Skip to main content

Advertisement

Log in

Lung Edema and Mortality Induced by Intestinal Ischemia and Reperfusion Is Regulated by VAChT Levels in Female Mice

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Acute lung injury induced by intestinal ischemia/reperfusion (I/R) is a relevant clinical condition. Acetylcholine (ACh) and the α7 nicotinic ACh receptor (nAChRα-7) are involved in the control of inflammation. Mice with reduced levels of the vesicular ACh transporter (VAChT), a protein responsible for controlling ACh release, were used to test the involvement of cholinergic signaling in lung inflammation due to intestinal I/R. Female mice with reduced levels of VAChT (VAChT-KDHOM) or wild-type littermate controls (WT) were submitted to intestinal I/R followed by 2 h of reperfusion. Mortality, vascular permeability, and recruitment of inflammatory cells into the lung were investigated. Parts of mice were submitted to ovariectomy (OVx) to study the effect of sex hormones or treated with PNU-282,987 (nAChRα-7 agonist). A total of 43.4% of VAChT-KDHOM-I/R mice died in the reperfusion period compared to 5.2% of WT I/R mice. The I/R increased lung inflammation in both genotypes. In VAChT-KDHOM mice, I/R increased vascular permeability and decreased the release of cytokines in the lung compared to WT I/R mice. Ovariectomy reduced lung inflammation and permeability compared to non-OVx, but it did not avoid mortality in VAChT-KDHOM-I/R mice. PNU treatment reduced lung permeability, increased the release of proinflammatory cytokines and the myeloperoxidase activity in the lungs, and prevented the increased mortality observed in VAChT-KDHOM mice. Cholinergic signaling is an important component of the lung protector response against intestinal I/R injury. Decreased cholinergic signaling seems to increase pulmonary edema and dysfunctional cytokine release that increased mortality, which can be prevented by increasing activation of nAChRα-7.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Oldenburg, W. Andrew, L. Louis Lau, Thomas J. Rodenberg, Hope J. Edmonds, and Charles D. Burger. 2004. Acute mesenteric ischemia: a clinical review. Archives of internal medicine 164: 1054–1062. https://doi.org/10.1001/archinte.164.10.1054.

    Article  PubMed  Google Scholar 

  2. Tendler, David A. 2003. Acute intestinal ischemia and infarction. Seminars in gastrointestinal disease 14: 66–76.

    PubMed  Google Scholar 

  3. Cavriani, Gabriela, Helori Vanni Domingos, Alexandre Learth Soares, Aryene Goes Trezena, Ana Paula Ligeiro-Oliveira, Ricardo Martins Oliveira-Filho, Lia Siguemi Sudo-Hayashi, and Wothan Tavares de Lima. 2005. Lymphatic system as a path underlying the spread of lung and gut injury after intestinal ischemia/reperfusion in rats. Shock 23: 330–336. https://doi.org/10.1097/01.shk.0000157303.76749.9b.

    Article  PubMed  Google Scholar 

  4. Ward, Peter A. 2012. New approaches to the study of sepsis. EMBO Molecular Medicine. EMBO Mol Med. 4: 1234–1243. https://doi.org/10.1002/emmm.201201375.

    Article  CAS  PubMed  Google Scholar 

  5. Ren, Chao, Xiu Hua Li, Shi Bin Wang, Li Xue Wang, Ning Dong, Yao Wu, and Yong Ming Yao. 2018. Activation of central alpha 7 nicotinic acetylcholine receptor reverses suppressed immune function of T lymphocytes and protects against sepsis lethality. International Journal of Biological Sciences 14. Ivyspring International Publisher: 748–759. https://doi.org/10.7150/ijbs.24576.

  6. Aggarwal, Neil R, Landon S King, and Franco R D’Alessio. 2014. Diverse macrophage populations mediate acute lung inflammation and resolution. American journal of physiology. Lung cellular and molecular physiology 306. American Physiological Society: L709-25. https://doi.org/10.1152/ajplung.00341.2013.

  7. Geha, Mayya, Maria G. Tsokos, Robin E. Bosse, Tatyana Sannikova, Yoichiro Iwakura, Jurandir J. Dalle Lucca, Rene De Waal Malefyt, and George C. Tsokos. 2017. IL-17A produced by innate lymphoid cells is essential for intestinal ischemia-reperfusion injury. The Journal of Immunology 199: 2921–2929. https://doi.org/10.4049/jimmunol.1700655.

    Article  CAS  PubMed  Google Scholar 

  8. Righetti, Renato Fraga, Tabata Maruyama dos Santos, Leandro do Nascimento Camargo, Luciana Ritha Cássia Rolim Barbosa Aristóteles, Silvia Fukuzaki, Flávia Castro Ribas de Souza, Fernanda Paula Roncon Santana, et al. 2018. Protective effects of anti-IL17 on acute lung Injury induced by LPS in mice. Frontiers in Pharmacology 9: 1021. https://doi.org/10.3389/fphar.2018.01021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Máca, Jan, Ondřej Jor, Michal Holub, Peter Sklienka, Filip Burša, Michal Burda, Vladimír Janout, and Pavel Ševčík. 2017. Past and present ARDS mortality rates: a systematic review. Respiratory Care. American Association for Respiratory Care. 62: 113–122. https://doi.org/10.4187/respcare.04716.

    Article  Google Scholar 

  10. Breithaupt-Faloppa, Ana Cristina, A.C. Breithaupt-Faloppa, Evelyn Thais Fantozzi, E.T. Fantozzi, Mayara Munhoz de Assis Ramos, M.M. Assis-Ramos, Luana Beatriz Vitoretti, et al. 2013. Protective effect of estradiol on acute lung inflammation induced by an intestinal ischemic insult is dependent on nitric oxide. Shock (Augusta, Ga.) 40: 203–209. https://doi.org/10.1097/SHK.0b013e3182a01e24.

    Article  CAS  Google Scholar 

  11. Fantozzi, Evelyn Thais, Ana Cristina Breithaupt-Faloppa, Fernanda Yamamoto Ricardo-da-Silva, Sara Rodrigues-Garbin, Daniel Cancelli Romero, Adriana da Silva Rodrigues, Yanira Riffo-Vasquez, and Wothan Tavares-de-Lima. 2018. Estradiol mediates the long-lasting lung inflammation induced by intestinal ischemia and reperfusion. The Journal of surgical research 221: 1–7. https://doi.org/10.1016/j.jss.2017.07.038.

    Article  CAS  PubMed  Google Scholar 

  12. Rosas-Ballina, Mauricio, Peder S. Olofsson, Mahendar Ochani, Sergio I. Valdés-Ferrer, Yaakov A. Levine, Colin Reardon, Michael W. Tusche, et al. 2011. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science (New York, N.Y.) 334: 98–101. https://doi.org/10.1126/science.1209985.

    Article  CAS  Google Scholar 

  13. Borovikova, L.V., S. Ivanova, M. Zhang, H. Yang, G.I. Botchkina, L.R. Watkins, H. Wang, N. Abumrad, J.W. Eaton, and K.J. Tracey. 2000. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405: 458–462. https://doi.org/10.1038/35013070.

    Article  CAS  PubMed  Google Scholar 

  14. Bernik, Thomas R., Steven G. Friedman, Mahendar Ochani, Robert DiRaimo, Luis Ulloa, Huan Yang, Samridhi Sudan, Christopher J. Czura, Svetlana M. Ivanova, and Kevin J. Tracey. 2002. Pharmacological stimulation of the cholinergic antiinflammatory pathway. The Journal of experimental medicine 195: 781–788.

    Article  CAS  Google Scholar 

  15. Gwilt, Catherine R., Louise E. Donnelly, and Duncan F. Rogers. 2007. The non-neuronal cholinergic system in the airways: an unappreciated regulatory role in pulmonary inflammation? Pharmacology & therapeutics 115: 208–222. https://doi.org/10.1016/j.pharmthera.2007.05.007.

    Article  CAS  Google Scholar 

  16. de Castro, Braulio M., Xavier De Jaeger, Cristina Martins-Silva, and Ricardo D F Lima, Ernani Amaral, Cristiane Menezes, Patricia Lima, et al. 2009. The vesicular acetylcholine transporter is required for neuromuscular development and function. Molecular and cellular biology 29: 5238–5250. https://doi.org/10.1128/MCB.00245-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pinheiro, Nathalia M., Claudia J.C.P. Miranda, Adenir Perini, Niels O.S. Câmara, Soraia K.P. Costa, Maria Isabel C. Alonso-Vale, Luciana C. Caperuto, et al. 2015. Pulmonary inflammation is regulated by the levels of the vesicular acetylcholine transporter. Edited by Xiao Su. PloS one 10: e0120441. https://doi.org/10.1371/journal.pone.0120441.

    Article  CAS  Google Scholar 

  18. Parrish, William R., Mauricio Rosas-Ballina, Margot Gallowitsch-Puerta, Mahendar Ochani, Kanta Ochani, Li-Hong Yang, LaQueta Hudson, et al. 2008. Modulation of TNF release by choline requires alpha7 subunit nicotinic acetylcholine receptor-mediated signaling. Molecular medicine (Cambridge, Mass.) 14: 567–574. https://doi.org/10.2119/2008-00079.Parrish.

    Article  CAS  Google Scholar 

  19. Lips, Katrin S., Anke Lührmann, Thomas Tschernig, Tobias Stoeger, Francesca Alessandrini, Veronika Grau, Rainer V. Haberberger, Hermann Koepsell, Reinhard Pabst, and Wolfgang Kummer. 2007. Down-regulation of the non-neuronal acetylcholine synthesis and release machinery in acute allergic airway inflammation of rat and mouse. Life sciences 80: 2263–2269. https://doi.org/10.1016/j.lfs.2007.01.026.

    Article  CAS  PubMed  Google Scholar 

  20. Su, Xiao, Michael A. Matthay, and Asrar B. Malik. 2010. Requisite role of the cholinergic alpha7 nicotinic acetylcholine receptor pathway in suppressing Gram-negative sepsis-induced acute lung inflammatory injury. Journal of immunology (Baltimore, Md. : 1950) 184: 401–410. https://doi.org/10.4049/jimmunol.0901808.

    Article  CAS  Google Scholar 

  21. Pinheiro, M. Nathalia, Fernanda P.R. Santana, Rafael Ribeiro Almeida, Marina Guerreiro, Milton A. Martins, Luciana C. Caperuto, Niels O.S. Câmara, et al. 2017. Acute lung injury is reduced by the α7nAChR agonist PNU-282987 through changes in the macrophage profile. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 31: 320–332. https://doi.org/10.1096/fj.201600431R.

    Article  CAS  Google Scholar 

  22. Prado, Vania F., Cristina Martins-Silva, Braulio M. de Castro, Ricardo F. Lima, Daniela M. Barros, Ernani Amaral, Amy J. Ramsey, et al. 2006. Mice deficient for the vesicular acetylcholine transporter are myasthenic and have deficits in object and social recognition. Neuron 51: 601–612. https://doi.org/10.1016/j.neuron.2006.08.005.

    Article  CAS  PubMed  Google Scholar 

  23. Iida, Takaya, Tomohisa Takagi, Kazuhiro Katada, Katsura Mizushima, Wataru Fukuda, Kazuhiro Kamada, Kazuhiko Uchiyama, et al. 2015. Rapamycin improves mortality following intestinal ischemia-reperfusion via the inhibition of remote lung inflammation in mice. Digestion 92. S. Karger AG: 211–219. https://doi.org/10.1159/000439300.

  24. Bosmans, Goele, Gabriel Shimizu Bassi, Morgane Florens, Erika Gonzalez-Dominguez, Gianluca Matteoli, and Guy E. Boeckxstaens. 2017. Cholinergic modulation of type 2 immune responses. Frontiers in Immunology. Frontiers Media S.A. https://doi.org/10.3389/fimmu.2017.01873.

  25. Santana, Fernanda P.R., Nathalia M. Pinheiro, Márcia I. Bittencourt-Mernak, Adenir Perini, Kelly Yoshizaki, Mariângela Macchione, Paulo H.N. Saldiva, et al. 2019. Vesicular acetylcholine transport deficiency potentiates some inflammatory responses induced by diesel exhaust particles. Ecotoxicology and environmental safety 167: 494–504. https://doi.org/10.1016/j.ecoenv.2018.10.005.

    Article  CAS  PubMed  Google Scholar 

  26. Roy, Ashbeel, William C. Fields, Cibele Rocha-Resende, Rodrigo R. Resende, Silvia Guatimosim, Vania F. Prado, Robert Gros, and Marco A.M. Prado. 2013. Cardiomyocyte-secreted acetylcholine is required for maintenance of homeostasis in the heart. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 27: 5072–5082. https://doi.org/10.1096/fj.13-238279.

    Article  CAS  Google Scholar 

  27. He, Ye, Zhi-Qiang Ye, Xiang Li, Guo-Song Zhu, Yue Liu, Wei-Feng Yao, and Gang-Jian Luo. 2016. Alpha7 nicotinic acetylcholine receptor activation attenuated intestine-derived acute lung injury. The Journal of surgical research 201: 258–265. https://doi.org/10.1016/j.jss.2015.10.046.

    Article  CAS  PubMed  Google Scholar 

  28. Ricardo-da-Silva, Fernanda Yamamoto, Evelyn Thaís Fantozzi, Sara Rodrigues-Garbin, Ricardo Martins Oliveira-Filho, Bernardo Boris Vargaftig, Ana Cristina Breithaupt-Faloppa, and Wothan Tavares de Lima. 2017. Estradiol modulates local gut injury induced by intestinal ischemia-reperfusion in male rats. Shock (Augusta, Ga.) 48: 477–483. https://doi.org/10.1097/SHK.0000000000000873.

    Article  CAS  Google Scholar 

  29. Xiao, Xianmin, Dehong Liu, Shan Zheng, Fu Jidong, Hongzhi Zhang, and Lian Chen. 2004. Protective effect of estrogen on intestinal ischemia-reperfusion injury in pubertal rats. Journal of Pediatric Surgery 39. J Pediatr Surg: 1828–1831. https://doi.org/10.1016/j.jpedsurg.2004.08.028.

  30. Sekheri, Meriem, Driss El Kebir, Natalie Edner, and János G. Filep. 2020. 15-Epi-LXA4 and 17-epi-RvD1 restore TLR9-mediated impaired neutrophil phagocytosis and accelerate resolution of lung inflammation. Proceedings of the National Academy of Sciences of the United States of America 117. National Academy of Sciences: 7971–7980. https://doi.org/10.1073/pnas.1920193117.

  31. Norling, Lucy V., and Mauro Perretti. 2020. Proresolving lipid mediators enhance PMN-mediated bacterial clearance. Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences. 117: 9148–9150. https://doi.org/10.1073/pnas.2004241117.

    Article  CAS  Google Scholar 

  32. Hotchkiss, Richard S., Guillaume Monneret, and Didier Payen. 2013. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. The Lancet. Infectious diseases 13: 260–268. https://doi.org/10.1016/S1473-3099(13)70001-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cribbs, Sushma K., Kristina Crothers, and Alison Morris. 2020. Pathogenesis of HIV-related lung disease: immunity, infection, and inflammation. Physiological reviews 100. NLM (Medline): 603–632. https://doi.org/10.1152/physrev.00039.2018.

  34. Pereira, Luciana M., Isabella M. Guimarães, Vinícius E.M. Oliveira, Cristiane P. Bastos, Fabíola M. Ribeiro, Vânia F. Prado, Marco A.M. Prado, and Grace S. Pereira. 2018. Estradiol effect on short-term object memory under hypocholinergic condition. Brain research bulletin 140: 411–417. https://doi.org/10.1016/j.brainresbull.2018.01.012.

    Article  CAS  PubMed  Google Scholar 

  35. Jana, B., K.A. Meller, M. Czajkowska, and J. Całka. 2018. Long-term estradiol-17β exposure decreases the cholinergic innervation pattern of the pig ovary. Annals of Anatomy 216. Elsevier GmbH: 135–141. https://doi.org/10.1016/j.aanat.2017.11.010.

  36. Tomlinson, Gillian S., Lucy C.K. Bell, Naomi F. Walker, Jhen Tsang, Jeremy S. Brown, Ronan Breen, Marc Lipman, David R. Katz, Robert F. Miller, Benjamin M. Chain, Paul T.G. Elkington, and Mahdad Noursadeghi. 2014. HIV-1 infection of macrophages dysregulates innate immune responses to Mycobacterium tuberculosis by inhibition of interleukin-10. The Journal of Infectious Diseases 207: 1055–1065.

    Article  Google Scholar 

  37. Bouras, Marwan, Karim Asehnoune, and Antoine Roquilly. 2018. Contribution of dendritic cell responses to sepsis-induced immunosuppression and to susceptibility to secondary pneumonia. Frontiers in Immunology. Frontiers Media S.A. https://doi.org/10.3389/fimmu.2018.02590.

  38. Adib-Conquy, M., C. Adrie, P. Moine, K. Asehnoune, C. Fitting, M.R. Pinsky, J.F. Dhainaut, and J.M. Cavaillon. 2000. NF-κB expression in mononuclear cells of patients with sepsis resembles that observed in lipopolysaccharide tolerance. American Journal of Respiratory and Critical Care Medicine 162. American Lung Association: 1877–1883. https://doi.org/10.1164/ajrccm.162.5.2003058.

  39. Cavaillon, Jean Marc, and Minou Adib-Conquy. 2006. Bench-to-bedside review: endotoxin tolerance as a model of leukocyte reprogramming in sepsis. Critical Care. Crit Care. 10: 233. https://doi.org/10.1186/cc5055.

    Article  Google Scholar 

  40. Biswas, Subhra K., and Eduardo Lopez-Collazo. 2009. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends in Immunology. Trends Immunol. 30: 475–487. https://doi.org/10.1016/j.it.2009.07.009.

    Article  CAS  PubMed  Google Scholar 

  41. Boomer, Jonathan S., Kathleen To, Kathy C. Chang, Osamu Takasu, Dale F. Osborne, Andrew H. Walton, Traci L. Bricker, et al. 2011. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA - Journal of the American Medical Association 306. JAMA: 2594–2605. https://doi.org/10.1001/jama.2011.1829.

  42. Gahring, Lorise C., Elizabeth J. Myers, Diane M. Dunn, Robert B. Weiss, and Scott W. Rogers. 2017. Nicotinic alpha 7 receptor expression and modulation of the lung epithelial response to lipopolysaccharide. In PLoS ONE 12, vol. 12, e0175367. Public Library of: Science. https://doi.org/10.1371/journal.pone.0175367.

    Chapter  Google Scholar 

  43. Galle-Treger, Lauriane, Yuzo Suzuki, Nisheel Patel, Ishwarya Sankaranarayanan, Jennifer L. Aron, Hadi Maazi, Chen Lin, and Omid Akbari. 2016. Nicotinic acetylcholine receptor agonist attenuates ILC2-dependent airway hyperreactivity. In Nature Communications 7, vol. 7. Group: Nature Publishing. https://doi.org/10.1038/ncomms13202.

    Chapter  Google Scholar 

  44. Feng, Xintong, Ling Li, Jinggjing Feng, Wei He, Na Li, Tianyun Shi, Zhijun Jie, and Su. Xiao. 2020. Vagal-α7nAChR signalling attenuates allergic asthma responses and facilitates asthma tolerance by regulating inflammatory group 2 innate lymphoid cells. Immunology and cell biology. Immunol Cell Biol. 99: 206–222. https://doi.org/10.1111/imcb.12400.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the São Paulo Research Foundation (FAPESP) [grant numbers 2018/06088-0 and 2014/25689-4], Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001, and by the National Council for Technologic and Scientific Development (CNPq) [grant number 306278/2015-4].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by Fernanda P.R. Santana, Fernanda Y. Ricardo-da-Silva, Evelyn T. Fantozzi, Nathália P. Montouro, Carla M. Prado, and Ana Cristina Breithaupt-Faloppa. The first draft of the manuscript was written by Fernanda P.R. Santana, Carla M. Prado, and Ana Cristina Breithaupt-Faloppa, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Carla Máximo Prado.

Ethics declarations

The entire experiments were reviewed and proved by the Animal Ethics Committee of the School of Medicine of the University of São Paulo (FM-USP (Document number 1189/2019).

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Cholinergic signaling is an important component of lung responses.

• Decreased cholinergic signaling induces increased mortality after intestinal I/R.

• Decreased cholinergic signaling induces a dysfunctional cytokine release.

• Activation of nAChRα-7 can be considered a therapeutic target in lung inflammation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santana, F.P.R., Ricardo-da-Silva, F.Y., Fantozzi, E.T. et al. Lung Edema and Mortality Induced by Intestinal Ischemia and Reperfusion Is Regulated by VAChT Levels in Female Mice. Inflammation 44, 1553–1564 (2021). https://doi.org/10.1007/s10753-021-01440-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01440-z

KEY WORDS

Navigation