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Abstract— Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the 
cytokine release syndrome (CRS) and leads to multiorgan dysfunction. Mitochondrial 
dynamics are fundamental to protect against environmental insults, but they are highly 
susceptible to viral infections. Defective mitochondria are potential sources of reactive oxy-
gen species (ROS). Infection with SARS-CoV-2 damages mitochondria, alters autophagy, 
reduces nitric oxide (NO), and increases both nicotinamide adenine dinucleotide phosphate 
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oxidases (NOX) and ROS. Patients with coronavirus disease 2019 (COVID-19) exhib-
ited activated toll-like receptors (TLRs) and the Nucleotide-binding and oligomerization 
domain (NOD-), leucine-rich repeat (LRR-), pyrin domain-containing protein 3 (NLRP3) 
inflammasome. The activation of TLRs and NLRP3 by SARS‐CoV‐2 induces interleukin 
6 (IL-6), IL-1β, IL-18, and lactate dehydrogenase (LDH). Herein, we outline the inflam-
matory circuit of COVID-19 and what occurs behind the scene, the interplay of NOX/
ROS and their role in hypoxia and thrombosis, and the important role of ROS scavengers 
to reduce COVID-19-related inflammation. 
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INTRODUCTION

Coronavirus disease-19 (COVID-19) poses a 
menace to public health with almost half a billion cases 
and approximately six million deaths worldwide [1, 2]. 
Invading the human lungs, severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) interacts with the 
mucous membranes across different organs, such as the 
eyes, nose, and mouth. Older people with comorbidities 
such as the metabolic syndrome and diabetes experience 
severe COVID-19 symptoms. Moreover, increased mor-
tality due COVID-19 was attributed to other risk factors 
such as older age, diabetes, hypertension, and renal dis-
ease. For instance, more than 65% of COVID-19 patients 
had diabetes and cardiovascular diseases, of which 63% 
were above 60 years [3]. In addition, SARS-CoV-2 dam-
ages mitochondria, alters autophagy, reduces nitric oxide 
(NO), increasing nicotinamide adenine dinucleotide phos-
phate oxidases (NOX) as well as reactive oxygen species 
(ROS). In COVID-19, SARS-CoV-2 also activates both 
toll-like receptors (TLRs) and the  NOD−,  LRR−, and 
pyrin domain-containing protein 3 (NLRP3) inflamma-
some [4–12]. The SARS-CoV open reading frame 9b 
(ORF-9b) manipulates the human mitochondrial anti-
viral signalling molecule (MAVS) to evade the innate 
host immunity, limit the antiinflammatory response, and 
overproduce ROS [10, 13]. The NOX protein family pro-
duces ROS that enhance viral pathogenicity in inflam-
matory cells [10, 11]. Mammalian NOX enzymes and 
subunits include NOX1-5,  p22phox,  p67phox, NOXO1 that 
are elevated in response to angiotensin II (ATII) in the 
kidneys, heart, and endothelial cells. Such enzymes and 
subunits are also involved in COVID-19 [14, 15]. Infec-
tion with SARS-CoV-2 mediates inflammatory cytokines 
and chemokines, where ATII-induced interleukin-6 (IL-6) 
synthesis usually requires NOX-derived ROS [7]. Patients 
and mice who are NOX2-deficient had enhanced immune 
response with a tendency to develop autoantibodies 

with low ROS levels [8, 9]. The activation of TLRs and 
NLRP3 by SARS‐CoV‐2 induces IL‐6, IL-1β, IL-18, and 
lactate dehydrogenase (LDH) [4, 5, 16–23]. Currently, 
research has discussed a higher number of involved sys-
tems in COVID-19, but from an individual perspective. 
Herein, the present review article combines the simulta-
neous detrimental effects of mitochondrial dysfunction, 
autophagy, NOX, NO, ROS, NLRP3, and TLRs during 
COVID-19 (Fig. 1). Moreover, we referred to the poten-
tial role of ROS scavengers in COVID-19.

BEHIND‑THE‑SCENE IN COVID‑19

1. The NOX-Mediated ROS Pathway of Inflammation

The dysregulation of NOX signalling is evident in 
COVID-19 patients with comorbidities, including obe-
sity, diabetes, coronary artery disease, and heart failure 
[24]. In COVID-19 patients with acute respiratory dis-
tress syndrome (ARDS), ATII increases NOX and causes 
vasoconstriction and thrombosis via ROS, IL-6, tumour 
necrosis factor-Alpha (TNF-α), and other cytokines 
(Fig. 2) [25, 26]. The generation of NOX-dependent 
ROS elevates TNF-α, transforming growth factor-beta 1 
(TGF-β1), ATII, and plasminogen activator inhibitor-1 
(PAI-1), all of which are increased in COVID-19 patients 
[24, 27–30]. Numerous endogenous and exogenous pro-
cesses produce ROS, such as NOX, the electron transport 
chain, xanthine oxidase, smoking, heavy metals, drugs, 
processed meat, and radiation (Fig. 2) [31]. Interferon-
Gamma (IFN-γ) and ATII in vascular smooth muscle 
trigger NOX1 expression, while hypoxia/ischaemia and 
TNF-α stimulate NOX4 [32, 33]. Endosomal NOX2 pro-
duces the proinflammatory leukotriene B4 (LTB4) and 
increases the levels of IL-6 and ROS in virus-mediated 
pathogenicity [10, 34–38]. For example, influenzae A 
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virus causes significantly less lung injury in the absence 
of NOX2, highlighting that NOX2-mediated ROS stimu-
lates viral infection [35, 39]. In COVID-19, SARS-CoV-2 
upregulates both ACE and ATII and therefore activates 
the phagocytes, metabolises haemoglobin, and causes 
hyperferritinaemia to produce hydroxyl radical (•OH), 
increasing the likelihood of inflammation and thrombo-
sis (Fig. 3) [40–51].

The formation of •OH correlates with oxidative 
stress products such as 4-hydroxynonenal and malon-
dialdehyde guanine adducts of DNA, which also are the 
products of the radical oxidation of phospholipids, related 
to COVID-19 dyslipidaemia [52–55]. Reactive oxygen 
species interact with lipids, carbohydrates, proteins, and 
nucleic acids, causing permanent destruction or altera-
tions in their functions [56]. Hydroxyl radical is the most 
reactive and most toxic ROS that causes severe cellular 
damage by strongly interacting with DNA, carbohydrates, 
proteins, and lipids [57–60]. Haemochromatosis in dif-
ferent diseases (e.g., ageing and Parkinson’s disease) has 
gained attention because iron catalyses the formation of 
•OH [61–64]. Hydroxyl radical directly reacts with all 
DNA components, such as purine and pyrimidine bases, 
deoxyribose sugar backbone and causes single and dou-
ble stranded breaks in DNA strand breaks and chemical 

modifications of nucleobases or nucleotides [60, 65, 
66]. The uncontrolled production of ROS significantly 
contributes to infectious, inflammatory, and numerous 
chronic disorders. This evidence underpins the current 
hypothesis that NOX is an essential regulator in COVID-
19 pathogenesis, and that blocking the expression of NOX 
might hinder the production of ATII-induced ROS and 
IL-6, minimising inflammation and tissue injury (Fig. 2).

2. The Inflammatory Role of NLRP3

The tissues of postmortem COVID-19 patients 
show the active NLRP3 inflammasome and its products,  
including IL-1β, IL-18, and LDH [16–23]. Acute and 
chronic respiratory diseases, traumatic brain injury, acute  
kidney injury (AKI), and chronic kidney disease (CKD) 
also reported the involvement of the NLRP3 inflamma-
some [67]. Viral infections, metabolic abnormalities,  
tissue damage, and dysfunctional mitochondria generate  
ROS (e.g., •OH) that activate the NLRP3 inflammasome,  
triggering the production of proinflammatory cytokines 
[68–73]. Fortunately, mitochondria-targeted antioxidants  
such as molecular hydrogen  (H2) can suppress the pro-
duction of mitochondrial •OH, and therefore inhibit the 
expression of NLRP3 inflammasome, caspase-1, and 

Fig. 1  A summary of the machineries that aggravate COVID-19. COVID‑19, Coronavirus Disease-19; NLRP3 = NOD-, LRR- and pyrin domain-
containing protein 3; NO, Nitric Oxide; ROS, Reactive Oxygen Species; SARS‑CoV‑2, Severe Acute Respiratory Syndrome Coronavirus-2; TLRs, 
Toll-Like Receptors.
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IL-1β [74]. Molecular hydrogen is a potent scavenger 
that selectively scavenges •OH without adverse effects on  
the human body [75]. A recent multicentre trial revealed 
that the inhalation of hydrogen–oxygen gas mixture 
reduced COVID-19-related acute and chronic inflamma-
tion [76]. The intraperitoneal  H2-rich saline suppressed 
the activation of the NLRP3 inflammasome, the activ-
ity of nuclear factor kappa-light-chain-enhancer of acti-
vated B cells (NF-κB), and the production of TNF-α and 
IL-1β in a mouse model with acute pancreatitis. Moreo-
ver,  H2-rich saline improved the survival rate and ame-
liorated intestinal damage and inflammatory response, 
oedema, and apoptosis ameliorated intestinal ischaemia/
reperfusion-mediated coagulopathy in rats. Molecular 
hydrogen-rich saline inhibited the activation of NF-κB 
and NLRP3 inflammasomes in peripheral blood mono-
nuclear cells (PBMCs) [77]. Given this,  H2 may reduce 

the SARS-CoV-2-induced inflammation by inhibiting 
the NLRP3 cascade and the release of proinflammatory 
cytokines.

3. The Nitric Oxide (NO)/ROS Imbalance

Persistent inflammation due to COVID-19 dis-
turbs the nitric oxide (NO)/ROS balance and causes 
multiorgan failure [78]. Patients with COVID-19 and 
common comorbidities (e.g., hypertension and diabe-
tes) displayed significantly reduced endothelial NO, 
suggesting a strong relationship with acute lung injury 
(ALI) and NO/ROS imbalance [79–85]. Severe acute 
respiratory syndrome coronavirus 2 downregulates the 
expression of angiotensin-converting enzyme 2 (ACE2), 
producing proinflammatory cytokines and ROS that 
cause excessive inflammatory responses and lower 

Fig. 2  A schematic representation of the interplay between mitochondria and inflammatory related factors with COVID-19 at different levels. ACE‑2, 
Angiotensin-Converting Enzyme-2; ATII, Angiotensin II; IL, Interleukin; NF‑κB, Nuclear factor kappa B; NOX, NADPH Oxidase; PARs, Protease-
Activated Receptors; ROS, Reactive Oxygen Species; SARS‑CoV‑2, Severe Acute Respiratory Syndrome Coronavirus-2; TF, Tissue Factor; TLR, 
Toll-Like Receptor; TNF‑ɑ, Tissue Necrosis Factor-Alpha.
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the levels of NO by causing endothelial cell apoptosis 
(Fig. 4) [86–89]. Viral SARS-CoV-2 particles easily 
bind their protein spikes and enter into the cells due to 
the higher expression of ACE-2 receptors. Hence, peo-
ple with impaired metabolic health are more prone to 
COVID-19 and comorbidities [3]. Severely ill COVID-
19 patients exhibit excessive mitochondrial ROS that 
lead to mitochondrial dysfunction, reducing the pro-
duction and bioavailability of NO by the activation of 
nuclear factor kappa-light-chain-enhancer of activated 
B cells (NF-kB), AP-1 as well as the overexpression 
of cytokines and adhesion molecules (Fig. 2) [90–92]. 

The NO donor S-nitroso-N-acetylpenicillamine (SNAP) 
significantly inhibited cysteine proteases encoded by 
SARS-CoV-1  ORF1a and the membrane fusion of 
offspring virus S protein, decreasing viral replication 
by > 80% in VeroE6 cells [93–97]. Both SARS-CoV-2 
and SARS-CoV exhibit a high degree of similarity in  
the receptor-binding domains of the spike proteins [98, 
99]. Consequently, inhaled NO may prevent SARS-
CoV-2 infection or treat mild, moderate, or severe 
COVID-19 patients, and could be used as an adjuvant 
therapy in mechanically ventilated patients (Fig. 4) [83, 
100, 101].

Fig. 3  •OH as the potent ROS family member that lead to multiorgan failure in COVID-19. IL, Interleukin; ROS, Reactive Oxygen Species; 
SARS‑CoV‑2, Severe Acute Respiratory Syndrome Coronavirus-2; TNF‑ɑ, Tissue Necrosis Factor-Alpha.
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4. Mitochondrial Dysfunction and Autophagy

Hypoxia and other inflammatory mediators impair 
the function of mitochondria during COVID-19 [102, 
103]. Mitochondrial dysfunction is a potential source 
of ROS that affect healthy mitochondria and promote 
cell death [104]. Mitochondria have emerged as critical 
dynamic organelles to maintain cellular homeostasis, 
metabolism, innate immune response, and determine the 
severity of viral infections [105]. Mitochondrial dynam-
ics such as fusion, fission, and mitophagy protect against 
environmental insults; although, they are susceptible to 
viral infections, due to viral proteins or physiological 
alterations (e.g., disruption of  Ca2+ homeostasis, endo-
plasmic reticulum stress, oxidative stress, and hypoxia) 
[106–108]. By interfering with mitochondria, viruses dis-
tort mitochondrial functions to create a favorable stressful 
environment for viral proliferation (i.e., low and higher 
amounts of mitochondrial ATP and ROS, respectively) 
and impeding mitochondria-associated antiviral signaling 
[109]. Defective mitochondria are a potential source of 
ROS that can also lead to damage of healthy mitochon-
dria. Therefore, disturbances of the rapid clearance of 

dysfunctional mitochondria create higher levels of ROS, 
promoting cell death [102, 104, 110, 111]. Afterwards, 
viruses (e.g., SARS-CoV-2) start to proliferate and prop-
agate via changing potential targets, including NLRP3 
inflammasome and autophagy [112].

In COVID-19-related sepsis, the SARS-CoV-2-
host interaction releases the cytokine storm that ulti-
mately leads to multiorgan failure [113]. The proinflam-
matory cytokine TNF-α increased mitochondrial ROS 
mediated by mitochondrial damage in human umbili-
cal vein endothelial cells (HUVECs) [114]. Similarly, 
COVID-19 significantly upregulates TNF-α along-
side other cytokines and chemokines (Figs. 1 and 3). 
Accordingly, SARS-CoV-2 presumably counteracts the 
antiviral response by upregulating TNF-α and causing 
mitochondrial ultrastructural abnormalities to produce 
higher amounts of ROS [115]. Viruses modulate mito-
chondria-mediated antiviral immune responses by alter-
ing autophagy, mitophagy, and cellular metabolism to 
facilitate their proliferation [112].

Autophagy is an essential target in SARS-COV-
2-mediated COVID-19 [112]. The possible inhibition 
of autophagy by SARS-CoV might elaborate more the 

Fig. 4  The potential role of ROS/NO imbalance in reducing endothelial NO during COVID-19. ACE‑2, Angiotensin-Converting Enzyme-2; ATII, 
Angiotensin II; NO, Nitric Oxide; ROS, Reactive Oxygen Species; SARS‑CoV‑2, Severe Acute Respiratory Syndrome Coronavirus-2.
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pathophysiological role of mitochondrial dysfunction 
during COVID-19. Cells adopt autophagy (i.e., a self-
destruction mechanism) to remove dysfunctional and 
superfluous cellular components via the initiation and 
elongation of isolation membrane, autophagosomes for-
mation, and fusion and degradation of autophagosome-
lysosome [112]. Mitochondria regulate autophagy to 
remove harmful components by producing ROS, whereas 
autophagy controls mitochondrial homeostasis using 
mitophagy [116, 117]. The lack of normal autophagy 
due to viral infections leads to mitochondrial dysfunc-
tion and ROS generation (Fig. 2) [118]. Cardiovascular, 
neurodegenerative, chronic liver, and kidney diseases 
also confirmed the interaction between autophagy dete-
rioration, mitochondrial dysfunction, and ROS generation 
[119–122]. These data support the fact that loss of normal 
autophagy might be one of the primary contributors to 
SARS-CoV-2 infection in disturbing the mitochondrial 
homeostasis. However, numerous studies reported that 
SARS-CoV, SARS-CoV-2, Middle East respiratory syn-
drome coronavirus (MERS-CoV), and mouse hepati-
tis virus (MHV) induce and inhibit autophagy. Further 
research on modulating autophagy (i.e., induction or inhi-
bition of autophagy) would elaborate the consequences 
on SARS-CoV-2 treatment [123–132].

5. Loss of Autophagy and ROS

Elderly COVID-19 patients exhibit a vulnerable 
antioxidant defence and an exaggerated oxidative dam-
age. The onset of ARDS in COVID-19 patients requires 
the activation of the “ROS machinery” combined with 
innate immunity to facilitate NF-κB, exacerbating the 
proinflammatory host response (Fig. 2) [133]. The over-
production of ROS significantly disturbed the antioxidant 
system during the SARS-CoV pathogenesis, severity, and 
progression of the respiratory disease in vitro and in vivo 
[134, 135]. Humans share age-related loss of autophagy 
or shocking exposure to ROS. Autophagy may contrib-
ute to the ageing phenotype, denoting that ageing alters 
the adaptive immune response and the proinflammatory 
state of the host [136]. For example, older mice severely 
experienced SARS-CoV-induced lung lesions than 
younger mice [137]. Older macaques upregulate virus-
host response with inflammation due to differential gene 
expression with NF-kB as a central player [137]. Elderly 
patients also had significantly higher incidence of mul-
tilobe lesions than young and middle-aged COVID-19 
patients [138]. The concurrent decline in mitochondrial 

dysfunction due to the inhibition of autophagy and the 
predisposing comorbidities in elderly patients, might 
explain why old COVID-19 patients show severe clinical 
manifestations that eventually lead to multiorgan failure 
compared to younger patients (Fig. 2). The World Health 
Organization declared that currently approved medica-
tions (e.g., clozapine, glyburide, carbetapentane) could 
be used for the treatment of COVID-19, by targeting 
the NLRP3 inflammasome and autophagy to inhibit the 
propagation of SARS-CoV-2 [139–143].

6. The Possible Crosstalk Between TLRs, NOX, and 
ROS

Evidence supports the association between NOX, 
ROS, inflammatory mediators, and SARS-CoV-2 patho-
genesis as well as the relationship between ROS signal-
ling with TLR4 activation during TLR4/NOX interaction 
(Fig. 2) [144, 145]. The administration of diphenylenei-
odonium chloride (DPI) suppressed the upregulation 
of TLR2, 4, and 9 in alcohol-induced fatty liver injury 
[146]. Human cells highlighted the potential role of 
NOX2 inhibitors in viral infections. In respiratory syn-
cytial virus, rhinovirus, and human immunodeficiency 
virus (HIV), TLR7 activates NOX2 to produce ROS and 
modifies the single cysteine residue of TLR7, inhibiting 
the key antiviral and humoral signalling [147]. The syn-
cytial viral cytoplasmic components recognise TLR7 and 
other sensor molecules; the mitochondria produce large 
amounts of ·OH that oxidise mitochondrial DNA, driving 
the cascade from NLRP3 to the release of proinflamma-
tory cytokines (Fig. 2) [72, 148].

Severe acute respiratory syndrome coronavirus 2 
binds to TLRs to activate and regulate pro-IL-1, NLRP3, 
IL-1β, IL-6, IL-10, and TNF-α. Such cascade causes lung 
inflammation and fibrosis, suggesting that the TLR path-
ways are protective mechanisms in SARS-CoV infections 
[149–151]. Toll-like receptors (e.g., TLR3, 4, 7, 8, and 9) 
identify many viral conserved patterns where myeloid dif-
ferentiation primary response 88 (MyD88)—an essential 
component of the TLR pathway—assembles NOX to gen-
erate ROS in neutrophils and macrophages (Fig. 2) [152, 
153]. Myeloid differentiation primary response 88 acti-
vates the TIR-domain-containing adapter-inducing inter-
feron (TRIF)‐dependent signalling to activate the IFN-1, 
NF‐kB, and mitogen-activated protein kinase (MAPK) 
pathway [154]. The activation of the TLR-MyD88 down-
stream signalling and NF-kB is a hallmark of SARS-CoV 
infections, where the inhibition of NF-kB significantly 
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reduced respiratory coronavirus infection and increased 
survival in mice [151, 155].

Convalescent SARS-CoV-infected patients experi-
enced mitochondrial- and ROS-responding gene upregu-
lation [144]. For example, ROS/NF‐kB/TLR (mainly 
TL4) signalling pathways lead to ALI upon triggering by 
SARS-CoV. The TLR4-TRIF-TRAF6 pathogenic path-
way mediates the severity of ALI. The loss of TLR4 or 
TRIF expression protected mice from  H5N1-induced ALI, 
indicating that the severity of ALI depends on ROS and 
innate immunity.

THE POTENTIAL ROLE OF THE NOX/ROS 
INTERPLAY IN MEDIATING HYPOXIA, 
ISCHAEMIC INJURY, THROMBOSIS, 
AND FIBROSIS IN COVID‑19

Severe hypoxia occurring during the COVID-19 
cytokine storm is the leading cause of myocardial and 
liver damage, toxic encephalopathy, extremity ischaemia, 
and abnormal coagulation [156–159]. Although the acti-
vation of NOX in pulmonary endothelium mediates an 
increase in ischaemia-mediated ROS, data remain scarce 
to support the role of the NOX family in hypoxia/ischae-
mia in COVID-19 patients [160, 161]. A murine model of 
coronary artery ligation showed that NOX2 led to adverse 
cardiac injury [162]. Rhinovirus, SARS-CoV, and the 
anoxia of human platelets generate NOX2-dependent ROS 
in vitro [163]. The genetic deletion of NOX2 quenched 
the cognitive deficits promoted by intermittent hypoxia 
and oxidative stress in mice [164, 165]. Mice transplanted 
with  p47phox-deficient bone marrow had decreased levels 
of lung ischaemia and proinflammatory cytokines [166]. 
Apocynin—NOX2 inhibitor—reduced vascular perme-
ability in sheep, and aborted ischaemic lung and hepatic 
injury, cell necrosis and tissue injury, cytokine release, and 
ROS production in different murine models [167–173]. 
These data highlight that the inhibition of NOX, ROS, or 
 p47phox could hold promise for designing effective mol-
ecules to limit the ischaemic injury in COVID-19 patients 
[7, 103, 174].

1. Brain Ischaemia

Patients with COVID-19 present with ischaemic 
strokes. Brain ischaemic stroke comprises more than 80% 
of all strokes and occurs due to an immediate halting of 

blood flow by middle cerebral artery blockade [175, 176]. 
The excessive production of ROS aggravates oxidative 
stress and contributes to brain damage during ischaemia, 
suggesting that decreasing ROS might be helpful in the 
management of cerebral stroke (Fig. 1) [177–180]. Stud-
ies demonstrated that NOX1, NOX2, NOX4, and NOX5 
are associated with cerebral disorders and ROS release 
[181–186]. The genetic deletion of NOX2 had protective 
effects against cerebral stroke in middle cerebral artery 
occlusion (MCAO) model. Functional NOX2-deficient 
and NOX2 knockout (KO) mice had significant reduction 
of oedema, lesion volume, and blood–brain barrier (BBB) 
leakage, postischaemic inflammatory gene expression and 
oxidative stress markers, and better neurological function 
during cerebral ischaemia [187–190]. Mouse model of 
retinal ischaemia with NOX2-deficient hippocampal neu-
rons experiences low ROS levels upon exposure to oxy-
gen/glucose deprivation (OGD) with attenuated neuronal 
cell death [191]. Consequently, the treatment of stroke 
should adopt an effective NOX inhibitory strategy, espe-
cially NOX2. However, extensive research that simulates 
the human biological system is crucial to validate the data 
emerging from in vivo models given the small organs and 
the relatively large penumbra in the lesioned tissues.

2. Thrombosis and Fibrosis

Microthrombosis, pulmonary embolism, endothelial 
failure, and disseminated intravascular coagulation (DIC) 
are reported in COVID-19 patients [7, 192–196]. Viruses 
activate the coagulation pathway to overproduce proin-
flammatory cytokines via proteinase-activated recep-
tors (PAR1 and PAR2) mediated by mitochondrial ROS 
[196–201]. Both PAR1/PAR2—expressed on platelets, 
endothelial and epithelial cells, and vascular and non-
vascular smooth muscles—are involved in inflammation 
[202–205]. The upregulation of the NOX subunit  p22phox 
in endothelial cells generates ROS that promote PAR1- 
and PAR2-mediated tissue factor (TF) induction, causing 
acute and chronic inflammation (Fig. 2) [206–209]. Dur-
ing inflammation, iron (III) generate •OH that convert 
soluble plasma fibrinogen into abnormal fibrin clots in 
the form of dense matted deposits resistant to enzymatic 
degradation (i.e., blood coagulation) (Fig. 4) [210–212]. 
Tissue-plasminogen activator (tPA) downregulates both 
IL-1α and IL-1β in endothelial cells during inflamma-
tion [213, 214]. Three mechanically-ventilated COVID-
19 patients demonstrated that tPA has a therapeutic role 
in ARDS, showing a transient improvement in the ratio of 
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arterial oxygen partial pressure/fractional inspired oxygen 
[215]. However, this improvement is lost after the end 
of treatment due to the fact that NOX-dependent ROS 
inhibits tPA activity, leading to thrombosis [216, 217].

The biopsies of liver and lung injury in deceased 
COVID-19 patients showed severe inflammatory 
responses with higher levels of IL-2, IL-6, IL-8. IL-10, 
and IFN-γ [218]. Profibrotic responses are triggered upon 
the activation of PAR1 and PAR2, inducing the release 
of NF-kB and IL-6, IL-8, and MCP-1 that contribute to 
leucocyte recruitment during SARS-CoV-2 infection as 
well (Fig. 1) [219]. The direct upregulation of PAR (i.e., 
PAR2) in chronic liver disease and pulmonary fibrosis 
increases the production of ROS, enhancing fibrogenesis 
by inducing hepatocyte apoptosis, airway obstruction, and 
lung oedema [209, 220–223]. This is consistent with the 
fact that PAR-2-deficient mice showed reduced inflam-
mation and improved survival [224, 225]. Therefore, it is 
expected that PAR-2-dependent ROS could contribute to 
lung and liver injuries in COVID-19 patients, especially 
with predisposing diseases such as liver disease, leading 
to immunosuppression and disease aggression [25, 226, 
227].

COULD ROS SCAVENGERS BE EFFECTIVE 
AGAINST COVID‑19?

Natural compounds such as lycopene, polyphenols, 
quercetin, phloretin, berberine, and sulforaphane show 
a preventive potential against SARS-CoV-2 infection 
[228–231]. The lecithinised superoxide dismutase (PC-
SOD) enzyme possesses excellent bioavailability, safety 
(confirmed in phase I and II studies), and modulatory 
effect to reduce the harms of oxidative stress in COVID-
19 [232–236]. It is a synthetic product with long-life and 
high bioavailability compared to non-lecithinsed forms 
of the enzyme [237, 238]. For example, the intravenous 
administration of PC-SOD was safe and suppressed pul-
monary emphysema and fibrosis, lung inflammation or 
ARDS, and activation of proteases, and the expression in 
vitro and in animal models [234, 239–243]. The lecithin-
ised superoxide dismutase reduced serum LDH and sur-
factant protein A in patients with stage III-IV idiopathic 
pulmonary fibrosis without significant side effects. It 
would exert a more pulmonary protective effect if admin-
istered earlier during the course of the disease [233].

CONCLUSIONS AND FUTURE DIRECTIONS

This review has shed light on the close relationship 
between mitochondrial dysfunction, NOX, ROS, NLRP3 
inflammasome, TLRs, and NO as the “inflammatory cir-
cuit” of COVID-19. The lack of normal autophagy leads 
to central problems such as mitochondrial dysfunction 
and the production of ROS. Subsequently, there could be 
an interplay between autophagy and SARS-CoV-2, but 
the exact nature of such an interaction remains unclear.

The proposed crosstalk between ROS and NOX 
during SARS-CoV-2 infection unequivocally constitutes 
an emerging molecular analysis and drug design route for 
COVID-19. Other probable interfering signalling path-
ways (i.e., PAR, TLR-MyD88, ROS/NF‐kB/TLR, and 
TLR4/TRIF/TRAF6) take place during SARS-CoV-2 
pathogenesis. The coronavirus proteases, especially 
3C-like protease (Mpro or 3CLpro), are attractive anti-
viral drug targets because they are essential for corona-
viral replication. Such antiviral drugs would inhibit viral 
replication and the dysregulation of signalling cascades 
in infected cells that may lead to the death of healthy 
cells [6].

Future investigations may unveil the mitochondrial 
innate antiviral signalling during COVID-19, SARS-
CoV-2–host interactions, and how SARS-CoV-2 exploits 
alterations to the mitochondrial morphophysiology to its 
benefit [244, 245]. The inhibitors of NOS and ROX might 
be promising compounds to reduce the SARS-CoV-
2-related hyperinflammatory states during the cytokine 
response, vascular hyperpermeability, microthrombosis, 
tissue injury/ischaemia and fibrosis, and multiorgan fail-
ure. Nevertheless, the essential functions of NOX and 
ROS in normal physiology should be considered. The 
use of antioxidants may face potential challenges, such as 
physiological interferences, biological functions of NOX/
ROS, lack of target access, and the inability to attain ade-
quate ROS concentrations.
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