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Transcriptome Landscape of Intracellular Brucella ovis
Surviving in RAW264.7 Macrophage Immune System
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Abstract— Brucella ovis infection results in genital damage and epididymitis in rams,
placental inflammation and rare abortion in ewes, and neonatal mortality in lambs. However,
the mechanism underlying B. ovis infection remains unclear. In the present study, we used
prokaryotic transcriptome sequencing to identify the differentially expressed genes (DEGs)
between wild-type B. ovis and intracellular B. ovis in RAW264.7 macrophages. Gene
ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis were performed, and quantitative reverse transcriptase PCR (qRT-PCR)
was used to validate the top 10 upregulated and downregulated DEGs. The results showed
that 212 genes were differentially expressed, including 68 upregulated and 144 downregu-
lated genes, which were mainly enriched in 30 GO terms linked to biological process, cellular
component, and molecular function. KEGG analysis showed that the DEGs were enriched in
the hypoxia-inducible factor 1 (HIF-1) signaling pathway, mitogen-activated protein kinase
(MAPK) signaling pathway, beta-alanine metabolism, and quorum sensing pathway.
BME_RS01160, BME_RS04270, BME_RS08185, BME_RS12880, BME_RS25875,
predicted_RNA865, and predicted_RNA953 were confirmed with the transcriptome se-
quencing data. Hence, our findings not only reveal the intracellular parasitism of B. ovis in
the macrophage immune system, but also help to understand the mechanism of chronic
B. ovis infection.
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INTRODUCTION

Brucella is a type of gram-negative, non-motile
aerobic bacteria without a capsule (smooth type with
microcapsule). Further, it is oxidase-positive, reduces
nitrates, functions as an intracellular parasite, and can
survive in various domestic animals [1–3]. Brucellosis,
caused by Brucella, is a chronic infectious disease in
both humans and animals. The World Health Organi-
zation (WHO) divided Brucella into the following six
species according to their host: Brucella melitensis
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(B. melitensis), Brucella abortus (B. abortus), Brucella
suis (B. suis), Brucella neotomae (B. neotomae), Bru-
cella canis (B. canis), and Brucella ovis (B. ovis). The
Brucella species are commonly host-specific, but
cross-species infections may occur [4–6]. The main
sources of the disease are B. melitensis, B. abortus,
and B. suis, of which B. melitensis is the most
infectious species associated with high morbidity
and serious damage. Brucellosis mainly damages the
reproductive system and joints in humans and live-
stock, and has a serious negative impact on animal
husbandry practice and human health [7–9].

A previous study demonstrated that after ovine
oocytes were infected with B. ovis, the activity of
cholinesterase increased, and the secretion of acetyl-
choline decreased significantly, which mediated an
inflammatory response leading to oxidative stress
and cell damage [10]. Carbonic anhydrase is an en-
zyme that catalyzes the hydration of carbon dioxide
to bicarbonate. It is used for replenishment and bio-
synthesis of carboxylase, which results in a 5–10%
CO2 necessity for the growth and reproduction of
B. ovis [11]. Moreover, it has been reported that
B. ovis is naturally rough and does not contain O-
polysaccharide, and has characteristics similar to
smooth Brucella [12]. In a previous study, B. ovis
infection in sheep was linked to epididymitis,
orchitis, and infertility. The ABC transporter and
virB operon-encoded type IV secretion system were
shown to affect B. ovis survival and reproduction in
sheep macrophages [13]. B. ovis is naturally rough,
and induces toxic effects in sheep. B. ovis only
infects its preferred host, and there are no reports
of B. ovis infecting humans in natural environment.
Further, the lipopolysaccharide (LPS) core structure
is crucial for the in vivo survival of not only B. ovis
but also other naturally rough Brucella pathogenic
species. Hence, the LPS core of B. ovis is considered
as a potential target for vaccine development [14].

Several studies on how Brucella infection affects
the host have been conducted in cells, mice, and
other animals, but limited research on the mechanism
of Brucella survival in the host immune system has
been carried out. In this study, for the first time, we
identified the DEGs of B. ovis present in the macro-
phage immune system, and predicted the biological
functions of these DEGs, thus providing a foundation
for further studies on the molecular mechanism of
intracellular B. ovis survival.

MATERIALS AND METHODS

Cell Culture

The RAW264.7 macrophages cell line was a kind gift
from Dr. Y Zhou (College of Animal Science, Southwest
University, Chongqing, China). Cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM; Life Tech-
nologies, USA) supplemented with 10% fetal bovine se-
rum, 100 units/mL penicillin (Life Technologies, USA),
and 100 μg/mL streptomycin (Life Technologies, USA) at
37 °C in 5% CO2.

Bacterial Culture and Infection

The B. ovis 25840™ strain (American Type Culture
Collection (ATCC), USA) with biosafety level 2 was
intended for research use only. It was not intended for
any animal/human therapeutic or diagnostic purpose.
B. ovis were evenly coated on a defibrillated blood plate
(Hopebio, China) and cultured at 37 °C in a 5% CO2

incubator. Colony formation was observed after 48 h.
RAW264.7 macrophages were seeded into 60 × 60 mm
cell culture dishes at a density of 3 × 106 cells per dish
and incubated for 12 h. Next, sterile physiological saline
was used to gently blow the cultured B. ovis off the dish.
The blown bacterial solution was collected, placed in a
5 mL sterile centrifuge tube, and centrifuged at 600g for
3 min. The supernatant was discarded. Sterile saline was
then added, gently blown, and mixed, followed by
centrifugation. The supernatant was discarded. The
bacterial pellet was resuspended in normal saline, and the
number of bacteria was counted with a bacterial counter.
The concentration of the bacterial solution was 3 × 108

bacteria/mL. The multiplicity of infection (MOI) was
100:1. The bacterial solution was added to the cells accord-
ing to the proportion and the cell medium was discarded
after 2 h. Cells were then washed twice with DMEM
containing 50 ng/mL gentamicin to kill any bacteria out-
side the cells. After washing, 3 mL of fresh complete
medium was added and cells were cultured for 22 h at
37 °C in 5% CO2.

High-Quality Total RNA Preparation and Prokaryotic
Transcriptome Sequencing

At 24 h post bacterial infection, the cell culture me-
dium was discarded and cells were washed with phosphate
buffered saline. Next, cells were treated with 1 ml of 0.25%
trypsin-0.02% EDTA digestive solution for 2 min, follow-
ing which complete medium was added to stop digestion.
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The cell suspension was then gently blown into and placed
in a 5-mL centrifuge tube, followed by centrifugation at
500g for 3 min. The supernatant was discarded. The cell
pellet was collected and frozen at − 80 °C in a refrigerator.

Total RNA was extracted (Life Technologies, USA)
from the two B. ovis and intracellular B. ovis samples. The
concentration and purity of total RNA were determined
using the NanoDrop 2000 spectrophotometer. RNA integ-
rity was evaluated by agarose gel electrophoresis and the
RIN value was determined using the Agilent 2100 soft-
ware. Total RNA required for a single database establish-
ment was 2 μg (concentration ≥ 100 ng/μL, OD 260/280:
1.8–2.2). Unlike eukaryotes, which have a poly A tail at the
3’ mRNA end, prokaryotes cannot use oligo dT primers to
pair with poly A (for A-T base pairing) to separate mRNA
from total RNA. Therefore, ribosomal RNA (rRNA) was
extracted for further transcription analysis. The Illumina
platform was used for sequencing short sequence frag-
ments. The enriched mRNA was a complete RNA se-
quence, and needed to be interrupted randomly. By adding
fragmentation buffer, mRNA can be randomly broken into
small segments of about 200 bp. Under the action of
reverse transcriptase, first strand cDNA was synthesized
using random primers and mRNA as a template, followed
by second strand cDNA synthesis. dTTPwas replaced with
dUTP in the dNTP reagent to synthesize second strand
cDNA containing A/U/C/G. The double-stranded cDNA
had sticky ends, which were filled with an end repair mix to
create blunt ends. An A was then added at the 3 ‘end to
connect the Y-junction adaptor.

In this study, we used the Illumina HiSeq 4000
(Origingene, China) for the transcriptome sequencing of
B. ovis. An Illumina PE library was constructed for 2 ×
150 bp sequencing, quality control was carried out on the
acquired sequencing data, and then bioinformatics was
used to analyze the transcriptome sequencing data
(Origingene, China).

Prokaryotic Transcriptome Sequencing Data
Processing

The original sequencing data contained sequence tag
connectors, low-quality segments, and sequences with
high nitrogen (N) rate and short length, which subsequent-
ly affected the quality of sequence assembly. To ensure
accurate follow-up analysis of biological information, we
measured the original ordinal number by filtering the data
to get high-quality sequencing data (clean data). After
quality evaluation of the sequencing data, the sequencing
reads were compared with the Rfam database, and the

rRNA in the sequencing data was counted according to
its annotation information. The high-quality sequencing
data obtained after quality control was compared with the
designated reference genome. This study species was
mouse, and the reference genome from the Ensemble da-
tabase, genome version GRCm38, gene annotation infor-
mation was Ensemble 92, which realized the elimination of
host genes.

Analysis of DEGs

This study aimed to annotate the transcripts of
protein-coding genes for further analysis. All nucleotide
sequences obtained by splicing were compared with NR,
string, Swiss-Prot, KEGG, CARD, and CAZY databases
using BLASTX to obtain corresponding annotation infor-
mation. NCBI_NR (NCBI non-redundant protein library)
is a comprehensive database, including protein databases,
such as Swiss-Prot, Protein Information Resource, Protein
Research Foundation, and Protein Data Bank. Non-
redundant data and protein data were translated from
CDS databases of GenBank and RefSeq. By comparing
with the NR library, we assessed the similarity between the
transcripts of this species and other similar species, as well
as obtained information on homologous sequence func-
tion. After comparison with the database, the species cat-
egory, E-value distribution, and sequence similarity were
calculated. The reliability of the annotation results was
reflected by species, E-values, and sequence similarity
distribution.

The gene ontology (GO; http://www.geneontology.org)
domains, biological process, molecular function, and cellular
component were used for annotation classifications. There
were many levels under these three branches. The higher the
level number, the more meticulous is the function. The top
three branches were regarded as level 1, followed by levels 2,
3, and 4. Using the GO classification map, we could roughly
analyze the gene diversity of B. ovis.

The Clusters of Orthologous Groups of proteins
(COGs; http://www.ncbi.nlm.nih.gov/COG/) database of
lineal homologous clusters is based on the protein se-
quences of 66 completed genomes, which are classified
and constructed according to their phylogenetic relation-
ship, and compared with the COG database; they can be
used for functional annotation, classification, and protein
evolution analyses. Through string database comparison,
the corresponding number of genes associated with COG
can be obtained, and all transcripts can be classified into
functional classifications based on COG numbers.
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Kyoto Encyclopedia of Genes and Genomes (KEGG;
http://www.genome.jp/kegg/) is a public database for
deciphering the genome. It is used for systematic analysis
of gene function. KEGG is a large knowledge base linking
genomic and functional information, in which genomic
information is mainly obtained from databases, such as
NCBI, including complete and partially sequenced genome
sequences, and stored in KEGG generation database, which
contains more advanced functional information. The KEGG
database provides graphical representations of cellular pro-
cesses, such as metabolism, membrane transport, signal
transmission, and cell cycle, as well as homologous conser-
vative sub pathways. In addition, it also includes chemical
substances, enzyme molecules, and enzymatic reactions.
Related information is stored in the KEGG ligand database.

The abundance of transcripts reflects the gene expres-
sion level. The higher the abundance, the higher the level
of gene expression. Using RNA-seq analysis, gene expres-
sion levels were calculated by comparing the number of
clean reads in the reference genome region. Based on the
two-terminal sequencing data, the Salmon algorithm can
evaluate the expression of transcripts quickly and accurate-
ly by reducing the number of false positive detections.
TPM was used for normalization of data.

For the identification of DEGs, we used | log2 fold-
change | > 1 and false discovery rate (FDR) < 0.05 as the
default screening criteria. Fold-change is calculated as the
ratio of the difference in expression between the two sam-
ples (groups). It is obtained by multiple testing and correc-
tion of p values.

Identification and Analysis of sRNA

The prokaryotic transcriptome analysis software
Rockhopper (http://CS. Wellesley. Edu/btjaden/rockhop-
per/) was used to predict non-coding RNA (ncRNA) tran-
scripts using primary RNA sequencing data. Among these
ncRNAs, bacterial small RNAs (small non-coding RNA;
sRNA) account for a large proportion. About 50–500 nt in
length, these non-protein-coding regulatory RNAs are lo-
cated in the non-coding region between two protein-coding
genes, or at the 5’ or 3’ non-coding regions of mRNA.
These sRNAs are key modulators of mRNA stability,
transcription, and translation, and increase mRNA degra-
dation. Further, they play an important regulatory role in
gene expression, growth, metabolism, stress response,
pathogenicity of bacteria, and other biological processes.
BLAST and public databases, such as sRNAMap,
sRNATarBase, SIPHI, and Rfam, were used to identify
sRNAs, and the annotated results were visualized using

Venn diagram. The secondary structure of sRNA was
predicted using RNAfold of the Vienna RNA package.

Most sRNAs work by pairing and combining with
target genes. The function of sRNA is to enable study on
the function of target genes. One sRNAmay have multiple
mRNA targets, and the same target gene may also be
regulated by multiple sRNAs, including cis- and trans-
encoded sRNAs. The mechanism of production and regu-
lation is different, in which trans-encoded sRNA binds to
the sequence near the 5’UTR of mRNA or activates gene
expression. In this analysis, we used a common target gene
prediction software to predict all known and new target
genes of trans-coded sRNAs, and described the function of
these target genes.

qRT-PCR Validation

We sorted the differentially expressed transcripts
from the transcriptome sequencing data according to log2
fold-change, and selected the top 10 upregulated and
downregulated transcripts for qRT-PCR validation. The
primers used are listed in Table 1. Total RNA isolated for
the high-throughput sequencing experiment was used to
synthesize cDNA using PrimeScript™ RT reagent kit
(TaKaRa, Japan), and qRT-PCR was performed with TB
Green® Premix Ex Taq™ II (Tli RNaseH Plus; TaKaRa,
Japan). Relative gene expression was calculated using the
2−ΔΔCt method, and 16S was used as an internal control.
Three independent replicate experiments were performed.

RESULTS

Visual Analysis of DEGs Between Wild-Type and In-
tracellular B. ovis

The overall distribution of DEGs was inferred by
visualization of volcano and scatter plots. In the scatter
diagram of DEGs with FDR < 0.05 and |log2 fold-
change| > 1, the abscissa and ordinate represent the expres-
sion of genes or transcripts in B. ovis and intracellular
B. ovis samples (FPKM values). The red dots indicate
genes with significant upregulation, blue dots indicate
genes with significant downregulation, and black dots
indicate genes with no significant alteration (Fig. 1a).

In the volcano plot of DEGs with FDR < 0.05 and
|log2 fold-change| > 1, the abscissa represents the log2
fold-change (B. ovis vs. intracellular B. ovis) and the ordi-
nate represents the FDR value. Each dot represents a
specific gene or transcript. The red dots indicate signifi-
cantly upregulated genes, blue dots indicate significantly
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downregulated genes, and black dots represent genes with
no significant alteration. The most statistically significant
genes (represented by dots) were towards the top left. (Fig.
1b).

Cluster Analysis of DEGs Between Wild-Type and
Intracellular B. ovis

Cluster analysis was used to determine the expression
patterns of different genes under different experimental
conditions. The same or similar expression pattern genes
were grouped together to recognize the function of un-
known genes or the unknown function of known genes.
They have similar functions or participate in the same
metabolic process or cellular pathway. The mRNA expres-
sion patterns of DEGs were analyzed by cluster analysis,
and the distance calculation algorithm was used. The sam-
ples were subjected to Spearman’s correlation coefficient,
Pearson’s correlation coefficient, and hierarchical cluster-
ing (complete algorithm) analyses.

Each column in the cluster represents the wild-type
and intracellular B. ovis samples. Each row represents a
gene. The colors represent the size of the cluster in wild-
type and intracellular B. ovis (log10 FPKM). The red color
represents the upregulated genes, and green color repre-
sents the downregulated genes (Fig. 2a). In the trend line
chart of differential gene module expression of each sub
cluster, the abscissa represents the comparative sample of
wild-type and intracellular B. ovis, and the ordinate repre-
sents the expression level of genes in wild-type and intra-
cellular B. ovis samples. Each line represents a gene, and
the blue line represents the average expression level of all
genes in the sub clusters: subcluster 1, including 2 genes;
subcluster 2, including 7 genes; subcluster 3, including 1
genes; subcluster 4, including 30 genes; subcluster 5, in-
cluding 8 genes; subcluster 6, including 74 genes; subclus-
ter 7, including 19 genes; subcluster 8, including 40 genes;
subcluster 9, including 30 genes; and subcluster 10, includ-
ing 1 gene (Fig. 2b).

GO and KEGG Functional Analyses of DEGs

According to their GO functions, the DEGs were
classified into biological process, cellular component, and
molecular function. Results showed that 24 GO terms were
enriched in biological process, 14 in cellular component,
and 8 in molecular function (Fig. 3a).

The histogram showing GO functional enrichment of
DEGs directly reflects the number of DEGs enriched in the
GO terms, biological process, cellular component, and
molecular function. The 40 most significant GO terms

were selected for the histogram. Each column represents
a GO term, and the abscissa indicates the GO name and
classification. A description of the GO classification is
provided in the upper left corner. The height of the column
corresponds to the enrichment rate (enrichment ratio =
sample number/background number). The color indicates
the significance of enrichment (FDR). The darker the color,
the more significant was the GO term enrichment. Further,

Table 1. qRT-PCR Validation of the Top 10 Upregulated and Downreg-
ulated DEGs

Gene_name Primer sequence (5′-3′)

16S F: ACTGGGCGTAAAGAGYTCGT
R: CGCATTTCACCGCTACAC

BME_RS15875 F: GTACAAACATGGCGAAGGGC
R: GGCCAGATCAATCAGGGCAT

predict_RNA1071 F: TAGCTCAGCGTAATCGCCAC
R: GCTTCTGGAAATTGCCGTCG

predict_RNA1463 F: ACCATCGCGCCAAAACTTTC
R: TACTGTTCGATATCGGCGGC

predict_RNA1586 F: CGCCAAAAGAGGGCTGAAAC
R: ATTCTTCGGGGTTGGCCATT

predict_RNA1488 F: GTGTCAGCGGTCGACAAAAG
R: ATCGTGCATGATCCCGGAAA

predict_RNA865 F: TCGACCTTACCGAACTTGCC
R: CGGCAAAAGAGAAGTCGCAG

predict_RNA1580 F: GCTCCGATCCAGCTTTCACT
R: CTCGATCTGGTTGCGCATTG

BME_RS07390 F: AGGTCGAAAACTGGGGTCTG
R: GAGCGTGTAATACGCCTTGC

predict_RNA519 F: TCTGAAGTTCGGCGAGTTCC
R: GAAGACGACAAGCCGCAATC

predict_RNA1099 F: CTTGCGTTTCGGTAGATGCG
R: GACGGTTGATGATTGCGAGC

BME_RS12005 F: GGATTTTGCGCCGATCTTCC
R: CCATGCAATTGTACGAGGCG

BME_RS01965 F: CCCGTTTGGAAGGCAACAAG
R: CAGATATCGGACTGCGGCTT

BME_RS08185 F: ATGAGGTCATCGACGCATCC
R: CAGGACGAAATCGACCACCA

BME_RS14785 F: ACGGAAGCGACAAAGGATGT
R: CGCCTCTATGGTCGGAAGAC

BME_RS08160 F: ACGTCACCATCGTCTATCGC
R: AAGAACGGCTTCGGCAAAAC

predict_RNA1390 F: GCGGGCCGGATGGATAATAA
R: CATGCGCTTAACTCGCAGAC

predict_RNA953 F: CGTCGAGTGTCTGATAGCCC
R: GAGTTTATCGCGCTTGGCTG

BME_RS01160 F: CACGCTTCTTGCCATGATCG
R: GCAATGCGGTTGTCGGTATC

BME_RS12880 F: CTGAAGGCTGGTTTGTTGCC
R: GCTGCAACCTTCGGATTGTC

BME_RS04270 F: CGATGTGCCGAAGCTTGATG
R: AGCGATAGTCAGGATTGGCG
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* * * indicated FDR < 0.001, * * indicated FDR <
0.01, and * indicated FDR < 0.05. The color gradient on
the right indicates the FDR size (Fig. 3b).

The scatter plot shows the significantly enriched GO
terms, and the ordinate indicates the GO name. A description
of the GO classification is provided on the right side. The
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abscissa represents the enrichment ratio. The larger the graph,
the higher the number of DEGs. The darker the color, the
more significant was the GO term enrichment. The color
gradient on the right represents the p value (Fig. 3c).

The KEGG pathway results revealed that the DEGs
were significantly enriched in the biochemical metabolic

pathway and signal transduction pathway. Each graph
represents a KEGG pathway. The ordinate indicates the
name of the KEGG pathways. A description of the KEGG
classification is shown on the right, and the abscissa rep-
resents enrich_factor. The DEGswere found to be enriched
in the HIF-1 signaling pathway (ko04006), MAPK
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Fig. 2. Cluster analysis of DEGs. a Cluster analysis of DEGs between wild-type and intracellular B. ovis. Red color represents the upregulated genes, and
green color represents the downregulated genes. b Trend line chart of differential gene module expression. The abscissa was the comparison sample of wild-
type B. ovis and intracellular B. ovis group, and the ordinate indicates the expression of genes in the wild-type and intracellular B. ovis samples.
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signaling pathway (ko04016), beta-alanine metabolism
(ko00410), and quorum sensing (ko02024) pathways
(Fig. 3d).

iPath Analysis of DEGs

Using iPath3.0 (http://pathways.embl.de), an applica-
tion for the visualization of metabolic pathways, the met-
abolic pathway information of the whole organism can be
viewed. Here, the following metabolic information of
DEGs were mapped by iPath3.0: metabolic pathways
(Fig. 4a), secondary metabolite biosynthesis (Fig. 4b),
multiple antibiotic synthesis (Fig. 4c), and microbial met-
abolic pathways in multiple environments (Fig. 4d). The
red line represents the pathway affected by the upregulated
genes, blue line represents the pathway affected by the
downregulated genes, and green line represents the path-
way affected by the upregulated and downregulated genes
at the same time.

qRT-PCR Validation

To validate the transcriptome sequencing data, we
sorted the DEGs, and selected the top 10 upregulated and
downregulated genes inB. ovis compared with intracellular
B. ovis. qRT-PCR results showed that BME_RS01160,
BME_RS04270, BME_RS08185, BME_RS12880,
BME_RS 2 5 8 7 5 , p r e d i c t e d _ RNA8 6 5 , a n d
predicted_RNA953 were identified as DEGs from the
sequencing data (Fig. 5).

DISCUSSION

Transcriptome sequencing serves as a powerful
tool for genomic research. Prokaryotic mRNA sequenc-
ing is based on the Illumina HiSeq platform to sequence
all mRNAs transcribed from prokaryotes during a cer-
tain period. The sequencing experiments are performed
using the TruSeq RNA Sample Prep kit to construct
libraries [15–17]. To facilitate analysis, release, and
sharing of sequencing data, the original image data
obtained by Illumina sequencing is transformed into
sequence data through base calling (FASTQ format) to
obtain the original sequencing data file. The FASTQ file
record the base and the mass fraction of the read section
[18–20]. The error rates of sequencing reads increase
with the progress in sequencing due to the consumption
of chemical reagents, which is a common feature of the
Illumina high-throughput sequencing platform [21].
Quality control of the original sequencing data is per-
formed as follows: removing adapter sequences from
reads, removing bases containing non-AGCT at the 5′
end before shearing, trimming the ends of low-quality
reads (sequencing quality value less than Q20),
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removing reads with N content up to 10%, and
discarding small segments (length < 25 bp) after remov-
ing adapter sequences and mass pruning [22]. Using
statistical methods, the quality fluctuation of reads un-
der all sequencing cycles is statistically analyzed, which

is indicative of the quality of sequencing experimental
data from a macro perspective. The high-quality se-
quencing data obtained after quality control is then
compared with the designated reference genome for
subsequent analysis [23].
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Fig. 3. GO functional annotation of the DEGs. a Plot of GO functional annotation of upregulated and downregulated genes. The x-axis represents the number
of genes (upregulated/downregulated), and the y-axis represents the GO_terms. The red column represents the upregulated genes, and blue column represents
the downregulated genes. b Histogram of GO functional enrichment of DEGs. The x-axis represents the GO_terms, and the y-axis represents the enrichment
ratio. c GO functional enrichment scatter plot of DEGs. The x-axis represents the rich_factor, and the y-axis represents the GO classification description. d
KEGG functional enrichment analysis. The x-axis represents the enrich factor, and the y-axis represents the pathway terms. The larger the graph, the higher
was the number of DEGs; the darker the color, the more significant was the enrichment of the pathway. The color gradient on the right represents the p value.
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Macrophages and monocytes are phagocytes,
which participate in non-specific (innate immunity)
and specific defense responses (cellular immunity)
in vertebrates. Their main function is to phagocytize
(phagocytosis and digestion) cell fragments and path-
ogens in the form of fixed or free cells, and activate
lymphocytes or other immune cells in response to
pathogens. Macrophages are immune cells with di-
verse functions. They play important roles in phago-
cytosis, cellular immunity, and molecular immunolo-
gy [24–26]. In the era of single-cell biology, the
defense system is quite simple. Macrophages engulf
and degrade foreign bodies, which are then excreted
from the body as waste products. When the body is
subjected to threat by viruses and heterologous pro-
teins, the immune system is impaired. Hence, when
organisms evolve to vertebrates, they form a new
defense system [27–29].

The survival and replication of pathogenic Bru-
cella in phagocytes is an important aspect for the
study of brucellosis. Previously, in a model of
phagocytes with B. ovis infection, the proliferation
and survival of phagocytes was shown to depend
on virB2 and vjbR [30]. Besides, another study
showed that a mutant B. ovis strain lacking a specific
ABC transporter was attenuated in mice and could
not survive in macrophages, mainly due to the de-
crease in the abundance of virB8 and virB11 protein
in type IV secretion system [31]. Furthermore, the
B. ovis ΔabcAB strain was unable to survive in peri-
toneal macrophages, extracellular macrophages, or
RAW264.7 macrophages, suggesting that ABC trans-
porters are required for the complete virulence and
survival of B. ovis [32]. Brucella establishes an intra-
cellular replication niche in macrophages, and the im-
mune system of macrophages uses its inherent defense
mechanism to eliminate the invading bacteria. Through
transcriptome analysis, it has been shown that macro-
phages infected with B. melitensis, B. neotomae, and
B. ovis elicit a natural immune response, increase the
transcription level of chemokines and defense response
genes, and decrease GTPase signal transduction and
cytoskeleton function, which subsequently mediate
the transport of Brucella vesicles [33]. B. ovis infection
has been shown to cause brucellosis in sheep, which is
characterized by infertility in sheep, abortion in ewes,
and increased perinatal mortality in lambs. Moreover,
B. ovis infection was also shown to result in upregula-
tion of phagocytosis-related genes and downregulation
of protective host defense mechanism, which may help
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to explain the molecular mechanism underlying B. ovis
chronic infection [34]. However, the mechanism of
B. ovis infection and its persistence remain clear. The
vast majority of studies focus on host changes after
Brucella infection, and rarely on the survival of Bru-
cella in the host immune system.

Here, with an aim to reveal the survival and
replication mechanism of B. ovis in the macrophage
immune system, RAW264.7 macrophage cells were
infected with B. ovis. The total RNA of intracellular
and wild-type B. ovis were then extracted and used
for prokaryotic transcriptome sequencing. GO func-
tional enrichment analysis of DEGs showed they
were mainly involved in 30 GO functions. Among
them, protein-containing complex (GO:0032991),

inorganic molecular entity transport (GO:0015318),
anion transmembrane transport (GO:0008509), car-
boxylic acid transmembrane (GO:0046943), and am-
ide biosynthetic process (GO:0043604) were identi-
fied as the top 5 GO functions. KEGG pathway
enrichment analysis showed that the DEGs were sig-
nificantly enriched in quorum sensing (ko02024),
beta-alanine metabolism (ko00410), MAPK signaling
pathway (ko04016), and HIF-1 signaling pathway
(ko04066).

A previous study reported that in Brucella-in-
duced acute inflammation, the content of serum iron
is reduced and the transcription of fibroblast growth
factor 23 is increased by activating the HIF-1α sig-
naling pathway [35]. Dextran sulfate sodium-induced
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stimulation of MAPK signaling and phosphorylation
of ERK1/2 and p38α has been shown to enhance
adhesion and phagocytosis of Brucella in macro-
phages, which may be closely related to its ability
to impair the innate immune system of macrophages,
thus leading to Brucella survival and chronic infec-
tion [36]. The survival of Brucella in human mono-
cytes has been reported to be regulated by the
MAPK signaling pathway, which activates inflamma-
tory responses through TLR2 [37]. Beta-alanine is a
kind of functional amino acid, which plays a key
role in regulating metabolism. As an intermediate
product of coenzyme A and pantothenic acid, beta-
alanine affects population changes of Brucella [38–
41]. Quorum sensing was speculated to play an im-
portant role in controlling the virulence of Brucella
[42]. VjbR is a transcriptional regulator of the viru-
lence gene of Brucella, and the vjbR mutant has
been shown to downregulate the expression of virB
operon and flagellum genes in macrophages [43].
When the microbial population reaches a certain

density level, the concentration of signaling mole-
cules reaches a threshold value. By signal transduc-
tion through related proteins, including receptor pro-
tein kinases, signals are transmitted across the cells,
thus affecting the expression of specific genes and
regulating the physiological characteristics of micro-
bial populations [44–46]. Bacteria use quorum sens-
ing for cell-to-cell communication and coordination
of activities in the complex environment, which en-
ables the entire bacterial population to survive [47–
49]. As a major regulatory system of Brucella, quo-
rum sensing may play an important role in the spatial
and sequential adaptation of Brucella to host envi-
ronment [50].

Compared with conventional culture of B. ovis, in this
study, for the first time, we identified the DEGs in the
immune system of B. ovis-challenged macrophages, and
analyzed the biological functions and signaling pathways
associated with them, which laid the foundation for eluci-
dating the molecular mechanism of intracellular parasitism
and persistent infection of B. ovis.
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Fig. 4. iPath analysis of DEGs. Information on (a) metabolic pathways, (b) secondary metabolite biosynthesis, (c) multiple antibiotic synthesis, and (d)
microbial metabolic pathways in multiple environments of DEGs was mapped by iPath3.0. The red line represents the pathway affected by the upregulated
genes, blue line represents the pathway affected by the downregulated genes, and green line represents the pathway affected by the upregulated and dow-
nregulated genes at the same time.
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Fig. 5. qRT-PCR validation of the top 10 upregulated and downregulated DEGs. *p < 0.05, **p < 0.01.
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