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Abstract—Cardiovascular disease (CVD) has long been the leading cause of death worldwide,
and myocardial infarction (MI) accounts for the greatest proportion of CVD. Recent research
has revealed that inflammation plays a major role in the pathogenesis of CVD and other
manifestations of atherosclerosis. Overwhelming evidence supports the view that macro-
phages, as the basic cell component of the innate immune system, play a pivotal role in
atherosclerosis initiation and progression. Limited but indispensable resident macrophages
have been detected in the healthy heart; however, the number of cardiac macrophages
significantly increases during cardiac injury. In the early period of initial cardiac damage
(e.g., MI), numerous classically activated macrophages (M1) originating from the bone
marrow and spleen are rapidly recruited to damaged sites, where they are responsible for
cardiac remodeling. After the inflammatory stage, the macrophages shift toward an alterna-
tively activated phenotype (M2) that promotes cardiac repair. In addition, extensive studies
have shown the therapeutic potential of macrophages as targets, especially for emerging
nanoparticle-mediated drug delivery systems. In the present review, we focused on the role of
macrophages in the development and progression of MI, factors regulating macrophage
activation and function, and the therapeutic potential of macrophages in MI.
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INTRODUCTION

Despite advances in prevention, diagnosis, and treat-
ment, cardiovascular disease (CVD) remains the primary
cause of death worldwide, and myocardial infarction (MI)
makes the greatest contribution to CVD [1]. Furthermore,
the World Health Organization has predicted that annual
deaths from CVD will increase from 18.1 million in 2010
to 24.2 million in 2030 globally [2]. CVDs, including
hypertension, atherosclerosis, ischemic heart disease like
MI, and ischemic stroke [3], result in significant death and
disability [4]. Considering the poor prognosis associated
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with CVD, new therapeutic strategies are needed to facil-
itate cardiac repair following MI.

Previous studies have demonstrated that vertebrate
zebrafish is capable of complete cardiac regeneration [5–
7], while some regenerative capacity of mammals can be
maintained for just a few days [8, 9]. Macrophages are basic
cell components of the innate immune system that infiltrate
into injured myocardium during neonatal heart regeneration
[8]. Accumulating evidence has revealed that inflammation
plays a major role in the pathogenesis of coronary artery
disease and atherosclerosis [10–12] and is necessary for
correct and timely repair [13, 14]. After MI, circulating
blood monocytes rapidly infiltrate into the infarcted area
and differentiate into the appropriate macrophages [15].
Based on surface markers and functions, macrophages are
divided into two major subtypes: classically activated mac-
rophages (M1), which are related to inflammatory response,
and alternatively activated macrophages (M2), which are
associated with regeneration and injury repair. In the inflam-
matory phase of MI, M1 macrophages activated by tumor
necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ),
and lipopolysaccharide (LPS) are the leading subtypes that
initially respond to the removal of dead cells and cellular and
extracellular matrix (ECM) debris [16, 17]. In the prolifera-
tive phase ofMI,M2macrophages gradually predominate to
facilitate the repair and regeneration of damaged cardiac
tissues [18, 19]. Therefore, the correct and timely regulation
of macrophage polarization is a promising therapeutic target
for the treatment of MI. In addition, stem cell transplantation
and nanoparticle-mediated drug delivery systems havemade
extensive breakthroughs. Together, macrophagesmodulated
by all kinds of therapeutic strategies, particularly the
nanoparticle-mediated drug delivery system, have become
the promising therapeutic target in the field of cardiac repair.

In the present review, we discuss recent findings on
the association of macrophages with the development of
post-MI. More specifically, we focus on the phenotypes
and functions of macrophages in a steady state and during
MI, as well as possible mechanisms underlying macro-
phage polarization in the heart. Importantly, we discuss
potential therapeutic strategies to improve injury control
and functional recovery by modulating macrophage polar-
ization, which involves self-assembly/engineered extracel-
lular vesicles (EVs), nanomedicine, and stem cells (Fig. 1).

ONTOGENY OF CARDIAC MACROPHAGES

Macrophages are the first immune cells that develop
during the development of an organism. They play a

crucial role in immunity (homeostasis and inflammation)
and also regulate organ development and function [20].
Macrophages primarily originate from circulating blood
monocytes [21]. Monocytes pertain to the population of
mononuclear leukocytes derived from hematopoietic stem
cells in fetal liver, adult bonemarrow, and splenic reservoir
under the stimulation of some cytokines, such as M-CSF,
GM-CSF, interleukin-1β (IL-1β), and IL-3 [22, 23], and
are released in the bloodstream. Monocytes can be divided
into two classifications after being mobilized into the pe-
ripheral circulation [24]: (1) Ly6Cl° CCR2− CX3CR1hi

patrolling monocytes (CD14l°CD16+ in humans), which
are responsible for surveying the vascular lumen and for
clearing dead cells and cellular and ECM debris, and (2)
Ly6Chi CCR2+ CX3CR1l° inflammatory monocytes
(CD14h iCD16 − i n humans ) , wh i ch p roduce
proinflammatory cytokines, such as IL-1, IL-10, and
TNF-α. Over the past 40 years, it has been accepted that
all forms of macrophages, including resident macrophages,
originate from monocytes; however, this has been
challenged in the past few years [25]. Recent research has
shown that tissue-resident macrophages represent a differ-
ent population of cells that are derived from diverse line-
ages [21, 26, 27]. Studies using mouse models have re-
vealed that many tissue-resident macrophages in the kid-
ney, lung, skin, brain, liver, and heart originate from an
embryonic lineage and are maintained throughout life free
of monocyte recruitment [28–32]. In recent years, ad-
vances in gene fate-mapping techniques have revealed
the two distinct populations of tissue-resident macrophages
originating from the prenatal yolk sac and fetal liver [28,
29]. It is now clear that the majority of cardiac resident
macrophages originate from the yolk sac [30, 31, 33], and
these cardiac resident macrophages are divided into two
populations that coexist at homeostasis: MHC-IIl°CCR2−

and MHC-IIhiCCR2− cells. The others are known as
circulating monocyte-derived MHC-IIhiCCR2+ cardiac
resident macrophages that are responsible for
inflammation initiation (Table 1).

MACROPHAGES: INFLAMMATION,
ACTIVATION, AND FUNCTION

Macrophages, as the basic cell component of the
innate immune system, are involved in all stages of athero-
sclerosis. Macrophages exhibit extensive functional plas-
ticity that is dependent on activation (in vitro) or microen-
vironmental milieu (in vivo). Macrophages not only pos-
sess the essential functions of phagocytic killing of
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pathogens and antigen presentation activating an adaptive
immune response but also maintain tissue homeostasis by
eliminating dead cells, cellular debris, and ECM debris and
by promoting adaptive remodeling of the ECM [34]. Mac-
rophages acquire a proinflammatory or an anti-
inflammatory subtype under proper environmental stimuli

[34]. Therefore, macrophages have been divided into M1
and M2 [35, 36] based on the type of in vitro stimulation,
surface molecule expression pattern, secretory profile, and
function. Although this distinction has deficiencies in ad-
equately including the entire macrophage biological com-
plexity, it provides a common scheme to classify

Fig. 1. Macrophages function in homeostasis and in/post-myocardial infarction. The three overlapping stages are involved in the repair response after
obstruction of the blood flow: infarction, inflammatory, and proliferative. In the infarction phase, damaged cardiomyocytes, active DAMPs, and neutrophils
are recruited to the infarcted site and release many inflammatory mediators, which are indispensable for the subsequent inflammatory stage. In the
inflammatory stage, proinflammatory subset M1 macrophages and NK cells secrete inflammatory cytokines, such as IL-1β, IL-6, iNOS, TNF-α, and IFN-γ,
which promote clearance of dead cells and cellular and ECM debris. Last, the proliferative stage involves cell proliferation, collagen formation, and tissue
repair that mainly contribute to anti-inflammatory subset M2 macrophages that secrete IL-10, TGF-β, and Arg-1. Modulation (i.e., self-assembly/engineered
extracellular vesicles including exosomes[exo], nanoparticles, stem cells) of macrophages may repair damaged myocardium by promoting angiogenesis and
reducing hypertrophy, fibrosis, and cell apoptosis.

Table 1. Origins and Function of Cardiac Resident Macrophages

Surface markers Origin Function References

MHC-IIloCCR2- Yolk sac Phagocytic ability of dying cardiomyocytes 30-31,33
MHC-IIhiCCR2- Yolk sac Efficiently processed and presented antigen to T cells 30-31,33
MHC-IIhiCCR2+ Circulating monocytes Inflammation initiation and efficiently processed and presented antigen to T cells 25,33
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macrophage function. In addition, the switch of macro-
phage polarization is tightly regulated by signaling net-
works at the transcriptional and translational levels (Figs.
2 and 3).

M1 macrophages are characterized by increased mi-
crobicidal or tumoricidal capacity and secrete high
amounts of proinflammatory cytokines and mediators.
Classically activated M1 macrophages are triggered by
IFN-γ and LPS and are characterized by upregulated bio-
markers, such as IL-1β, IL-6, IL-12, and IL-23; inducible
nitric oxide synthase (iNOS); TNF-α; chemokine (C-C
motif) ligand 2 (CCL2), CCL15, and CCL20; C-X-Cmotif
chemokine 9 (CXCL9), CXCL10, and CXCL11; and
CD80 and CD86 [37–39]. M1 macrophages detect and
recognize damage-associated molecular patterns
(DAMPs) present in the debris of necrotic cells and
pathogen-associated molecular patterns (PAMPs) such as
LPS and chitin through toll-like receptors (TLRs) located
on the surface of macrophages to promote inflammation
response. During an innate immune response, TLR ago-
nists engage the MyD88-dependent pathway, including
IRAK4, TRAF6, and IKKβ, ultimately leading to the
activation of NF-κB to induce M1 polarization [40]. In
addition, a TLR ligand can induce the transcription of TNF
through anMyD88-dependent manner, further cooperating
with IFN-γ in an autocrine manner to activate these mac-
rophages [34]. IFNs mediate the activation of IRF/STAT
signaling pathways via the JAK/STAT signaling pathway,
favoring M1 polarization [41, 42]. IFN-γ, which is pro-
duced by natural killer (NK) cells responding to stress and
infections, can promote macrophages to produce proin-
flammatory cytokineswhich in turn increase the killing
ability of NK cells [43]. Typically, research has shown that
mice and humans who lack IFN-γ expression are more
susceptible to protozoal and certain kinds of bacterial or
viral infections [44]. Furthermore, activated M1 macro-
phages by LPS via an exogenous TLR ligand can clear
the parasite completely [34]. Finally, M1-secreted proin-
flammatory cytokines play an important role in host de-
fense but also can cause extensive damage to the host.

M2 macrophages are characterized as having wound
healing and proliferative properties. M2 macrophages,
which are activated by the stimulation of IL-4, IL-13, or
IL-21, are involved in wound repair, homeostasis, and
tumor metastasis and tumor promotion. They also secrete
anti-inflammatory cytokines [45–47].M2macrophages are
characterized by decreased expression levels of bio-
markers, such as TGF-β, CD163, CD206, chil3 chitinase-
like 3 (known as Ym-1), resistin-like-α (known as Fizz1),
arginase 1 (Arg-1), and IL-10 to promote cell proliferation,

collagen formation, and tissue repair [47]. Aberrant activa-
tion of M2 macrophages is associated with tissue fibrosis.
Accumulating evidence has indicated that macrophages
lacking expression of IL-4 receptor (IL-4R) are incapable
of promoting wound healing. In terms of mechanism, M2
macrophages can be triggered by IL-4/L-13 and IL-10/IL-
21, depending on the activation of the IRF/STAT signaling
pathway via STAT6 and STAT3 [48–50]. IRF4, PPARγ,
Krüppel-like factor 4 (KLF-4), and HIF-2α also mediate
the induction of the M2 phenotype [40]. M2 macrophages
are further divided into different phenotypes denoted by
the stimulus and effector function. IL-4 and IL-13 can
induce M2a polarization, whereas Fc-γ receptors and
TLR stimulation can trigger M2b macrophages, and GC,
IL-10, or TGF-β ligands are responsible for M2c activation
[37]. In function, both M2a and M2c can enhance the
adaptive immune response, whereas M2b plays a key role
in suppressing and regulating inflammation and immunity
[51].

MACROPHAGES IN CARDIAC HOMEOSTASIS

Cardiac resident macrophages, which account for 6%
to 8% of the noncardiomyocyte population according to
the data from healthy adult mouse heart, are indispensable
for maintaining the cardiac homeostasis and neonatal heart
regeneration [52]. The long-held perspective is that the
majority of cardiac resident macrophages originate from
peripheral blood monocytes and present an M2 polariza-
tion profile [53]. Recently, numerous researchers have
demonstrated that cardiac resident macrophages consist
of a heterogeneous population that includes resident mac-
rophages derived from the yolk sac: MHC-IIl°CCR2− and
MHC-IIhiCCR2− cells, macrophages derived from fetal
monocytes and macrophages derived from adult
monocytes [15, 33, 54, 55]. The populations seed the
heart at specific developmental stages so that they can
maintain cardiac homeostasis.

As noted, yolk sac–derived CCR2−macrophages play
a major role in the coronary development and cardiac
repair. Deletion of CCR2− macrophages in the embryonic
period could cause abnormal remodeling, diminished LV
systolic function, larger LV chamber dimensions, and
increased akinetic myocardium [56]. Circulating
monocyte-derived CCR2+ cardiac resident macrophages
are abundant in proinflammatory genes involved in
inflammation initiation and exhibit an M1 polarization
profile to maintain cardiac homeostasis. Interestingly,
more substantial contributions of circulating monocytes
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have been observed in the aging heart, indicating that
circulating blood monocytes may differentiate into
CCR2− macrophages [57, 58], which seemingly coincide
with the decreased self-renewal ability of yolk sac–derived
resident CCR2− macrophages with age, as demonstrated
by Molawi et al. [58].

MACROPHAGES IN THE PROCESS OF
ATHEROSCLEROSIS AND THROMBUS
FORMATION

Atherosclerosis is considered to be a chronic inflam-
matory disease. Perturbation of lipid metabolism and local
inflammation are the two major causes in the pathogenesis
of atherosclerosis, including cells such as platelets, which
play an initiating role in the development of atherosclerosis
and the atherosclerotic plaque [59], monocytes and endo-
thelial cells, connective-tissue elements, lipids, and debris.
First, low-density lipoproteins (LDLs) accumulate in the
intima, activating endothelial cells to initiate atherosclero-
sis formation [60]. This accumulation of lipoproteins is

located in the subendothelial space and is modified by
reactive oxygen species and enzymatic cleavage to be
involved in the inflammatory process [61]. LDL, especially
oxidized LDL (ox-LDL), and activated platelets are re-
sponsible for recruiting circulating monocytes into the
endothelial space where they are further differentiated into
macrophages that engulf ox-LDL and LDL to form foam
cells, which finally produces proinflammatory cytokines
(e.g., TNF-α, IL-1, and IL-6) and exacerbate local inflam-
mation [62]. In addition, Lindemann et al. reported that
progenitor cells adhere to lipid-laden platelets and turn into
macrophages that internalize the lipid-rich platelets and
develop into foam cells [63]. Next, macrophages, mast
cells, and T cells infiltrate the atherosclerotic plaques,
exhibit signs of activation, and secrete inflammatory cyto-
kines responding to proinflammatory cytokines [10]. The
apoptosis of foam cells in the lipid core is a key reason for
atherosclerosis progression. Next, these apoptotic foam
cells are removed primarily by macrophages, a process
known as efferocytosis. Further inflammation, necrosis,
and thrombosis originating from the gradual accumulation
of apoptotic debris in the lipid core have occurred when the

Fig. 2. Signaling pathways regulating M1 macrophage polarization. Naïve macrophage is induced into M1 macrophage by LPS, IFN-γ, and IFN-α/β thr-
ough specific receptors, such as TLR4, IFNγR, and IFNAR. And the related signaling pathways such as STAT1, NF-κB, and IRF3 have an important role in
the process, which results in the secretion of proinflammatory cytokines, such as IL-1β, TNF-α, and IL-6.
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balance in which efferocytosis internalizes all dead cells is
disturbed [64].

THE ROLE OF MACROPHAGES DURING AND
POST-MYOCARDIAL INFARCTION

MI is defined as pathologically myocardial cell death
resulting from prolonged myocardial ischemia. MI is the
leading cause of mortality and disability worldwide [1] and
results in a major socioeconomic burden. Such events
result from the imbalance between myocardial oxygen
supply and demand. Although multiple other mechanisms
have been reported to contribute to MI, coronary thrombo-
sis promoted by rupture of the atheroma plaque accounts
for most of the cases of MI [65]. Cardiomyocyte necrosis
resulting from coronary artery ischemia triggers both a
systemic inflammatory response and a local reaction to
recruit circulating monocytes into the infarcted site. The
post-MI repair response includes three sequential stages:
inflammation, tissue replacement, and healing or matura-
tion. In the early inflammatory stage, infiltrated neutrophils
and recruited circulating monocytes and cardiac resident
macrophages contribute to clear the dead cells and matrix

debris. Next, these inflammatory responses are gradually
replaced by proliferative monocytes and macrophages,
which results in angiogenesis and myofibroblast differen-
tiation. Finally, in the healing phase, fibroblasts, immune
cells, and microvasculature form a mature scar [66]. In the
following phases, we analyze the role of macrophages in
the inflammatory and healing stages after MI.

M1 Macrophages in Myocardial Infarction

MI can lead to necrosis of cardiac myocytes within a
few minutes. To maintain tissue integrity and function,
inflammatory cells, including neutrophils and macro-
phages, are activated. After MI, neutrophils are the first
immune cells to occur in the infarcted area in large num-
bers and are responsible for clearing cellular debris and
further recruiting leucocytes such as Ly-6Chi monocytes
and macrophages [67, 68]. Monocytes and macrophages
are the two major cell populations infiltrating the damaged
site. Depletion of monocytes and macrophages may result
in a thromboembolic event [69]. The two sequential
monocyte and macrophage phases demonstrate a
significant difference in healing after MI: first, bone
marrow– and spleen-derived Ly-6Chi monocytes are

Fig. 3. Signaling pathways regulating M2 macrophage polarization. Naïve macrophage is induced into M2 macrophage by IL-4, IL-13, IL-10, and IL-21
through interacting with specific receptors, such as IL-4Rα, IL-13Rα, IL-10R, and il-21R. And the related signaling pathways such as STAT6, STAT3, HIF-
2α, KLF-4, PPARγ, and IRF4 are activated in the process, which promotes the secretion of anti-inflammatory cytokines, such as TGF-β and IL-10.
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recruited to the infarcted site via MCP-1. Its receptor,
CCR2 [70], and corresponding M1 macrophages
predominate in the infarcted region during days 2 to 5
post-MI. During the inflammatory phase of MI,
significant proinflammatory mediators, such as TNF-α,
IL-1β, and proteases, originating from activated Ly-6Chi/
M1, are released in the damaged site, which contributes to
the clearance of dead cells and debris in the infarcted
region through the activated M1 macrophages. The
process of phagocytosis is indispensable for proper
initiation of the wound repair after MI [71]. However,
prolonged inflammatory response to such compounds can
result in extensive damage to infarcted myocardium.

M2 Macrophages in Myocardial Infarction

MI results in necrosis of cardiac myocytes within a
fewminutes, contributing to chamber dilatation, contractile
dysfunction, and eventually heart failure. The regenerative
capacity of mammals persists for only a short period [8, 9].
Therefore, the correct and timely repair after MI is neces-
sary to maintain the constructive and functional integrity of
the heart. Macrophages can promote the infarcted repair as
regulators and effectors. In addition, different effects on
fibrosis and scarring versus regeneration as a result of the
depletion of macrophages at different stages post-injury in
a model of liver fibrosis have been demonstrated [72].

From days 4 to 14 post-MI, Ly-6Chi monocytes and
M1 macrophages are replaced by the Ly-6Clow monocytes
and M2 macrophages. The proliferative phase after MI
origin from the macrophages shifts from inflammatory
(M1) to reparative phenotypes (M2). M2 macrophages
gradually dominate in the infarcted sites. Then, M2 mac-
rophages establish an anti-inflammatory environment by
downregulating inflammatory cytokines and upregulating
anti-inflammatory cytokines, such as IL-10, VEGF, and
TGF-β [73]. TGF-β and IL-10 can trigger myofibroblasts
to produce collagen, and VEGF promotes cell proliferation
and blood vessel development. The lack of the Trib1 gene
in the myocardial-infarcted mouse model presented selec-
tive deletion of M2 macrophages, which resulted from an
impaired ability to form M2 macrophages in the spleen,
liver, and adipose tissue. Compared with a control group,
diminished reparative function after MI, similar to frequent
cardiac rupture, was observed. In addition, IL-4 has been
demonstrated to improve the post-MI prognosis of wild-
type mice with an increased number of M2 macrophages.
Together, M2 macrophages play a vital role in facilitating
myocardial wound healing in adult murine heart [74].
Moreover, in the GRLysMCre mice, Galuppo et al. reported

that the glucocorticoid receptor in macrophages critically
determines post-MI repair by regulating myofibroblast dif-
ferentiation in the infarct microenvironment during the
early phase of wound healing [75].

THE ROLE OF MACROPHAGES IN
MYOCARDIAL ISCHEMIA/REPERFUSION
INJURY

As noted, the most timely and effective treatment
involves amelioration of myocardial ischemia and re-
striction of the size of MI. Ischemia/reperfusion (I/R)
such as percutaneous coronary intervention and intrave-
nous thrombolysis has so far been the principal or only
strategy for MI treatment, thereby promptly restoring
blood supply [76]. However, deteriorated ischemic
damages and further swelling of the infarct size will
be accompanied with sudden reperfusion, which results
in secondary cascade damages, known as myocardial I/
R injury [77]. I/R injury may trigger all kinds of
pathological changes, including local acute inflammato-
ry reactions, metabolic disorders, and cell apoptosis or
necrosis, even resulting in cardiac dysfunction. Macro-
phages, a major type of inflammatory cells, have a
crucial effect on myocardial ischemic injury with reper-
fusion [78] and have multiple roles because of their
specific phenotypes and the stage of disease.

M1Macrophages in Myocardial Ischemia/Reperfusion
Injury

Though M1 macrophages are believed to damage the
heart in the early period of reperfusion by releasing reactive
oxygen species, inflammatory mediators, and proteases
[79, 80], some researchers have found that the process of
phagocytosis performed by the M1 macrophages is essen-
tial for further repair. Fan et al. reported that M1 macro-
phages polarized by Dectin-1 expressed largely on cardiac
macrophages aggravate myocardial I/R injury [81]. In con-
trast, a previous study has reported that soluble receptor for
advanced glycation end products can improve heart func-
tion in mice after I/R by promoting infiltration and differ-
entiation of macrophages into M1 and IFN-γ production
[82]. M1 macrophages may involve cardioprotection pri-
marily in the period of ischemia while damaging the heart
in the following stages by releasing inflammatory cyto-
kines and recruiting the inflammatory cells. In clinical
practice, therapeutic strategies are applied mainly to recov-
er blood flow in a timely manner and ameliorate
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myocardial I/R injury. Thus, methods limiting M1 while
promoting M2 polarization of macrophages in myocardial
I/R injury have been researched extensively and represent a
unique therapeutic strategy to suppress inflammatory re-
sponses and ameliorate myocardial I/R injury.

M2Macrophages in Myocardial Ischemia/Reperfusion
Injury

M2 macrophages, polarized by Th2 cytokines and
characterized by the production of high levels of anti-
inflammatory cytokines and pro-fibrogenic factors, exhibit
anti-inflammatory and tissue repair properties. Accumulat-
ed evidence has demonstrated that M2 macrophages play
an important role in alleviating myocardial I/R injury. A
previous study reported that alternatively activated M2
macrophages by Chemerin15 protect against myocardial
I/R injury in mice by significantly suppressing proinflam-
matory cytokines and markedly increasing the level of anti-
inflammatory cytokine IL-10 [83]. In recent years, M2b
macrophages, as one subtype of M2 macrophages and
regulatory cells, have drawn considerable attention for
the treatment of myocardial I/R injury. In vivo experiments
have shown that transplantation of M2b macrophages into
the myocardium that had been subjected to I/R injury
improved cardiac function and reduced the cardiac fibrosis
and myocardial remodeling caused by I/R injury [84]. Yue
et al. reported that M2b macrophages modulate inflamma-
tory immune responses without participating in wound
healing and enhance protective effects on myocardial re-
modeling after myocardial I/R injury [85].

TARGETING THE THERAPEUTIC ROLE OF
MACROPHAGES POST-MI

Exogenous Cardioprotection by Modulation of
Macrophage Polarization

It has been reported that stem cells and stromal cells
could be utilized for the treatment of myocardial injury by
modulating macrophage polarization. Cardiosphere-
derived cells (CDCs), essentially cardiac stromal cells
(CSCs), represent a promising stem cell source for
repairing damaged heart tissue [86–88]. These cells can
regulate macrophage activation, leading to the promotion
of a phenotypic switch fromM1 toM2 [89, 90]. In a CDC-
treated MI model, functional and structural benefits, such
as decreased infarcted area, improved cardiac function, and
enhanced angiogenesis after MI, have been observed by
modulating M1/M2 macrophage polarization and

neutrophil recruitment [89–91]. Human embryonic stem
cell–derived cardiovascular progenitor cells (hESC-
CVPCs) also are known to be attractive cell sources for
cardiac repair. hESC-CVPCs, which modulate cardiac
macrophages toward an M2 phenotype, play an important
role in ameliorating worsening heart function and reducing
scar formation through a paracrine effect–activated STAT6
[92]. In addition, many studies have demonstrated that
mesenchymal stem cells (MSCs) play a key role in post-
MI repair by reversing cardiac dysfunction and enhancing
angiogenesis, which may result from regulating the M1/
M2 balance [93, 94]. MSCs have been reported to regulate
a macrophage subtype toward an M2-like status in vitro
and in vivo [95].

EVs Mediate Cardioprotection in MI

EVs have been demonstrated to play a crucial role in
cell-cell communication during different pathological and
physiological processes [96, 97]. EVs have received in-
creasing attention as cell-free therapeutics for regenerative
medicine because of the structure of their lipid bilayer and
cargos, such as miRNA, protein, and lipids [98–101]
(Table 2). As noted earlier in this review, CDCs andMSCs
can promote M2 polarization in cases in which the EVs
may play, at least partly, a major role.

MSCs have long become a promising therapeutic strat-
egy for ischemic heart disease, although the mechanism
remains elusive. Several recent studies have implicated that
MSC-exo could polarize macrophage to create an anti-
inflammatory environment under myocardial I/R injury or
MI [102, 103]. MSC-exo, which transfers miR-182 and
miR-101a into macrophage, has been demonstrated to re-
duce the number of M1macrophages, polarize macrophages
intoM2 phenotype, and reduce infarct size and inflammatory
response under myocardial I/R injury [102, 104].

CDC or CDC-derived EVs polarize the macrophage
into a special phenotype that is highly phagocytic and anti-
inflammatory to display cardioprotection [105, 106]. De
Couto et al. further revealed that CDC-derived EVs en-
hance macrophage efferocytosis and cardioprotection re-
sponse via EV transfer of miR-26a to modulate the expres-
sion of MerTK and C1qa [107]. Moreover, miR-181b–
enriched exosomes secreted from CDCs play a critical role
in modulating macrophage polarization in vitro and confer
cardioprotection in vivo by minimizing infarct size, de-
creasing the total number of CD68+ macrophages, and
inducing macrophages to develop into a distinct subtype
[105]. Another study has suggested that CDC-derived EVs
can shift M1 macrophage into the pro-angiogenic subtype
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[108]. Furthermore, the short non-coding RNA, Y RNA
fragment (the Y RNAs consist of 83–112 nucleotides
known as one poorly understood class of non-coding
RNA), is particularly plentiful in EVs and was first discov-
ered in complex with ribonucleoproteins in the serum of
patients with lupus. The characteristic stem-loop secondary
structure and high sequence conservation between the up-
per and lower stem have been found in the four human Y
RNAs. Highly enriched CDC-derived EVs also have a
crucial cardioprotection response by promoting IL-10 gene
expression and secretion in macrophages [109].

Nguyen et al . reported that atherogenic
macrophage-secreted EVs can inhibit macrophage mi-
gration via transferring miRNAs, especially the miR-
146a, which downregulates target genes IGF2BP1 and
HuR in recipient cells, thereby promoting the progres-
sion of atherosclerosis [110]. Moreover, miR-155–con-
taining exosomes derived from activated macrophages
are adverse to post-MI repair. A recent study has
shown that exosomes inhibit cardiac fibroblast prolifer-
ation and promote inflammation by downregulating Son
of Sevenless 1 expression and decreasing suppressor of
cytokine signaling 1 expression, while in vivo experi-
ments revealed a lower incidence of cardiac rupture and
improved cardiac function in the miR-155–deficient
mice compared with controls [111]. In addition, M2
macrophages secreting miR-148a–enriched exosomes

can reduce the size of the infarct and improve cardiac
function following MI [112]. Furthermore, Wu et al.
obtained molecularly engineered M2 macrophage
exosomes, which were further electroporated with a
US Food and Drug Administration (FDA)–approved
hexyl 5-aminolevulinate hydrochloride (HAL). These
HAL-containing M2 exosomes exhibited anti-
inflammatory capabilities and ultimately alleviated ath-
erosclerosis because of the anti-inflammatory effects of
the M2 exosomes and the encapsulated HAL affect.
The exosomes were involved in endogenous biosynthe-
sis and metabolism of heme to produce carbon mon-
oxide and bilirubin, which have known anti-
inflammatory capabilities [113].

Although EVs have been demonstrated to be an at-
tractive therapeutic approach to ischemic heart disease, low
retention and short-lived therapeutic effects remain signif-
icant challenges. To reduce off-target delivery, engineered
exosomes and prior blocking of endocytosis of exosomes
by macrophages have been utilized to enhance the delivery
efficiency of exosomes to specific cells, offering therapeu-
tic benefit [114–116]. Thus, these have improved delivery
efficiency, including platelet nanovesicles [117], monocyte
mimic–modified EVs [118], EVs incorporated in alginate
hydrogel [119], overexpressed targeting sequences or
those modified by DMPE-PEG-streptavidin (DPS), and
biotin-conjugated antibody or peptide.

Table 2. Extracellular Vesicles Associated with Macrophage-Mediated Cardioprotection

Cell source Disease model Injection
method

Contents Mechanism Biological effects Reference

Mouse BM-
MSCs

Mouse
myocardial
I/R model

Intramyocardial
injection

miR-182 Polarizes MΦ into M2 subtype via
downregulating TLR4/NF-κB and up-

regulating PI3K/Akt

Attenuates myocardial
I/R injury

102

Human BM-
MSCs

Mouse MI
model

Intravenous
injection

miR-
101a

Polarizes MΦ into M2 subtype Preserves cardiac
function and reduces

scar size

104

Human
CDCs

Rat and pig
myocardial
I/R model

Intramyocardial
injection

miR-
181b

Polarizes MΦ into M2 subtype via
inhibiting the expression of PKCδ

Reduces infarct size and
alleviates cardiac
inflammation

105

Rat and
mouse
CDCs

Rat and mouse
myocardial
I/R model

Intramyocardial
injection

Whole
con-
tent

Modulates the expression of MerTK and
C1qa

Attenuates irreversible
damage

107

Human
CDCs

Rat myocardial
I/R model

Intramyocardial
injection

Y RNA
frag-
ment

Polarizes MΦ into M2 subtype Reduces infarct size 109

M2
macro-
phages

Rat myocardial
I/R model

Intramyocardial
injection

miR-
148a

Inhibits TXNIP expression Alleviates myocardial
I/R injury

112

Abbreviations: BM, bone marrow; CDCs, cardiosphere-derived cells; I/R, ischemia/reperfusion; MI, myocardial infarction; miR, microRNA; MSCs,
mesenchymal stromal cells; MΦ, macrophage; PKCδ, protein kinase C δ
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Cardioprotection Using a Nanoparticle-Mediated Drug
Delivery System

To improve the safety and efficiency of therapeutic
agents, specially designed nanocarriers, including lipo-
somes, polymeric nanoparticles, and complexes, have been
widely applied, particularly in the cardiovascular and on-
cology fields. These nanocarriers containing active sub-
stances, such as siRNAs or statins, effectively polarize
macrophages into the anti-inflammatory phenotype or me-
diate gene expression inmacrophages (Table 3). Increasing
evidence suggests that these changes in macrophages pro-
mote cardiac repair in infarcted animal models.

Liposomes

Liposomes are microscopic phospholipid bubbles,
which include one or more biocompatible lipid bilayers
with an aqueous core inside, ranging from a few hundreds
to thousands of nanometers in size [120–123]. Liposomes
have been used mostly in basic and clinical medicine since
the first FDA-approved liposomal drug Doxil® was used
and have exhibited advantageous performance in facilitat-
ing encapsulation of a broad variety of pharmaceuticals,
depending on the intrinsic amphiphilicity of their lipid
bilayer shell(s) [124]. Moreover, compared with the con-
ventional (classical) liposomes, immunoliposomes, which
are target liposomes with different surface-targeted ligands,
including antibodies and peptides, can target the special
cells and reduce the recognition of MPS to eliminate the
off-target effects. Tamar et al. demonstrated that systemic
administration of phosphatidylserine (PS)-presenting lipo-
somes significantly increases the number of CD206+

macrophages and the level of anti-inflammatory cytokines,
such as TGF-β and IL-10, and downregulates the expres-
sion of proinflammatory markers at the same time, which
promotes angiogenesis and halts ventricular dilatation and
adverse remodeling in a rat model of acute MI [125].
Moreover, Ruvinov et al. showed a similar therapeutic
effect in a rat model of acuteMI by activatingmacrophages
into an anti-inflammatory state [126].

Polymeric Nanoparticles and Complexes

Polymeric nanoparticles (NPs) mainly consist of bio-
degradable and biocompatible polymers such as natural
polymers (e.g., albumin), polylactide, and poly(D,L-lactide
co-glycolic acid) (PLGA) and are heterogeneous in size,
often ranging from a few tens to thousands of nanometers
in diameter [127]. Because of both the hydrophilic and
hydrophobic character of polymeric NPs, they have been

used in all kinds of pharmaceuticals. Polymeric NPs are
promising candidates for drug delivery and have received
public attention since the albumin-paclitaxel complex
(Abraxane) was approved for IV treatment. This review
describes the excellent properties of polymeric NPs: first,
these prevent cargo degradation; second, they decrease
phagocytosis by MPS; third, they break the absorption
barrier formed by biological membranes; and last, they
provide a method of sustained drug release. Even more
encouraging is that PLGA-based NPs can escape the
endolysosomal compartment and release the encapsulated
payload in the cytoplasm following cell internalization into
the cell by endocytosis [128].

Monocytes/macrophages have been known as targets
that are modulated by polymeric NP– and complex-based
carriers in the field of cardiac repair and have caught
special attention in the past few years. Recent studies have
demonstrated that systemic administration of siRNA
against messenger (mRNA) loaded into NPs imparts ben-
eficial outcomes in cardiac repair [115, 116]. Acid-
sensitive polyketal PK3 particle–encapsuled Nox2-
specific siRNA has been reported to contribute to improve-
ment in cardiac function by silencing the Nox2 gene in
cardiac macrophages [129]. Leuschner et al. evaluated the
therapeutic effect of an optimized lipid NP–loaded siCCR2
on cardiac repair. siCCR2-NPs accumulate in splenic
phagocytic cells when administered systemically in mice
[130]. Treatment with siCCR2-NPs resulted in a marked
reduction in the number of inflammatory monocytes and
M1 macrophages along with significant attenuation of MI
progression.

Furthermore, NPs containing pioglitazone have been
demonstrated to modulate monocyte/macrophage subtype
[131, 132]. Pioglitazone, a peroxisome proliferator–
activated receptor-γ (PPARγ) agonist, shows a marked
impact on monocyte and macrophage polarization, trans-
ferring them into the anti-inflammatory subtype [133].
Matoba et al. performed a randomized placebo-controlled
study in a mouse model of plaque rupture and suggested
that PLGA NPs containing pioglitazone enhance the pro-
portion of M2 macrophages [131]. In a similar approach,
pioglitazone NPs administered intravenously to an athero-
sclerosis ApoE−/− mouse model showed a significant
reduction in the number of fibrous caps by decreasing
proinflammatory monocytes along with a moderate
increase in anti-inflammatory phenotypes [132].

Moreover, the timely endocytosis of dead cells by
macrophages can trigger the anti-inflammatory response
and transform M1 macrophages into M2 macrophages.
Given these findings, a theranostic nanosystem with

1705



Zhang, Tang, Cui, Qin, Zhang, Zhang, Zhang, Liu, Wang, and Zhang

mimicking apoptosis was established and showed a re-
markable ability in resolving inflammation and promoting
cardiac repair [134].

CONCLUDING REMARKS

Macrophages play an indispensable role in the mam-
malian heart and respond to both the post-MI regeneration
and repair by mediating inflammation and immunity. M1
and M2 macrophages are indispensable in repairing the
myocardium and in retaining functional architecture. Dif-
ferent populations of macrophages respond to a special
stage after MI. Several studies have focused on the mech-
anism of macrophage polarization that is related to the
cardioprotective potential. With advancement in therapeu-
tic approaches, especially the burgeoning NP-mediated
drug delivery system, modulating macrophage activation
to guide cardiac repair and regeneration is now a promising
therapeutic strategy. These strategies are also available to
other CVDs associated with macrophages, such as athero-
sclerosis and myocarditis.

As this review highlights, the roles of macrophages in
terms of cardiac repair and regeneration are complex. To
better understand the mechanisms of macrophages during
the various stages of acute and chronic myocardial disease,
further research is warranted.Moreover, although specially
designed nanocarriers have been applied to improve the
efficiency of therapeutic agents and a major breakthrough
has been reached, many challenges remain, including the
off-target delivery and security issues, which require addi-
tional investigation.
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Table 3. Examples of Macrophage-Based Nanoparticle-Mediated Drug Delivery Systems

Nano-carrier Disease
model

Injection
method

Contents Mechanism Biological effects Reference

Liposome Rat MI
model

Intravenous
injection

Phosphatidylserine Increases M2
macrophages

Promotes angiogenesis, decreases
scarring, prevents ventricular
dilatation and remodeling

125-126

Acid sensitive
polyketal

PK3 particle

Mouse MI
model

Intramyocardial
injection

Nox2-siRNA Silences the Nox2
gene of cardiac
macrophages

Recovers cardiac function 129

Optimized lipid
nanoparticle

Mouse
myocar-
dial I/R
model

Intravenous
injection

CCR2-siRNA Decrease M1
macrophages

Reduces infarct size 130

Abbreviations: I/R, ischemia/reperfusion; MI, myocardial infarction; siRNA, RNA-mediated silencing
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Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduc-
tion in any medium or format, as long as you give appro-
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