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Abstract— Natriuretic peptide receptor 1 (NPR1) is conventionally known as a regula-
tor of vascular homeostasis. Here, we generated an Npr1 knockout mouse model with 
CRISPR/Cas9 technology and found that homozygous mice (Npr1−/−) exhibited weight 
loss and poor survival rate during early postnatal stage. Careful examination revealed 
unexpectedly that Npr1−/− mice developed colitis characterized by shortened colon, evident 
colonic mucosal damage, increased histopathological score, and higher colonic expres-
sion of proinflammatory cytokines interleukin-1B (IL1B) and -6 (IL6). RNA-sequencing 
analysis revealed that differentially expressed genes were prominently enriched in the 
biological pathways related to immune response in both spleen and colon of Npr1−/− mice. 
Cytofluorimetric analysis demonstrated that leukocytes in the spleen were significantly 
increased, particularly, the populations of neutrophil and CD3+ T cell were elevated but 
CD4+ T cells were decreased in Npr1−/− mice. Administration of 8-Br-cGMP, a down-
stream activator of NPR1, restored these immune-cell populations disturbed in Npr1−/− 
mice and lessened the colitis-related phenotypes. To validate the involvement of Npr1 in 
colitis, we examined another mouse model induced by dextran sodium sulfate (DSS) and 
found a decreased Npr1 expression and shifted immune-cell populations as well. Impor-
tantly, 8-Br-cGMP treatment exhibited a similar effect in the restoration of immune-cell 
populations and attenuation of colonic inflammation in DSS mice. Our data indicate that 
loss of Npr1 possibly interrupts immune response, which is critical to the pathogenesis 
of colitis in the early life.
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INTRODUCTION

The dysfunctional postnatal immune response may 
lead to rising morbidity and mortality in the early life [1]. 
Inflammatory bowel disease (IBD) is a gut disorder featured 
by chronic inflammation and considered an immune-mediated  
disease [2]. IBD has an increasing incidence in children 
globally and early-onset disease is more severe in infants 
and young children [3–7]. Studies show that pediatric colitis 
present failure to thrive and increased percentage of early 
death [8, 9]. Also, pediatric-onset IBD increases the risk of 
thromboembolism, colon cancer, and depressive disorder, 
which is responsible for higher mortality during adulthood  
[4, 10–12], but the underlying mechanisms are complicated.

Natriuretic peptide receptor 1 (NPR1) (also known as 
NPRA or GC-A) is a membrane-bound receptor for atrial 
natriuretic peptide (ANP) and B-type natriuretic peptide 
(BNP), which is expressed in many cell types and tissues 
including heart, vasculature, spleen, and gut [13–15]. Upon 
activation by ANP or BNP, NPR1 stimulates the production 
of cyclic guanosine monophosphate (cGMP) that promotes 
vascular tone and volume homeostasis by activation of pro-
tein kinase cGMP-dependent 1 (PKG), thereby controlling 
blood pressure and maintaining cardiovascular homeostasis 
[16, 17]. Mice with homozygous deletion of Npr1 (Npr1−/−) 
have shown hypertension, cardiac hypertrophy, and sudden 
death [18]. But how NPR1 contributes to vascular aging and 
related cardiovascular diseases remains not fully illustrated.

We initially generated Npr1−/− mouse line to assess its 
contribution to age-related vascular function and observed 
very high death rate during postnatal period rather than in 
the adulthood as reported previously [18]. When close-up 
examining these mice, we unexpectedly found the morpho-
logical changes in the spleen and colon. Thus, we decided to 
test the hypothesis that Npr1 deficiency impairs the immune 
system that further contributes to colitis in different models.

MATERIALS AND METHODS

Mouse Models
Npr1−/− mice were generated in the C57BL/6 back-

ground using CRISPR/Cas9 technique (Bioray Laboratories 
Inc, China). The genotypes were validated by PCR-based 
strategies. Mice at the age of 4 weeks were used for spleen 
and colon tissue collection. DSS-induced colitis mice 
were fed with 6% dextran sodium sulfate (DSS) (Bmassay, 
China) in water every other day for 7 days. Simultaneously, 
the control mice were fed with water only. The study was 

conducted only with the male mice. All procedures in this 
study were conducted according to the Guide for the Care 
and Use of Laboratory Animals from the Human Aging 
Research Institute of Nanchang University.

RNA Sequencing and Data Analysis

Total RNA was isolated from mouse spleen and colon 
tissues using Trizol reagent (Invitrogen, USA). mRNA was 
purified by Oligo(dT)-attached magnetic beads and conse-
quently prepared into single-strand circle DNA as the final 
library. After amplification, DNA nanoballs were made and 
then loaded onto the patterned nanoarray for sequencing 
using BGIseq500 platform (BGI-Shenzhen, China). The 
sequencing results were filtered and the clean reads were 
mapped to the Mus musculus genome. Afterward, the data 
were analyzed by Gene Ontology (GO) enrichment anal-
ysis. A heatmap was created using Package “pheatmap” 
(v1.0.8) based on the gene expression value.

Fluorescence‑Activated Cell Sorting (FACS) 
Analysis

The cells from spleen were harvested from WT and 
Npr1−/− mice and washed with cold PBS buffer. Then, 
the cells were made a suspension of 1 × 106 cells per mil-
liliter in PBS and divided into two groups. One group of 
cells were incubated with mouse anti-CD45, anti-CD3, 
anti-CD8, anti-CD11B, anti-Ly-6G, and anti-NK1.1 (BD 
Biosciences, USA) at 4 °C for 15 min. The other group 
of cells were first incubated with mouse anti-CD3, anti-
CD4, and anti-CD8 at 4 °C for 15 min and then blocked 
with 1 × TF Fix/Perm working solution for 40 min. Sub-
sequently, the cells were incubated with mouse anti-
FOXP3 (BD Biosciences, USA). Finally, the cells from 
both groups were washed with PBS and inspected using 
FACSVerse flow cytometer (BD Biosciences, USA). The 
scatter plots were created and analyzed by FlowJo v10.0.

8‑Br‑cGMP Treatment

For administration of 8-Br-cGMP (MedChemExpress, 
China), two groups of Npr1−/− mice (n = 4 per group) at the 
age of 8 weeks were used. The experimental group received 
0.1 mmol/L of 8-Br-cGMP in saline by tail-vein injection 
each week for 4 consecutive weeks. The control group 
received saline with the same procedure. For DSS-induced 
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colitis mouse model with administration of 8-Br-cGMP, WT 
mice (8 weeks) were divided into three groups (n = 10 per 
group) including two experimental groups (DSS + saline 
and DSS + 8-Br-cGMP) and one control group. Prior to the 
induction of colitis, mice from each group were injected with 
one dose of 0.1 mmol/L of 8-Br-cGMP in saline or saline 
only through tail vein, respectively.

Blood Pressure Monitor

The measurement of systolic blood pressure was 
performed in mice by non-invasive tail-cuff device IITC 
(Life Science, USA). Prior to recorded measurement, 
mice underwent adaptation training for 1 week. After-
ward, the blood pressure was measured with the inflation 
and deflation reading at an interval of 15 s, and 10 con-
secutive readings were recorded. The monitor was carried 
out for 3 consecutive days for each mouse.

RNA Isolation and RT‑PCR Analysis

The spleen and colon tissues from WT and Npr1−/−  
mice were isolated and homogenized in TRIzol reagent 
(Bmassay, China) for extracting RNA. cDNA was obtained 
from 500 μg of total RNA by reverse transcriptase kit (Zom-
anbio, China). Levels of mRNA expression of Il6, Gapdh 
were analyzed by RT-PCR. The primer sequences were as 
follows:

mouse-β-actin-F: 5ʹ-GCC​GAC​AGG​ATG​CAG​AAG​
GAG​ATC​A-3ʹ.
mouse-β-actin-R: 5ʹ-AAG​CAT​TTG​CGG​TGG​ACG​
ATGGA-3ʹ.
mouse-Il6-F: 5ʹ-GTC​AGG​GGT​GGT​TAT​TGC​-3ʹ.
mouse-Il6-R: 5ʹ-TCA​TCA​CTG​GTC​TTT​TGG​AG-3ʹ.

Enzyme‑Linked Immunosorbent Assay

Serum was collected from WT and Npr1−/− mice 
at the age of 4 weeks. IL1B and IL6 were measured by 
duoset enzyme-linked immunosorbent assay kits (Protein-
tech, China) according to the manufacturer manual.

Histological Analysis

The ascending colon, the most commonly affected tis-
sues [19], from mice was fixed with 4% paraformaldehyde 

for 24 h, and then embedded in paraffin. The sample sec-
tions were prepared in 5 μm thickness and later analyzed 
by H&E staining.

Immunofluorescent Staining

Tissue fixation was carried out in 4% paraformal-
dehyde solution for 15 min, and then permeabilization in 
PBS with 0.25% Triton X-100 for 10 min. After blocking, 
the samples were incubated with primary antibodies NPR1 
(1:100, Thermo, USA), CD3 (1:200, Proteintech, China), 
CD4 (1:100, Abcam, USA), CD8 (1:500, Abcam, USA) 
at 4 °C overnight, and followed by Cyanine3 Donkey anti-
rabbit IgG (1:200, Biolegend, USA) for 1 h in the dark at 
room temperature. Hoechst 33,342 (1:100, Beyotime, China) 
was used for nuclei staining. Images were taken with Zeiss 
confocal microscope (LSM800, Zeiss, Germany).

RESULTS

Npr1−/− Mice Exhibit Weight Loss, Elevated 
Blood Pressure, and Postnatal Death

Npr1 knockout mice were generated with a deletion 
of 157 bp in exon 2 of Npr1 gene creating a frameshift 
onto C57BL/6 background using CRISPR/Cas9 tech-
nique (Fig. 1a). The homozygous deletion of Npr1 in mice 
was verified by PCR genotyping and DNA sequencing 
(Fig. 1b), as well as immunofluorescent staining (Fig. 1c). 
Upon generating this mouse line, we observed that the body 
weight was reduced with increased age in Npr1−/− mice 
compared to wild-type (WT) mice after birth (Fig. 1d). 
As expected, Npr1−/− mice showed higher blood pressure 
(Fig. 1e). Strikingly, the survival rate of Npr1−/− mice was 
35% at 1 week after birth and declined to 15% at the age 
of 4 weeks, reaching the lowest level at 7th week (Fig. 1f). 
There was no change on litter size in Npr1−/− mice. These 
results indicated that loss of Npr1 promoted growth retar-
dation, hypertension, and early postnatal death in mice.

Npr1−/− Mice Show Very Early Onset Colitis 
that Is Alleviated by 8‑Br‑cGMP

Next, we examined whether Npr1 contributes to 
the development of colitis in mice at the age of 4 weeks. 
We found the shortened colon (Fig. 2a) and increased 
IL1B and IL6 level in the colon tissue (Fig.  2b) in 
Npr1−/− mice. At the histological level, the colonic lesion 
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was observed and the histopathological score was signifi-
cantly higher in Npr1−/− mice than that in WT (Fig. 2c). 
However, by administration of 8-Br-cGMP (cGMP 
analog), the colon length and IL1B and IL6 expressions 

were recovered (Fig. 2d and e) and the mucosal dam-
age was attenuated (Fig. 2f). These data suggested that 
absence of Npr1 caused colitis in the early postnatal 
period in mice.

Npr1 genome
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Fig. 1   Characteristics of Npr1−/− mice. a Schematic diagram of the construction of Npr1−/− mice. b PCR analysis for mouse genotyping and DNA 
sequencing. DNA bands at 488 and 331 bp represent normal and targeted Npr1 allele, respectively. c Immunofluorescent staining for NPR1 expres-
sion (red) and nuclei (blue) in the colon tissue sections from WT and Npr1−/− mice (4 weeks, n = 4–5). Quantitative data obtained by mean fluores-
cence intensity of each sample. d Body weight curves in WT and Npr1−/− mice (n = 7). e Blood pressure in WT and Npr1−/− mice (n = 4). f Survival 
curves of WT and Npr1−/− mice (n = 31–35). Values are mean ± S.D. *** p < 0.001.
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Immune‑Related Differentially Expressed Genes 
(DEGs) Are Identified in Npr1−/− Mice

To investigate whether Npr1 deficiency is impact 
on the immune response in the early postnatal stage, we 
carried out RNA sequencing for the spleen and colon 
from WT and Npr1−/− mice at the age of 4 weeks. The 
data was assessed by GO enrichment analysis. We found 

that DEGs in the spleen were enriched in biological 
processes including lymphocyte chemotaxis, monocyte 
chemotaxis, neutrophil chemotaxis, and chemokine-
mediated signaling pathway (Fig.  3a). A total of 9 
DEGs were clustered in these pathways, in which 5 
genes including Pla2g1b (phospholipase A2 group 1B) 
were up-regulated and 4 genes were down-regulated 
(Fig. 3b). Likewise, DEGs in the colon were involved 
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Fig. 2   Early onset colitis in Npr1−/− mice at the age of 4 weeks. a The colon length from WT and Npr1−/− mice (n = 4–6). b IL1B and IL6 expres-
sions in the colon from WT and Npr1−/− mice (n = 4). c Histopathological changes in the colon tissue sections from WT and Npr1−/− mice (n = 4–5). 
d The colon length from Npr1−/− mice treated with 8-Br-cGMP or saline as a control (n = 4). e IL1B and IL6 expression in the colon from Npr1−/− 
mice treated with 8-Br-cGMP or saline (n = 4). f Histopathological changes in the colon tissue sections from from Npr1−/− mice treated with 8-Br-
cGMP or saline (n = 4). Values are mean ± S.D. * p < 0.05; *** p < 0.001.
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in the signaling pathways related to immune system 
process, innate immune response, negative regulation 
of T-cell activation, and immune response (Fig. 3c). 
There were 14 DEGs identified from these pathways, 
in which 8 genes including Lgals9 (galectin 9) were 

up-regulated and 6 genes such as Jak3 (Janus kinase 3) 
were down-regulated (Fig. 3d). These data confirmed 
that lack of Npr1 altered the expression of genes related 
to immune regulation in the spleen and colon during 
early life of mice.

c
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Fig. 3   Identification of DEGs in the spleen and colon from Npr1−/− mice at the age of 4 weeks. a GO enrichment analysis of DEGs (log2 fold-
change > 1.5 and p < 0.05) in the spleen from WT and Npr1−/− mice (n = 3). The rich ratio is the ratio of the DEG number and the number of all 
genes in a certain enrichment pathway. The dot size denotes the number of DEGs, the colors denotes the adjusted Q-value range. b A heat map for 
immune-related DEGs in the spleen from WT and Npr1−/− mice (n = 3). The color intensity indicates the relative expression levels of up-regulated 
(red) and down-regulated (blue) DEGs. c GO enrichment analysis of DEGs in the colon from WT and Npr1−/− mice (n = 3). d A heat map for 
immune-related DEGs in the colon of WT and Npr1−/− mice (n = 3).
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Npr1−/− Mice Display the Composition Changes 
of Immune Cells in the Spleen

To further understand the immune response in 
Npr1−/− mice, we assessed the composition of immune 

cells in the spleen of mice at the age of 4 weeks. We found 
enlarged spleen, increased spleen weight and elevated spleen 
index (Fig. 4a), and up-regulated splenic proinflammatory 
cytokine Il6 (Fig.  4b) in Npr1−/− mice. Fluorescence- 
activated cell sorting (FACS) analysis showed that 
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leukocytes were significantly increased in the spleen of 
Npr1−/− mice (Fig. 4c), suggesting that leukocyte infiltration 
may cause the splenomegaly. Among leukocytes, increased 
proportion was found in neutrophils (Fig. 4d), but not in  
natural killer (NK) cells (Fig. 4e). Moreover, the elevated 
proportion of CD3+ T cells was observed among the 
leukocytes (Fig. 4f) as well as splenic cells (Fig. 4g) in 
Npr1−/− mice, in which the population of CD4+ T cells and 
CD8+ T cells differentiated from CD3+ T cells was further 
analyzed. The results showed that the proportion of CD4+ 
cells, but not CD8+ cells, was lower in Npr1−/− mice than 
that in WT mice (Fig. 4h). Additionally, the population 
of Treg cells from CD4+ T cells showed no difference in 
Npr1−/− and WT mice (Fig. 4i). All the results indicated 
that Npr1 deficiency impaired the immune response and 
differentiation of immune cells in the early development of  
mice.

T‑Cell Population Is Disturbed but Restored 
by 8‑Br‑cGMP in the Colon from Npr1−/− Mice

To test whether T-cell subpopulations are changed 
in Npr1−/− mice, we carried out immunofluorescent stain-
ing in the colon tissue sections. We observed that CD4+ 
T cells were significantly decreased in Npr1−/− mice at 
the age of 4 weeks, but CD3+ and CD8+ T cells were not 

altered (Fig. 5a). A decreased CD4+ T-cell population was 
restored after administration of 8-Br-cGMP (Fig. 5b), sug-
gesting that Npr1 deficiency shifted T-cell population in 
the process of colitis.

NPR1 Expression Is Reduced in the Mouse 
Model of Colitis Induced by DSS

To validate NPR1 implicating in the colonic inflam-
mation, we established DSS-induced colitis mouse model 
that is extensively used because of the most similarity to 
human ulcerative colitis [20]. These mice exhibited the 
shortened colon length (Fig. 6a), decreased NPR1 mRNA, 
and protein expression level (Fig. 6b and c). We also found 
colonic mucosal damage and elevated histopathological 
score, but these phenotypes were improved by treatment 
of 8-Br-cGMP (Fig. 6d). All the data indicated that NPR1 
may play a vital role in the experimental colitis.

Interrupted T‑Cell Population Is Restored 
by 8‑Br‑cGMP in DSS Mice

To confirm the involvement of immune cells in 
colitis, we examined T-cell population in the colon tissue 
section from DSS mouse model using immunofluorescent 
staining. Consistent with the results in Npr1−/− mice, the 
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population of CD4+ T cells was decreased in DSS mice 
compared to the control mice, but reduced CD4+ T-cell 
population was restored by 8-Br-cGMP treatment (Fig. 7, 
middle panel). However, CD3+ (Fig. 7, upper panel) and 

CD8+ T-cell population (Fig. 7, bottom panel) remained 
unchanged. These results suggested that Npr1 is involved 
in modulation of T-cell subpopulations in the colonic 
inflammation.
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DISCUSSION

In this study, we found that null function of Npr1 
disrupts the immune response that further leads to colitis 
in mice at the early life stages.

Pediatric IBD at very early onset accounts for about 
25% of the cases [21], which results in growth retarda-
tion and increased mortality in later life [10, 22]. The 
pathogenesis of IBD is multifaceted with the involvement 
of genetic effect and immune response [23]. Here, we 
demonstrate in both Npr1−/− and DSS mouse models that 
loss of Npr1 disturbs the immune response with shifted 
population of immune cells, which causes experimental 
colitis during postnatal period.

In our study, Npr1−/− mouse model was initially 
utilized for evaluation of vascular aging. Unexpectedly, 
we found abnormal morphology of spleen and colon. To 
investigate the underlying mechanism for this pheno-
type, we conducted RNA sequencing for these two tissue 
samples. Based on the data analysis, we found a diverse 
set of DEGs for the spleen and colon of Npr1−/− mice, 

which are linked to the signaling pathways of the immune 
response. Among those up-regulated DEGs, PLA2G1B 
has been reported to decline the survival rate of CD4+ T 
cells in vitro and induce dysfunction of CD4+ T cells but 
CD8+ T cells, which inhibited the sensitivity of CD4+ 
T cells to inflammatory cytokines such as IL2, IL4, and 
IL7 [24]. Another gene LGALS9 is an important mol-
ecule involved in the immune response and develop-
ment. Increased LGALS9 expression in humans is posi-
tively correlated with augmentation of T-cell markers 
and proinflammatory cytokines such as IL1B and IL6 in 
the affected intestines, which also has positive correla-
tion to the severity of colitis [25]. Conversely, lack of 
Lgals9 in mice showed less gut inflammation reflected 
by colonic morphology and histology [25]. In a cluster 
of down-regulated DEGs, Jak3 is the most studied gene 
involved in immunological function. Jak3 deficiency 
exacerbates colonic inflammation with shortened colon, 
marked mucosal impairment, elevated neutrophil, and 
increased Il6 [26, 27], which is consistent to the phe-
notype observed in our Npr1−/− mouse model. In mice 
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lacking Jak3, ENaC (epithelial Na+ channel) activity is 
damaged and accompanied by sodium depletion in the 
colonic epithelium [28]. Therefore, NPR1 may interplay 
with these genes during colonic inflammation in the post-
natal period of mice.

Spleen is the largest immune organ. It serves as a 
critical location for immune surveillance and response, 
while it is not totally developed until the age of 2 years 
in human [1, 29], equivalent to 2–3 weeks in mice [30]. 
Available evidence indicates that the postnatal life is a 
critical time frame for immune development and homeo-
stasis [31]. The impairment of immune response in the 
early neonatal period may contribute to immune-related 
or inflammatory disorder [32]. We found enlarged spleen, 
increased spleen weight, elevated spleen index, and altered 
immune cell profiles in Npr1−/− mice at postnatal stage. 
An elevated population of leukocytes and neutrophils is 
a strong evidence for splenomegaly caused by immune 
cell infiltration. In the early neonatal period, neutrophils 
undergo maturation in functionality [1]. Of note, neutro-
phils are the important population of the innate leukocytes, 
which release some cytokines such as Il1b [33]. Loss of 
granulocyte–macrophage colony-stimulating factor results 
in highly expressed Il1b and Il6 in the spleen and increased 
mortality in mice [34]. Il6 also mediates recruiting leuko-
cytes to the spleen and enhances Il6 level, causing early 
postnatal death [35, 36]. Consistent with the results from 
previous reports, we observed that IL6 level was signifi-
cantly increased in the spleen of Npr1−/− mice. Similar 
to the spleen, increased IL1B and IL6 were found in the 
colon of Npr1−/− mice. Our findings support that impaired 
mucosal immune response promotes local proinflammatory 
cytokine, causing colonic inflammation [37, 38].

It is well documented that T cells are essential for the 
immune response [39]. The immune response is modulated 
by T-cell activation pathway [23, 32]. Through cytofluori-
metric analysis, we found that the populations of CD3+ T  
cells were elevated but CD4+ T cells were decreased in the 
spleen from Npr1−/− mice. CD3+ T cells comprise CD4+ 
and CD8+ T cells that are important for assessing immuno-
logical function and pathological alterations [40]. CD3+ T  
cell is one of the subsets in the splenic leukocytes, account-
ing for one-fourth of all splenocytes [34, 41]. Studies show 
that dysfunction of CD3+ mediates gut inflammation with 
higher Il6 and Il1b levels, while anti-CD3 antibody remark-
ably decreases inflammatory phenotype by inhibiting the 
production and secretion of proinflammatory cytokine 

[42, 43]. Furthermore, we also found that the population 
of CD4+ T cells was reduced in the colon tissue from 
Npr1−/− and DSS mice. Administration of 8-Br-cGMP, a 
downstream activator of NPR1, restored these immune-cell 
populations disturbed in Npr1−/− mice. It has been reported 
that CD4+ T cells with large population are presented in 
the lamina propria of gut, which are important for immune 
system homeostasis and inflammation [44]. The decline of 
CD4+ cell amount and function predisposes inflammation 
and infection [45]. Stimulation of CD4+ T cells to produce 
IL-10 inhibits the inflammatory response in the process of 
colitis [46]. In IBD patients and colitis mice, the popula-
tion of CD4+ T cells is significantly decreased [47, 48]. A 
previous study has shown that NPR1 is expressed in CD4+ 
T cells, which controls the development of Th17 cells by 
ANP stimulation [49]. These suggest that NPR1 regulates 
the immune response mediated by restructuring T-cell sub-
populations to promote early development of colitis.

Our data from two mouse models demonstrate that 
Npr1 deficiency causes a colonic inflammation phenotype 
accompanied with growth retardation, resembling pedi-
atric onset colitis [8, 9, 50]. When administrating PKG 
activator 8-Br-cGMP, the phenotype of colitis was attenu-
ated in Npr1−/− and DSS mice. A very recent study has 
reported that decreased levels of ANP and NPR1 exac-
erbate ulcerative colitis in humans and the experimen-
tal mice. Mechanistically, this inflammatory response is 
mediated by ANP stimulator of interferon gene (STING) 
cascade in the process of colitis [15].

In the clinical perspective, pediatric IBD patients 
seem to have more serious disease course with adverse 
consequences including perianal fistulae, pancolitis, 
growth failure, psychosocial disorder, and resistant to 
medical treatment [4, 51, 52]. For the immune-related 
disease, the biologic therapy has been emerged as an 
improved therapeutic approach [53]. Early intervention 
with biologic therapies provides more effective outcomes 
for pediatric IBD [4, 54]. The biologic agents include 
monoclonal antibodies and fusion proteins, such as anti-
TNF-α, anti-integrin, and anti-interleukin 12/23 [53]. Our 
study provides more supportive evidence for intervention 
strategy in IBD. In sum, our findings highlight that loss 
of Npr1 possibly disturbs the immune response leading to 
colitis in the early life. Importantly, NPR1 may become 
a potential therapeutic target for anti-colonic inflamma-
tion beyond regulating vascular homeostasis such as blood 
pressure.
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