation and angiogenesis [11].

ROLE OF HIF IN SPECIFIC CELLULAR 
PROCESSES

Vascular Growth and Remodeling
HIFs upregulate genes involved in oxygen deliv-

ery. This effect manifests in the rapid angiogenesis 
and vascularization promoted in hypoxic tissues. The 

arterial vasculature is comprised of three layers. The 
tunica intima is the innermost layer and is composed of 
endothelial cells. Hypoxia stimulates hypertrophy and 
sub-endothelial edema in the tunica intima [12, 13]. 
Hypoxic stress has also been associated with increased 
endothelial cell barrier permeability, possibly due to 
alterations of actin fibers and increased secretions of 
various vasoconstrictive and pro-mitogenic factors. 
Vascular endothelium growth factor (VEGF), a pro-
totypical pro-mitogenic factor, is a potent angiogenic 
agent excreted in response to hypoxia by endothelial 
and non-endothelial cells including alveolar epithelial 
cells (AEC) and alveolar macrophages (AM) [14–16]. 
HIF-1α in endothelial cells regulates the production 
of stromal-derived factor (SDF)-1, which recruits 
stem cells to areas of hypoxia and vascularization 
[17]. Recent evidence also suggests a role for HIFs in 

Fig. 1  Hypoxia-inducible factors (HIFs) signaling pathway in normoxic and hypoxic conditions: under normoxia conditions, HIF1/2 are hydroxy-
lated by prolyl hydroxylase domain (PHD)-containing enzymes. Hydroxylated HIFs are degraded in the proteasomes by von Hippel-Lindau tumor 
suppressor protein (VHL) via polyubiquitination. On the other hand, during hypoxic conditions, PHDs and FIH are unable to hydroxylate HIF-α 
subunits, which are translocated into the nucleus, resulting in dimerization of HIF-1α and HIF1β, recruitment of p300 and CBP, and ultimately, 
binding to HREs at target genes to cause activation. This complex thereby activates specific genes, which will further trigger pathological activities.
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releasing the factors thrombospondin-1 and endothe-
lin-1, which are involved in vasoconstriction and vas-
cular remodeling [18, 19].

Furthermore, HIFs promote vascular remodeling and 
alveolarization in various models of lung injury and pro-
longed hypoxia [20–24]. These changes are also stimulated 
by inflammatory cytokines such as interleukin-6 (IL-6) 
and the recruitment of cells of monocytic lineage, both of 
which have been shown to act synergistically with hypoxia 
[25–27].

Cellular Metabolism

HIFs curtail functions associated with oxygen usage, 
shunting metabolism towards the glycolytic pathway. It 
was previously believed that the glycolytic pathway was 
employed under hypoxic conditions because oxygen 
is limiting. However, studies show that during hypoxia 
(1%  O2), HIF-1α do not finish oxidative phosphorylation. 
These cells eventually undergo apoptosis due to excessive 
reactive oxygen species (ROS) [28, 29]. Notably, HIFs 
reduce ROS production formed as a byproduct of the elec-
tron transport chain (ETC). The aerobic glycolysis reac-
tion favored by HIF signaling is called the Warburg effect.

Glycolysis is modulated under hypoxic conditions 
through HIF-controlled upregulation of the glycolytic 
enzymes aldolase A, phosphoglycerate kinase 1, eno-
lase 1, phosphofructokinase 2, and pyruvate kinase, all 
of which have been found to contain HREs within their 
promoter regions [30–32]. HIF-1α also upregulates pyru-
vate dehydrogenase kinase and lactate dehydrogenase 
[33]. GLUT1, a vital glucose transporter, is upregulated 
by HIF-1α under hypoxic conditions to promote glyco-
lysis further [34]. Inflammation has also been shown to 
trigger the switch to aerobic glycolysis through an AKT-
mTOR-HIF-1α pathway mediated by the α-glucan recep-
tor dectin-1 in response to immunogenic challenge [35]. 
In addition, Eckle et al. demonstrated, with models of 
ventilator-induced acute lung injury (ALI), that HIF-1α 
is stabilized even in normoxia, promoting glycolysis, the 
tricarboxylic acid (TCA) cycle, and preventing worsening 
of lung injury [36].

PHD activity is blocked by succinate and fumarate, 
stabilizing HIF-1α activity [37]. Succinate, specifically 
in macrophages, stabilizes HIF-1α, and is a predominant 
regulator of acute inflammation, mediated by IL1β [38]. 
Plasma level of succinate is reported to predict mortality 
in critically injured trauma patients [39]. Finally, HIFs 

downregulate the biosynthesis of mitochondria while 
simultaneously increasing mitophagy [40, 41].

Bidirectional Relationship of HIF‑1α and Acute 
Inflammation

There is a well-known link between hypoxia and 
inflammation. Prominent among factors other than 
hypoxia that activate HIF-1α is nuclear factor kappa B 
(NF-κB). This transcription factor is controlled through 
the IkB (inhibitor of NF-κB) kinases, IKKα, and IKKβ. 
Once these kinases are phosphorylated, which occurs 
under hypoxic conditions, they phosphorylate IkBα-β, 
causing its degradation and the release of NF-κB [42, 43]. 
NF-κB, in turn, can upregulate the transcription of HIFs 
[43–45]. HIF-1α participates in a negative feedback loop 
by inducing the TAK-TAB complex and CDK6 to seques-
ter NF-κB [46]. In addition to the IKK/NF-κB pathway, 
HIFs also modulate the PI3K/AKT pathway, of which 
NF-κB is a downstream effector [47]. HIF-1α, as a result, 
is directly involved in the regulation of a wide range of 
proinflammatory proteins, including interleukin-1β (IL-
1β), IL-6, MIP-1, TNF-α, hydrogen peroxide, and prosta-
glandins in AM [38, 48–51]. A bidirectional relationship, 
therefore, exists between HIF-1α and NF-κB.

Our lab and others have characterized the role of 
the alveolar epithelium in hypoxic inflammation. Type II 
AECs are a significant source of chemotactic factors, such 
as CCL20 (chemokine ligand 20), CCL2, and CXCL1, 
which serve as recruitment signals for circulating leuko-
cytes and adhesive factors for leukocyte extravasation, 
such as intercellular adhesion molecule 1 (ICAM-1) and 
vascular cell adhesion protein 1 (VCAM-1) [52–55]. 
Like AM, type II AECs produce many proinflammatory 
mediators, including MIP-2, GM-CSF, IL-6, and IL-1β 
[53, 55, 56]. Interestingly, recent work has revealed an 
anti-inflammatory mechanism involving HIFs in regu-
lating extracellular adenosine, a metabolite involved in 
dampening the inflammatory response. HIF-1α regulation 
of heme oxygenase-1 (HO-1) has also been identified as 
an important anti-inflammatory pathway [57].

Apoptosis

The role of HIFs in apoptosis is complex. Multi-
ple studies report that HIFs can stimulate or suppress 
apoptosis [58, 59]. Indeed, the function of HIFs in both 
the intrinsic and extrinsic apoptotic pathways seems to 
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depend on the specific cell type, environmental factors, 
and particular pathology.

Broadly, apoptosis involves two separate regulatory 
pathways. In the intrinsic pathway, damage to DNA leads 
to the release of three interacting subgroups of Bcl-2 family 
proteins. The first group consists of proteins such as Bcl-2 
and Bcl-xL, which have anti-apoptotic properties. The sec-
ond group, including the proteins Bax and Bak, is crucial 
to apoptotic signaling and mediates mitochondrial outer 
membrane permeabilization and the release of cytochrome 
c into the cytosol [60, 61]. The third group includes pro-
teins such as Bid and Bim, which regulate group 2 proteins 
and cause oligomerization of Bax and Bak [62]. Cytosolic 
cytochrome c binds to Apaf-1 and pro-Caspase 9 to form 
the apoptosome complex, ultimately activating caspase 3 
and caspase 7 to execute apoptosis [63]. In the extrinsic 
pathway, a death ligand binds to a death receptor on the 
outer leaflet of the plasma membrane. Much of the research 
on the relationship between HIFs and apoptosis in the con-
text of AEC, including from our group, suggests a gener-
ally pro-apoptotic relationship [64].

Several studies have also characterized the link 
between HIFs and p53 [65–67]. This subject has spawned 
significant interest because of the role of p53 as a master 
regulator of proliferative genes, tumor suppressor genes, and 
apoptotic signaling pathways [68, 69]. It has been proposed 
that direct protein–protein –HIFs ODD domain lead to the 
stabilization of p53 [65, 70, 71]. Other interactions between 
HIF-1α and the p53 ubiquitin ligase Mdm2 and between the 
VHL complex and p53 suggest different association mecha-
nisms and induction between HIFs and p53 [66, 72].

Much of the body of evidence demonstrating the 
anti-apoptotic role of HIFs has been found in studies of 
cancer cell lines [73, 74]; the specific relevance to lung 
injury requires further investigation. In one such study, an 
inhibitor of a PHD was used to show that increased HIF-1α 
activity was associated with lower expression of Fas and 
caspase 3 [75]. Finally, in more clinically relevant studies, 
HIF-1α has been shown to downregulate the expression of 
Mcl-1 in hypoxic bronchial epithelial cells [76].

ROLE OF HIF‑1Α IN SPECIFIC ETIOLOGIES 
OF ACUTE RESPIRATORY DISTRESS 
SYNDROME

Acute respiratory distress syndrome (ARDS) is a 
clinical condition in which bilateral inflammation in the 
lung leads to the development of progressive respira-
tory failure. The clinical situation is characterized by the 

development of hypoxia, acute onset bilateral infiltrates, 
and reduced compliance of the lung. Despite advances 
in critical care that include low tidal volume ventilation 
[77], restrictive fluid strategies, and therapy directed 
at early identification and treatment of risk factors, 
ARDS-related mortality remains at 30–46% (increasing 
with ARDS severity) [78] with considerable morbid-
ity [79, 80]. Prominent risk factors for ARDS develop-
ment among direct insults to the lung include bacterial 
pneumonia, lung contusion, and aspiration-induced lung 
injury. Indirect lung insults include sepsis and pancreati-
tis. The broad impact of the response to hypoxia and HIF-
mediated pathways on the progression of lung injuries is 
becoming better defined. The role of HIFs and the pos-
sible effects of HIF modulation is complex and primarily 
dependent on the clinical context [81, 82].

Lung Contusion

Lung contusion (LC) describes an injury caused 
most frequently by blunt force trauma to the chest, dam-
aging the alveolar capillaries without ripping or tearing 
the lung tissue. Most injuries occur due to two underlying 
mechanisms: lighter alveolar tissue shearing from hilar 
tissue due to differential densities and rapid implosion 
and then expansion of air in alveolar spaces in the wake of 
a shock wave. These result in the accumulation of alveolar 
injury, accumulation of blood, and pulmonary edema. LC 
often presents with hypoxemia, reduced lung compliance, 
and tachycardia. There are currently no specific pharma-
cological treatments. Management is purely supportive, 
focusing on providing supplemental oxygen and mechani-
cal ventilation. Importantly, LC is an independent risk 
factor for acute respiratory distress syndrome (ARDS), 
a condition characterized by fluid buildup in alveolar 
spaces and widespread inflammation associated with 
significant morbidity and mortality [83].

Using a standardized sterile unilateral model of 
LC, our lab has recently reported that hypoxic type II 
AEC is the primary driver of inflammation through the 
activation of HIF-1α. Using a chimeric HIF-1α with 
the ODD domain fused to luciferase, we demonstrated 
that LC results in profound global hypoxia with HIF-1α 
activation and subsequent upregulation of proinflam-
matory mediators, including IL-1β and IL-6. Following 
conditional knockout (cKO) of HIF-1α in type II AEC 
through a Cre-lox system, there were significant reduc-
tions in permeability injury, proinflammatory cytokines 
and chemokines, and AEC apoptosis. HIF-1α cKO mice 
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were also found to have decreased activation of NF-κB, 
NLRP-3, caspase 1, and IL-1β. This data suggests that 
HIF-1α mediates inflammation by propagating NF-κB 
and the NLRP-3 inflammasome [53, 67]. HIF-1α cKO 
mice were also found to have diminished intra-alveolar 
hemorrhage, proteinaceous deposits, and infiltration of 
macrophages and neutrophils consistent with better pres-
ervation of lung tissue following LC [53]. Histologic 
evaluation confirmed that both inflammation and injury 
were mediated through HIF-1α. These results ultimately 
show that HIF-1α in AEC directly regulates the nature of 
the acute inflammatory response following LC. A sum-
mary of the findings is illustrated in Fig. 2. Importantly, 
these results indicate that blockade of HIF-1α activation 
with compounds represents a targeted therapy for blunt 
force trauma resulting in pulmonary contusion.

Aspiration‑Induced Lung Injury

Aspiration is defined as the inhalation of foreign 
particles into the airways. The particles are highly vari-
able depending on the situation and commonly consist 
of blood, bacteria, or ingested substances. Aspiration-
induced injury can be challenging to diagnose as it is 
not uncommon for micro-aspiration events to occur 

sub-acutely in sedation, endotracheal intubation, and 
trauma. Aspiration injuries can be categorized as either 
aspiration pneumonitis (i.e., chemical pneumonitis) or 
aspiration pneumonia, characterized by infection second-
ary to the aspiration event. The severity of the aspiration-
induced injury can vary from mild subclinical pneumoni-
tis to progressive respiratory failure and ARDS [84, 85].

Our lab has recently published data on the cru-
cial role of HIF-1α through type II AEC in hypoxia-
mediated inflammation and injury following the aspi-
ration of gastric acid (GA) and the combination of 
acid and small gastric particles (CASP) [55]. Using 
our previously mentioned murine models with lucif-
erase-linked HIF-1α and type II AEC-specific HIF-1α 
cKO, we demonstrated hypopharyngeal injection of 
a suspension of gastric particles in hydrochloric acid 
produced significant hypoxia in the lungs and glob-
ally. There was diminished proinflammatory cytokine 
and chemokine production, including IL-1β and KC, in 
knockout mice and decreased histological injury with 
minor intra-alveolar hemorrhage, neutrophil infiltra-
tion, and edema. As with LC, reductions in aspiration-
induced swelling and inflammation also appeared 
linked to attenuation in hypoxia-induced NF-kB activ-
ity [55].

Fig. 2  Alveolar epithelial cell (type II) regulation of HIF-1α promotes lung injury and inflammation. Mechanisms of activation include succinate 
dehydrogenase (SDH) accumulation due to mutation that further stabilizes HIF1. There is both direct and indirect (through NF-kB) mechanism of 
inflammasome activation leading to further injury and inflammation. HIF-1α is a nuclear transcription factor and regulates gene expression, and its 
role in lung injury and inflammation is transcription-dependent.
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Zhang et al. have also made significant contributions to 
our understanding of the role of HIFs in aspiration-induced 
injury. In their injury model, rats are anesthetized with 
sodium pentobarbital, and the prepared sea water is injected 
into the trachea. In this model, HIF-1α was shown to upregu-
late endothelial cell adhesion factor semaphorin 7A, resulting 
in a wide range of effects, including neutrophil infiltration, 
the release of proinflammatory cytokines, loosening of the 
barrier, and increased VEGF expression [86, 87].

Bacterial Pneumonia

Bacterial pneumonia is a significant cause of mor-
bidity and mortality in the modern ICU and remains 
one of the most common nosocomial infections [88]. In 
a recent epidemiological study of ventilator-associated 
pneumonia (VAP), the most common bacterial pathogens 
identified were Staphylococcus aureus, Pseudomonas aer-
uginosa, Klebsiella pneumoniae, and Enterobacter species 
[89]. It is well-known that HIFs, particularly HIF-1α, are 
involved in responses to various human pathogens both in 
vitro and in vivo under hypoxic and normoxic conditions 
[90, 91]. HIF-1α has been reported to promote the innate 
immune response through myeloid cell lines, modulating 
the expression of primary proinflammatory mediators 
such as TNF-α [92]. In macrophages, HIF-1α improves 
phagocytosis and bactericidal capacity and is linked to 
the expression of immunologic surface markers, including 
TLR-4 and antigen-presenting structures [93–95].

P. aeruginosa (PA), the next most common patho-
gen implicated in VAP, also has varied interactions with 
HIFs. HIF-1α has been found to play a protective role 
in the immune response of airway epithelial cells to PA. 
Polke et al. demonstrated that the production of proin-
flammatory molecules, including IL-6, KC, and MIP-2, 
following exposure to PA and TLR ligands was reduced 
under hypoxia or in the presence of dimethyloxalylglycine 
(DMOG) in vitro with human bronchial epithelial cells 
(HBEC) and human lung cancer cell line (Calu-3) [96]. 
The administration of siRNA targeting HIF-1α resulted 
in the upregulation of proinflammatory molecules. Gil-
Marques et al. illustrated another mechanism by which 
hypoxia and HIF-1α are potentially protective against 
infection with PA in vitro using A549 cells and RAW 
264.7 murine macrophages and in vivo with a murine 
model of pneumonia. In vitro, HIF-1α expression in 
hypoxia was associated with improved bactericidal 
capacity, and a similar response was observed follow-
ing DMOG administration under normoxic conditions. 

Bacterial burden in vivo in the lungs of mice was also 
reduced, although the levels of HIF-1α were found to be 
decreased compared to controls [97].

KP, Klebsiella pneumoniae, has been found to 
stimulate the epithelial–mesenchymal transition (EMT), 
the pathological process by which epithelial cells become 
undifferentiated and develop mesenchymal characteristics. 
In vitro, with A549 airway epithelial cells, Leone et al. 
have described that KP induces intracellular ROS produc-
tion, thereby upregulating HIF-1α expression and lead-
ing to EMT. This process was found to be reversed by the 
administration of the antioxidant resveratrol, suggesting 
that this process is mediated upstream by ROS [98]. KP 
also employs siderophores, which function as iron chela-
tors and improve virulence in a murine model of pneumo-
nia with alveolar epithelial cell-specific HIF-1α cKO mice.

LPS‑Induced Lung Injury

Lipopolysaccharide (LPS) is often used as a surrogate 
for bacterial pneumonia. It is used to illustrate the effects 
of LPS, a product constituent of the bacterial wall in gram-
negative infections, in animal models to illustrate the effect 
of bacterial products without the impact of bacterial growth. 
Studies have linked HIF to NF-κB activity while observing 
marked reductions in proinflammatory cytokine production 
in response to an LPS challenge [99]. Xu et al. found that 
HIF-1α translation through the PI3K/AKT and MAPK path-
ways was blocked, and HIF-1α breakdown was increased 
with tanshinone IIA treatment following LPS exposure. 
Therefore, the improvement in inflammation following the 
administration of tanshinone IIA points to the upregulation 
of HIF-1α as a mechanism of LPS-mediated inflammation 
[100]. In myeloid cells, a synergistic effect with Toll-like 
receptor 4 (TLR-4), the LPS-sensitive pattern recognition 
receptor, was proposed in which HIF-1α directly upregu-
lates proinflammatory cytokines and TLR-4 gene expres-
sion (101). Further experiments corroborated the detrimen-
tal effect of HIF-1α in myeloid cells, demonstrating worse 
edema, leukocyte infiltration, and cytokine release [102].

Interestingly, there exist conflicting reports regard-
ing the role of HIF-1α in the setting of LPS-related lung 
injury. Tang et al. examined the alveolar–capillary inter-
face in an LPS model of ALI [103]. They found that 
upregulation of the TNF-α/HIF-1α pathway reduced the 
expression of vasodilator-stimulated phosphoprotein, 
which is involved in maintaining cytoskeleton integrity. 
HIF-1α upregulation was associated with higher perme-
ability of the alveolar–capillary barrier. There is also 
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evidence for a protective metabolic effect of HIF-1α. In 
a recent report, Tojo et al. investigated the efficacy of 
the PHD inhibitor dimethyloxalylglycine (DMOG) in 
an LPS model of ARDS. They found both in vitro with 
MLE12 alveolar epithelial cells and in vivo with a murine 
model that cell viability was improved, likely through 
the HIF-1α mediated preference for glycolysis [104]. In 
another study, Hu et al. investigated the outcome of iso-
flurane treatment following an LPS model of ALI [105]. 
They found that the inhibitory microRNA miR-155 lev-
els were decreased by isoflurane, thereby increasing the 
expression of HIF-1α and HO-1.

Role of HIF in SARS‑CoV‑2 (COVID‑19)

Coronavirus disease 2019 (COVID-19), caused by 
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), is a novel virus first identified in China and is 
responsible for the unprecedented 2019–2022 pandemic 
[106]. Andrey et al. reported that the first step of viral inva-
sion is the interaction of SARS-CoV-2 with the angiotensin-
converting enzyme 2 (ACE2) receptor on the cell surface 
[107]. ACE2 is the surface receptor for SARS-CoV-2, 
directly interacting with the spike glycoprotein (S protein) 
[108]. Previous studies demonstrated increased ACE2 
expression in the setting of hypoxia [109, 110]. Several 
reports suggest that COVID-19 infection induces severe 
hypoxic conditions [107]. Hypoxia, in turn, activates HIF-1α 
with subsequent inflammatory cytokine production and gly-
colysis enhancement. Therefore, the COVID-19 hypoxic 
conditions and the following HIF-1α-dependent gene 
expression likely potentiate and exacerbate M1 polarization.

On the contrary, Endika Prieto-Fernández et al. 
reported that hypoxia decreases the attachment of the 
receptor-binding domain (RBD) and the S1 subunit (S1) 
of the spike protein to epithelial cells. However, hypoxia 
also inhibits the binding of the spike to human lung epi-
thelial cells lacking ACE2 expression, indicating that 
hypoxia modulates the expression of additional binding 
partners of SARS-CoV-2 [111, 112]. Ultimately, hypoxia 
acts to prevent SARS-CoV-2 infection, suggesting that the 
hypoxia signaling pathway might offer therapeutic oppor-
tunities for treating COVID-19. In this context, elucidating 
the role of the HIF signaling pathway might unlock novel 
therapeutic targets that, when modulated, reduce the initial 
virus–host interaction and viral load [111].

Notably, the SARS-CoV-2 virus primarily attacks 
pulmonary tissues and impairs gas exchange, leading to 
acute respiratory distress syndrome (ARDS) and systemic 

hypoxia [113] Tian et al. reported that during SARS-
CoV-2 infection, the viral ORF3a protein elevates the 
production of HIF-1α, which, in turn, promotes SARS-
CoV-2 disease and inflammatory responses. Therefore, 
HIF-1α is a crucial activator for SARS-CoV-2 infec-
tion and inflammatory responses [114]. RNA sequenc-
ing shows that HIF-1α signaling, immune response, and 
metabolism pathways are dysregulated in COVID-19 
patients [114]. Clinical analyses indicate that HIF-1α 
production, inflammatory responses, and high mortali-
ties occur in elderly patients. HIF-1α and proinflamma-
tory cytokines are elicited in patients and infected cells. 
HIF-1α plays an essential role in promoting SARS-CoV-2 
infection and inducing proinflammatory responses to 
COVID-19 [114]. Zoya et al. speculated in their review 
article that the activation of the HIF-1α signaling pathway 
under mild hypoxic conditions would decrease ACE2 and 
TMPRSS2 and increase ADAM17 levels on the surface 
of alveolates and, therefore, decrease the invasiveness of 
SARS-CoV-2 [113]. On the contrary, the protein targets 
of HIF-1α are involved in the severe hypoxia-induced 
activation of proinflammatory cytokine expression and 
the subsequent inflammation process and cytokine storm 
phase of COVID-19 [113].

Finally, COVID-19 results in inflammatory solid 
response and ARDS in severe disease cases. Based on 
the available data, HIF-1α is a crucial factor that responds 
to the hypoxic microenvironment at the site of inflam-
mation [19]. HIF-1α is an essential activator for SARS-
CoV-2 infection and inflammatory response, serving as a 
potential therapeutic target for virus-induced inflamma-
tory diseases and COVID-19. A summary of the current 
understanding of the role of HIF-1α in the pathogenesis 
of SARS-COV-2 is outlined in Fig. 3. HIF-1α inhibition 
through pharmacological strategies might provide a new 
approach to aid the treatment of patients affected with 
COVID-19.

IS HIF IN LUNG INJURY ADAPTIVE 
OR MALADAPTIVE?

In models of LC and gastric aspiration (ACID and 
ACID + particulate), we have reported that hypoxia is 
seen as early as 30 min following insult. This coincides 
with increased nuclear activity of HIF-1α (confirmed by 
western blots and luciferase activity in ODD-Luc mice) 
[53]. Furthermore, direct abrogation of HIF-1α led to 
significant reductions in permeability injury and acute 
inflammatory responses. Post-mortem human samples of 
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lungs from patients who died with LC show important 
HIF1-α protein localization in alveolar macrophages and 
airway epithelial cells. Notably, similar findings were dis-
covered in acid aspiration [55]. Alveolar epithelial cells 
(AEC), including type II AEC, constitute the physical and 
functional barrier in the lung. Once considered innocent 

bystanders in ARDS, they are now understood as stem 
cells with a specific role in the reparative processes. Our 
lab and others have identified AEC to have a particular 
role in initiating and progressing certain forms of inflam-
matory lung injury (LC, ACID, and ACID + particulate 
aspiration) [53, 55]. Specifically, we have shown that the 

Fig. 3  Proposed pathological mechanisms of COVID-19 involve hypoxia and HIF-1α-dependent detrimental cell signaling pathways. SARS-CoV-2 
attaches to the ACE2 receptor on the cell surface of type II alveolar epithelial cells. Moreover, HIF-1α induction in the hypoxic and inflammatory 
conditions increases the recruitment of inflammatory cells to the infection site and increases fluid accumulation leading to pneumonia and ARDS. 
Increasing the recruitment of inflammatory cells to the infection site and increased fluid accumulation leads to pneumonia and ARDS.
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regulation of HIF-1α in type II AEC directly regulates 
the progression of the acute inflammatory response lead-
ing to hypoxia, diminished lung compliance, and robust 
inflammation [53, 55].

It is entirely possible that HIF-1α plays the role 
of an adaptive molecule by driving the metabolic path-
way towards glycolysis in certain etiologies of lung 
injury. A body of evidence shows enhancement of gly-
colysis by inhibition of PHD and thereby activation of 
HIF-1α to protect alveolar epithelial cells [104]. Alve-
olar stretch is a phenomenon seen in ventilator-induced 
lung injury following the development of refractory 
hypoxia in lung injury. Eltzschig and colleagues have 
reported that, in a model of alveolar stretch-induced 
inflammation, HIF-1α plays a protective role [115]. 
Similarly, McClendon et al. concluded that HIF-1α is 
activated in ATII cells after lung injury and promotes 
proliferation and spreading during repair [116]. These 
results are contradictory to our experimental data. 
In our models of lung injury, HIF1-α increases lung 
injury and inflammation and is, therefore, maladap-
tive [53, 55].

It is highly likely that HIF-1α has disparate roles 
that depend on the cell type, nature of the inflammatory 
response, and timing of injury-acute versus chronic. For 
example, hypoxia is a direct consequence of LC and acid 
aspiration that prompts some patients to require mechani-
cal ventilation.

THERAPEUTIC STRATEGIES 
FOR MODULATION OF HIF

Several recent reviews [74, 117–119] demon-
strate mechanisms of pharmacological HIF modula-
tion. In cases of sterile injury, HIF inhibitors acriflavine, 
4-hydroxyphenyl acetic acid, and 3,5,4′-tri-O-acetyl 
resveratrol reduce inflammation with beneficial effects. 
By contrast, HIF inducers such as PHD inhibitors have 
been tested as therapeutic agents in non-sterile injury. 
Most PHD inhibitors are 2-oxoglutarate analogs, such as 
DMOG and mimosine, which induce HIFs [120]. PDH 
inhibitors represent a promising new drug class, and mul-
tiple recent reviews discuss their potential effectiveness 
[120–122]. Such compounds may constitute an original, 
desperately needed approach to lung injuries, especially 
as the increasing prevalence of antibiotic-resistant patho-
gens and conditions like ARDS continues to challenge the 
modern ICU (Table1).
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