Skip to main content

Advertisement

Log in

Noncanonical Wnt5a/JNK Signaling Contributes to the Development of D-Gal/LPS-Induced Acute Liver Failure

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Acute liver failure (ALF) is a deadly clinical disorder with few effective treatments and unclear pathogenesis. In our previous study, we demonstrated that aberrant Wnt5a expression was involved in acute-on-chronic liver failure. However, the role of Wnt5a in ALF is unknown. We investigated the expression of Wnt5a and its downstream c-Jun N-terminal kinase (JNK) signaling in a mouse model of ALF established by coinjection of D-galactosamine (D-Gal) and lipopolysaccharide (LPS) in C57BL/6 mice. We also investigated the role of Box5, a Wnt5a antagonist, in vivo. Moreover, the effect of Wnt5a/JNK signaling on downstream inflammatory cytokine expression, phagocytosis, and migration in THP-1 macrophages was studied in vitro. Aberrant Wnt5a expression and JNK activation were detected in D-Gal/LPS-induced ALF mice. Box5 pretreatment reversed JNK activation and eventually decreased the mortality rate of D-Gal/LPS-treated mice, with reduced hepatic necrosis and apoptosis, serum ALT and AST levels, and liver inflammatory cytokine expression, although the latter was not significant. We further demonstrated that recombinant Wnt5a (rWnt5a)-induced tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) mRNA expression and increased THP-1 macrophage phagocytosis in a JNK-dependent manner, which could be restored by Box5. In addition, rWnt5a-induced migration of THP-1 macrophages was also reversed by Box5. Our findings suggested that Wnt5a/JNK signaling plays an important role in the development of ALF and that Box5 could have particular hepatoprotective effects in ALF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during the study are included in this published article.

References

  1. Stravitz, R.T., and W.M. Lee. 2019. Acute liver failure. Lancet 394: 869–881.

    Article  CAS  Google Scholar 

  2. Grek, A., and L. Arasi. 2016. Acute liver failure. AACN Advanced Critical Care 27: 420–429.

    Article  Google Scholar 

  3. Dong, V., R. Nanchal, and C.J. Karvellas. 2020. Pathophysiology of acute liver failure. Nutrition in Clinical Practice 35: 24–29.

    Article  Google Scholar 

  4. Triantafyllou, E., K.J. Woollard, M.J.W. McPhail, C.G. Antoniades, and L.A. Possamai. 2018. The role of monocytes and macrophages in acute and acute-on-chronic liver failure. Frontiers in immunology 9: 2948.

    Article  CAS  Google Scholar 

  5. Possamai, L.A., M.R. Thursz, J.A. Wendon, and C.G. Antoniades. 2014. Modulation of monocyte/macrophage function: A therapeutic strategy in the treatment of acute liver failure. Journal of hepatology 61: 439–445.

    Article  CAS  Google Scholar 

  6. Maes, M., M. Vinken, and H. Jaeschke. 2016. Experimental models of hepatotoxicity related to acute liver failure. Toxicology and applied pharmacology 290: 86–97.

    Article  CAS  Google Scholar 

  7. Farghali, H., M. Kgalalelo Kemelo, L. Wojnarová, and N. Kutinová Canová. 2016. In vitro and in vivo experimental hepatotoxic models in liver research: Applications to the assessment of potential hepatoprotective drugs. Physiological research 65: S417–S425.

    Article  CAS  Google Scholar 

  8. Zhong, W., K. Qian, J. Xiong, K. Ma, A. Wang, and Y. Zou. 2016. Curcumin alleviates lipopolysaccharide induced sepsis and liver failure by suppression of oxidative stress-related inflammation via PI3K/AKT and NF-κB related signaling. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 83: 302–313.

  9. Galanos, C., M.A. Freudenberg, and W. Reutter. 1979. Galactosamine-induced sensitization to the lethal effects of endotoxin. Proceedings of the National Academy of Sciences of the United States of America 76: 5939–5943.

    Article  CAS  Google Scholar 

  10. Logan, C.Y., and R. Nusse. 2004. The Wnt signaling pathway in development and disease. Annual review of cell and developmental biology 20: 781–810.

    Article  CAS  Google Scholar 

  11. George, S.J. 2008. Wnt pathway: A new role in regulation of inflammation. Arteriosclerosis, thrombosis, and vascular biology 28: 400–402.

    Article  CAS  Google Scholar 

  12. Shao, Y., Q. Zheng, W. Wang, N. Xin, X. Song, and C. Zhao. 2016. Biological functions of macrophage-derived Wnt5a, and its roles in human diseases. Oncotarget 7: 67674–67684.

    Article  Google Scholar 

  13. Sessa, R., D. Yuen, S. Wan, M. Rosner, P. Padmanaban, S. Ge, A. Smith, R. Fletcher, A. Baudhuin-Kessel, T.P. Yamaguchi, R.A. Lang, and L. Chen. 2016. Monocyte-derived Wnt5a regulates inflammatory lymphangiogenesis. Cell research 26: 262–265.

    Article  Google Scholar 

  14. Pereira, C., D.J. Schaer, E.B. Bachli, M.O. Kurrer, and G. Schoedon. 2008. Wnt5A/CaMKII signaling contributes to the inflammatory response of macrophages and is a target for the antiinflammatory action of activated protein C and interleukin-10. Arteriosclerosis, thrombosis, and vascular biology 28: 504–510.

    Article  CAS  Google Scholar 

  15. Blumenthal, A., S. Ehlers, J. Lauber, J. Buer, C. Lange, T. Goldmann, H. Heine, E. Brandt, and N. Reiling. 2006. The Wingless homolog WNT5A and its receptor Frizzled-5 regulate inflammatory responses of human mononuclear cells induced by microbial stimulation. Blood 108: 965–973.

    Article  CAS  Google Scholar 

  16. Nanbara, H., N. Wara-aswapati, T. Nagasawa, Y. Yoshida, R. Yashiro, Y. Bando, H. Kobayashi, J. Khongcharoensuk, D. Hormdee, W. Pitiphat, J.A. Boch, and Y. Izumi. 2012. Modulation of Wnt5a expression by periodontopathic bacteria. PLoS One 7: e34434.

    Article  CAS  Google Scholar 

  17. Jati, S., S. Kundu, A. Chakraborty, S.K. Mahata, V. Nizet, and M. Sen. 2018. Wnt5A signaling promotes defense against bacterial pathogens by activating a host autophagy circuit. Frontiers in immunology 9: 679.

    Article  Google Scholar 

  18. Che, C., C. Li, J. Lin, J. Zhang, N. Jiang, K. Yuan, and G. Zhao. 2018. Wnt5a contributes to dectin-1 and LOX-1 induced host inflammatory response signature in Aspergillus fumigatus keratitis. Cellular signalling 52: 103–111.

    Article  CAS  Google Scholar 

  19. Seki, E., D.A. Brenner, and M. Karin. 2012. A liver full of JNK: Signaling in regulation of cell function and disease pathogenesis, and clinical approaches. Gastroenterology 143: 307–320.

    Article  CAS  Google Scholar 

  20. Torres, S., A. Baulies, N. Insausti-Urkia, C. Alarcón-Vila, R. Fucho, E. Solsona-Vilarrasa, S. Núñez, D. Robles, V. Ribas, L. Wakefield, M. Grompe, M.I. Lucena, R.J. Andrade, S. Win, T.A. Aung, N. Kaplowitz, C. García-Ruiz, and J.C. Fernández-Checa. 2019. Endoplasmic reticulum stress-induced upregulation of STARD1 promotes acetaminophen-induced acute liver failure. Gastroenterology 157: 552–568.

    Article  CAS  Google Scholar 

  21. Willenbring, H., and M. Grompe. 2013. A therapy for liver failure found in the JNK yard. Cell 153: 283–284.

    Article  CAS  Google Scholar 

  22. Ji, X.F., X.Y. Li, Y.C. Fan, Z.H. Zhao, S. Gao, F.K. Sun, J. Zhao, and K. Wang. 2015. Serum wnt5a is a predictor for the prognosis of acute on chronic hepatitis B liver failure. Biomarkers : Biochemical indicators of exposure, response, and susceptibility to chemicals 20: 26–34.

    Article  CAS  Google Scholar 

  23. Antoniades, C.G., P.A. Berry, J.A. Wendon, and D. Vergani. 2008. The importance of immune dysfunction in determining outcome in acute liver failure. Journal of hepatology 49: 845–861.

    Article  CAS  Google Scholar 

  24. Rutherford, A., and R.T. Chung. 2008. Acute liver failure: Mechanisms of hepatocyte injury and regeneration. Seminars in liver disease 28: 167–174.

    Article  CAS  Google Scholar 

  25. Sen, M., K. Lauterbach, H. El-Gabalawy, G.S. Firestein, M. Corr, and D.A. Carson. 2000. Expression and function of wingless and frizzled homologs in rheumatoid arthritis. Proceedings of the National Academy of Sciences of the United States of America 97: 2791–2796.

    Article  CAS  Google Scholar 

  26. Baarsma, H.A., W. Skronska-Wasek, K. Mutze, F. Ciolek, D.E. Wagner, G. John-Schuster, K. Heinzelmann, A. Günther, K.R. Bracke, M. Dagouassat, J. Boczkowski, G.G. Brusselle, R. Smits, O. Eickelberg, A. Yildirim, and M. Königshoff. 2017. Noncanonical WNT-5A signaling impairs endogenous lung repair in COPD. The Journal of experimental medicine 214: 143–163.

    Article  Google Scholar 

  27. Bodmer, D., S. Levine-Wilkinson, A. Richmond, S. Hirsh, and R. Kuruvilla. 2009. Wnt5a mediates nerve growth factor-dependent axonal branching and growth in developing sympathetic neurons. The Journal of neuroscience : The official journal of the Society for Neuroscience 29: 7569–7581.

    Article  CAS  Google Scholar 

  28. Baarsma, H.A., M. Königshoff, and R. Gosens. 2013. The WNT signaling pathway from ligand secretion to gene transcription: Molecular mechanisms and pharmacological targets. Pharmacology & therapeutics 138: 66–83.

    Article  CAS  Google Scholar 

  29. Tang, X., Y. Wu, T.Y. Belenkaya, Q. Huang, L. Ray, J. Qu, and X. Lin. 2012. Roles of N-glycosylation and lipidation in Wg secretion and signaling. Developmental biology 364: 32–41.

    Article  CAS  Google Scholar 

  30. Li, P., Y. Cao, Y. Li, L. Zhou, X. Liu, and M. Geng. 2014. Expression of Wnt-5a and β-catenin in primary hepatocellular carcinoma. International journal of clinical and experimental pathology 7: 3190–3195.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Jenei, V., V. Sherwood, J. Howlin, R. Linnskog, A. Säfholm, L. Axelsson, and T. Andersson. 2009. A t-butyloxycarbonyl-modified Wnt5a-derived hexapeptide functions as a potent antagonist of Wnt5a-dependent melanoma cell invasion. Proceedings of the National Academy of Sciences of the United States of America 106: 19473–19478.

    Article  CAS  Google Scholar 

  32. Li, X., J. Wen, Y. Dong, Q. Zhang, J. Guan, F. Liu, T. Zhou, Z. Li, Y. Fan, and N. Wang. 2021. Wnt5a promotes renal tubular inflammation in diabetic nephropathy by binding to CD146 through noncanonical Wnt signaling. Cell death & disease 12: 92.

    Article  CAS  Google Scholar 

  33. Kikuchi, A., H. Yamamoto, A. Sato, and S. Matsumoto. 2012. Wnt5a: Its signalling, functions and implication in diseases. Acta physiologica (Oxford, England) 204: 17–33.

    Article  CAS  Google Scholar 

  34. Sun, M., W. Wang, L. Min, C. Chen, Q. Li, and W. Weng. 2021. Secreted frizzled-related protein 5 (SFRP5) protects ATDC5 cells against LPS-induced inflammation and apoptosis via inhibiting Wnt5a/JNK pathway. Journal of orthopaedic surgery and research 16: 129.

    Article  Google Scholar 

  35. Yu, T., D. Dong, J. Guan, J. Sun, M. Guo, and Q. Wang. 2020. Alprostadil attenuates LPS-induced cardiomyocyte injury by inhibiting the Wnt5a/JNK/NF-κB pathway. Herz 45: 130–138.

    Article  CAS  Google Scholar 

  36. Guha, M., and N. Mackman. 2001. LPS induction of gene expression in human monocytes. Cellular signalling 13: 85–94.

    Article  CAS  Google Scholar 

  37. Lou, G., A. Li, Y. Cen, Q. Yang, T. Zhang, J. Qi, Z. Chen, and Y. Liu. 2021. Selonsertib, a potential drug for liver failure therapy by rescuing the mitochondrial dysfunction of macrophage via ASK1-JNK-DRP1 pathway. Cell & bioscience 11: 9.

    Article  CAS  Google Scholar 

  38. Henderson, N.C., K.J. Pollock, J. Frew, A.C. Mackinnon, R.A. Flavell, R.J. Davis, T. Sethi, and K.J. Simpson. 2007. Critical role of c-jun (NH2) terminal kinase in paracetamol-induced acute liver failure. Gut 56: 982–990.

    Article  CAS  Google Scholar 

  39. Khan, R., and S. Koppe. 2018. Modern management of acute liver failure. Gastroenterology Clinics of North America 47: 313–326.

    Article  Google Scholar 

  40. Reuben, A., H. Tillman, R.J. Fontana, T. Davern, B. McGuire, R.T. Stravitz, V. Durkalski, A.M. Larson, I. Liou, O. Fix, M. Schilsky, T. McCashland, J.E. Hay, N. Murray, O.S. Shaikh, D. Ganger, A. Zaman, S.B. Han, R.T. Chung, A. Smith, R. Brown, J. Crippin, M.E. Harrison, D. Koch, S. Munoz, K.R. Reddy, L. Rossaro, R. Satyanarayana, T. Hassanein, A.J. Hanje, J. Olson, R. Subramanian, C. Karvellas, B. Hameed, A.H. Sherker, P. Robuck, and W.M. Lee. 2016. Outcomes in adults with acute liver failure between 1998 and 2013: An observational cohort study. Annals of Internal Medicine 164: 724–732.

    Article  Google Scholar 

  41. Yamaguchi, T.P., A. Bradley, A.P. McMahon, and S. Jones. 1999. A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development (Cambridge, England) 126: 1211–1223.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81970522), the Shandong University Multidisciplinary Research and Innovation Team of Young Scholars (2020QNQT11), the China Postdoctoral Science Foundation (2020M672074), the Young Taishan Scholars (tsqn202103169), the Natural Science Foundation of Shandong Province (ZR2019PH104), and the Scientific Research Foundation of Qilu Hospital of Shandong University (Qingdao) (QDKY2017QN13).

Author information

Authors and Affiliations

Authors

Contributions

Xiang-Fen Ji designed the study, carried out the experiments, and wrote the first draft of the manuscript. Fei Sun performed some experiments. Jing-Wei Wang analyzed some data. Yu-Chen Fan analyzed some data and was involved in editing the manuscript. Kai Wang revised the manuscript critically for important intellectual content.

Corresponding author

Correspondence to Kai Wang.

Ethics declarations

Ethics Approval

All the animal experiments were approved by the Ethical Committee of Qilu Hospital (Qingdao), Shandong University.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, XF., Fan, YC., Sun, F. et al. Noncanonical Wnt5a/JNK Signaling Contributes to the Development of D-Gal/LPS-Induced Acute Liver Failure. Inflammation 45, 1362–1373 (2022). https://doi.org/10.1007/s10753-022-01627-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-022-01627-y

KEY WORDS

Navigation