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Pioglitazone Attenuates Experimental
Colitis-Associated Hyperalgesia through Improving
the Intestinal Barrier Dysfunction
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Abstract—Impaired intestinal mucosal integrity during colitis involves the peroxisome
proliferator-activated receptor-γ (PPARγ), an important anti-inflammatory factor in
intestinal mucosa homoeostasis, which is a potential target in colitis. Recurrent chronic
pain is a vital pathogenetic feature of colitis. Nevertheless, potential functions of
PPARγ in the colitis-associated hyperalgesia remain unclear. This study aimed to
investigate biological roles of pioglitazone in relieving colitis-associated pain hyper-
sensitivity by a PPARγ tight junction protein-dependent mechanism during the course
of dextran sodium sulfate (DSS)-induced intestinal inflammation. The DSS-induced
colitis model was generated in C57BL/6 mice. Changes in colitis induced the injury of
intestinal mucosal barrier and hyperalgesia after a 6-day treatment of pioglitazone
(25 mg/kg, IP injection) were assessed through immunofluorescent, hematoxylin and
eosin (H&E) staining, western blot analysis, and determination of paw withdrawal
mechanical threshold. A significant reduction of paw withdrawal mechanical threshold
occurred after DSS treatment. Follow-up data showed that systematic administration of
PPARγ agonist pioglitazone ameliorated the DSS-induced colitis and the development
of colitis-associated hyperalgesia by repairing the intestinal mucosal barrier. The tight
junction proteins ZO-1 and Claudin-5 were upregulated by PPARγ signaling, which in
turn promoted the improvement of intestinal barrier function. Moreover, pioglitazone
inhibited phosphorylation of ERK and NF-κB in the colon and decreased the levels of
inflammatory cytokines in both colon spine tissues. Furthermore, systemically pioglit-
azone treatment inhibited the activation of microglia and astrocytes, as well as DSS-
induced phosphorylation of NR2B subunit in spinal cord, which was correspondingly
consistent with the pain behavior. Pioglitazone ameliorates DSS-induced colitis and
attenuates colitis-associated mechanical hyperalgesia, with improving integrity of the
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intestinal mucosal barrier by directly upregulating tight junction proteins. The PPARγ-
tight junction protein signaling might be a potential therapeutic target for the treatment
of colitis-associated chronic pain.

KEYWORDS: pioglitazone; colitis; chronic pain; hyperalgesia; intestinal barrier.

INTRODUCTION

Inflammatory bowel diseases (IBD), including
Crohn’s disease and ulcerative colitis, are characterized
by diarrhea, weight loss, and chronic pain. IBD result in
debilitating illness [1], among which chronic pain [2]
emerges from the hyperresponsiveness of neuronal, im-
mune, and endocrine signaling pathways within the intes-
tines, the peripheral [3], and the central nervous system [4].
However, the mechanisms underlying IBD-associated
chronic pain are largely unresolved and treatment options
are limited. For the nervous system, the mechanisms in-
volved in IBD-associated chronic pain encompass neuro-
nal synaptic changes couple with increased neurotransmit-
ter release [5]. The mechanisms in the inflammatory intes-
tinal wall include interactions of immune cells, macro-
phages, smooth muscles, and enteric glias [6–9]. Upon
epithelial injury and intestinal inflammation in IBD, com-
promised intestinal barrier integrity subsequently arises,
dysregulated transportation of water and ion, exposures
of immune cells to bacterial antigens, and triggers reactive
enteric gliosis. The above pathological changes eventually
result in a profound inflammatory immune response, and in
turn, worsening the damage of intestinal mucosa [10, 11].
Tight junctions are composed by a series of transmembrane
proteins including the claudins, occludins, junctional ad-
hesion molecules with immunoglobulin-like domains, and
intracellular scaffold proteins (i.e., zonula occludens) [12].
Tight junctions are pivotal in regulating intestinal perme-
ability and maintaining intestinal barrier integrity. Emerg-
ing evidences from experimental intestinal inflammation
models have supported the idea that a strong connection
exists between tight junction protein impairment and intes-
tinal inflammation [11, 13].

Peroxisome proliferator-activated receptor gamma
(PPARγ), a number of the nuclear hormone receptor fam-
ily, exerts a crucial role in mediating inflammatory diseases
(e.g., colitis [14], liver steatosis [15], and rheumatoid ar-
thritis [16]) and inflammatory and neuropathic pain devel-
opment [17].

The colon expresses a high density of PPARγ, which
presents anti-inflammatory effects on inhibiting the activa-
tion of NF-κB and expressions of the pro-inflammatory

cytokines IL-1 and TNF-α [14, 18]. Earlier studies found
PPARγ deficiency alongside elevated activation of NF-κB
in the intestinal mucosa in UC patients, suggesting that
PPARγ is a potential therapeutic target for UC [14, 19]. As
a nuclear receptor, PPARγ-induced sustained changes in
gene expressions are widely believed to be the key mech-
anism of pain reduction [20–22]. Repeated administration
of PPARγ agonists reduces neuropathic pain-like behavior
and associated molecular changes in the spinal cord dorsal
horn [23]. However, it is still unclear how distinct intestinal
inflammation contributes to the chronic pain development.
Here, we characterized the anti-inflammatory and analge-
sia effects of systemic PPARγ activation by pioglitazone
administration in dextran sodium sulfate (DSS)-induced
acute colitis mice [24].

METHODS

Animals

Eight-week-old male C57BL/6 mice (Beijing Vital
River Laboratory Animal Technology Co., Ltd.) weighing
20 to 25 g at the time of behavioral procedures were housed
in a standard environment with a 12-h light/dark cycle, (20
± 2 °C) temperature and humidity-controlled room with 4
mice per cage. Mice were given free accesses to food and
water provided ad libitum. All efforts were made to mini-
mize animal suffering, reduce the number of animals used,
and use alternatives to in vivo techniques. All animal
procedures were performed in accordance with the Animal
Care Committee of the Institutional Animal Care and Use
Committee of the Medical School of Nanjing University.

Mouse Model and Drug Treatments

For acute colitis, mice (DSS) were given one cycle of
2.5% DSS [25] (MW 36,000–50,000 Da; MP Biomedi-
cals) for 7 days. Twenty mice (CON) and 31 mice (DSS)
were used in this study. To target PPARγ in colitis, mice
were IP injected with 25 mg/kg body weight [26] of the
PPARγ agonist pioglitazone (HY-14601,MCEChemicals)
dissolved in PBS containing 20% DMSO (Sigma Aldrich)
during the period of DSS-induced colitis. Control mice
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were IP injected with an equal volume of PBS containing
20% DMSO. Seven mice (CON + Veh), 21 mice (DSS +
Veh), and 17 mice (DSS + Pio) were used in the study.
During the course of the experiment, mice were monitored
for body weight, diarrhea, and macroscopic bleeding.

Paw Withdrawal Mechanical Threshold

Paw withdrawal mechanical threshold (PWMT)
determined at day 1 was recorded as the baseline. In
addition, PWMT was performed every day during DSS
treatment or pioglitazone injection, and every other day
till day 21. All tests were performed during the light
phase. Before determination, mice were allowed to
acclimatize for at least 30 min. PWMT was performed
in a quiet test room by the same investigator. Von Frey
filaments (Stoelting, Wood Dale, IL, USA) were used
to assess the mechanical allodynia as previously report-
ed [27]. Briefly, the mice were placed into individual
transparent compartments onto a metal mesh floor.
Different von Frey filaments (0.16, 0.4, 0.6, 1.0, 1.4,
and 2.0 g) were applied to the hind paw. The filaments
were pressed vertically against the plantar surface with
sufficient force to cause a slight bending against the
paw for 6 to 8 s. An interval for at least 10 min was
necessary between the two stimulations. Brisk with-
drawal of the paw or paw flinching was regarded as a
positive response. Each mouse was tested five times
per stimulus strength. The lowest von Frey filament
stimulus strength that produced at least 3 positive
responses was recorded as the reasonable paw with-
drawal mechanical threshold.

Western Blot

Total tissue or cell lysates were prepared with a de-
tergent lysis buffer. Western blot was performed using the
indicated primary antibodies: NF-κB p65 (1:1000, Cell
Signaling Technology, no. 8242, MA, USA), phospho-
p65 (Ser536) (1:1000, Cell Signaling Technology, no.
3031, MA, USA), ERK (1:1000, Cell Signaling Technol-
ogy, no. 9102, MA, USA), phospho-ERK (p44/p42)
(Thr202/Tyr204) (1:1000, Cell Signaling Technology, no.
9102, MA, USA), GFAP (1:1000, Cell Signaling Technol-
ogy, no. 3670, MA, USA), MMP9 (1:1000, Abcam, no.
38898, Cambridge, UK), NR2B (1:1000, Abcam, no.
65783, Cambridge, UK), phospho-NR2B (1:1000, Abcam,
no. 3856, Cambridge, UK), IL-6 (1:1000, Abcam, no.
208113, Cambridge, UK), TNF-α (1:500, Santa Cruz Bio-
technology, sc52746, Santa Cruz, CA), Iba1 (1:500, Santa
Cruz Biotechnology, sc32725, Santa Cruz, CA), ZO-1

(1:1000, Thermo Fisher, no. 617300, US), Claudin-5
(1:1000, Thermo Fisher, no. 35-2500, US), PPARγ
(1:1000, Proteintech, 16643-1-AP, US), anti-GAPDH
(1:1000, Boster Biotechnology, BM1985, Wuhan, China),
and α-tubulin (1:1000, Boster Biotechnology, BM3885,
Wuhan, China). Each blot was repeated three times.

Immunofluorescence

Immunofluorescence was performed as previously
reported. Briefly, the lumbar segments of the spinal cords
were extracted and post fixed in 4% paraformaldehyde,
followed by dehydration in 30% sucrose at 4 °C. Serial
frozen sections were cut in a freezing microtome into 20-
μm thick slides. The following indicated primary antibod-
ies were used: Iba-1 (1:500, Wako, 016-26721, Japan) and
GFAP (1:100, Cell Signaling Technology, no. 3670, MA,
USA). The secondary antibodies used in this study includ-
ed the following: goat anti-rabbit (1:3000, Alexa 488-con-
jugated, ThermoFisher, A32723, Waltham, MA) and goat
anti-mouse (1:3000, Alexa 594-conjugated, A32740,
ThermoFisher, Waltham, MA). DAPI (Abcam, Cam-
bridge, no. 104139, UK) staining was used to determine
the cell nuclei.

Histopathological Analysis

Ten percent buffered neutral formalin-embedded co-
lon sections (5 μm) were stained with hematoxylin and
eosin (H&E) and independently analyzed by pathologists
in a blinded way.

Statistical Analysis

Data were expressed as the mean ± SE. SPSS 22.0
(SPSS Inc., Chicago, IL) was used to conduct all the
statistical analyses. Mice were assigned to different treat-
ment groups in a randomized manner. Multiple compari-
sons were carried out to determine the overall differences
of pain behaviors at each time point. Repeated measures
analysis of variance (ANOVA) was performed to assess the
changes of pain behaviors over time. One-way ANOVA
was used to determine differences in the results of colon
length and immunofluorescence among groups.

In both cases, when significant main effects were
observed, Bonferroni post hoc tests were conducted to
determine the source(s) of these differences. P < 0.05 was
considered statistically significant.
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RESULTS

Downregulated PPARγ, Activated P65, and ERK
Accompanied Release of Inflammatory Cytokines in
Colonic Tissues of DSS-Induced Colitis Mice

To explore regulatory effect of PPARγ on the colon
with intestinal inflammation, C57BL/6 mice were treated
by 2.5% DSS for 7 days. DSS-treated mice showed more
pronounced weight loss than that of control mice (Fig. 1a).
Acutely DSS-treated mice also showed a significant
change in colon length (Fig. 1b, c). Colonic levels of the
inflammatory cytokines TNF-α and IL-6 as markers of
disease activity were measured by using western blot,
which were significantly upregulated in the acute phase
of colitis (day 7). Then, the expressions of TNF-α and IL-6
continued to increase in early recovery phase (day 14) and
decreased later on day 21. A previous study showed that
MMP9 was highly expressed in UC patients compared
with control tissues [28]. Thus, we detected the expression
of MMP9 in colonic tissues. MMP9 was notably upregu-
lated after DSS treatment on day 7 and day 14. Western
blot analysis also showed that DSS treatment notably re-
duced PPARγ expression in day 7 (Fig. 1d). Consistent
with the levels of TNF-α and IL-6, further analysis showed
that P65 and ERK were strongly activated in DSS-treated

mice on day 7 and day 14 (Fig. 1e). Studies indicated that
PPARγ has been identified to activate the NF-κB pathway
and MAPK pathway, thus decreasing the levels of pro-
inflammatory cytokines [29, 30]. These results suggested
that PPARγ in the colon participates in the progression of
acute intestinal inflammation.

Tight Junction Protein Impairment Alone with
Activation of P65 and ERK

Histological changes on day 7 of acute DSS colitis
were analyzed by H&E staining of paraffin-embedded
colonic cross-sections. The results showed strong
transmural inflammation with loss of crypt structure, se-
vere epithelial erosions, and more neutrophilic infiltrates in
DSS-treated mice. H&E analysis indicated a breakdown of
epithelial barrier function after DSS treatment (Fig. 2a). It
is reported that impairment of epithelial tight junction
proteins is responsible for decreased barrier integrity lead-
ing to colitis [31]. ZO-1 and claudin-5 are important epi-
thelial tight junction proteins [32]. Western blot analysis
showed that the expressions of ZO-1 and claudin-5 were
significantly downregulated in DSS-induced colitis mice
compared with the control group on day 7, day 14, and day
21 (Fig. 2b), suggesting the dysfunction of epithelial
barrier.

Fig. 1. PPARγ expression is impaired during colitis with activation of ERK and P65. a Percentage of weight change during 2.5% DSS treatment and
recovery. b Image of colon in 2.5% DSS-treated mice and control mice on day 7. c Quantification of colon length. d Increased IL-6, TNF-α, and MMP9
expression in inflamed colonic tissue of 2.5% DSS-treated mice on day 7 and day 14. Decreasing PPARγ expression on day 7. e Increased ERK and P65
activation in inflamed colonic tissue after DSS treatment. Immunoblot analysis is performed in tissue lysates with indicated antibodies. Each lane represents
one mouse. *p < .05, **p < 0.01, ***p < 0.001 compared with CON and DSS group mice. Error bars represent ± SE.
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Acute Colonic Inflammation Leads to Persistent Pain,
Increased Inflammatory Cytokines, and
Phosphorylation of NR2B in the Spinal Cord

Chronic abdominal pain frequently happens in pa-
tients with inflammatory bowel disease [33]. Persistent
abdominal pain also occurs in mice with experimental
acute intestinal inflammation [34]. However, whether
acute intestinal inflammation would result in hyperalgesia
remains unclear. Thus, PWMTwas performed to evaluate
mechanical allodynia and hyperalgesia. After DSS treat-
ment, the withdrawal threshold of both hind paws to me-
chanical stimuli was lower in experimental mice compared
with control groups. Withdrawal thresholds in DSS-
induced colitis mice significantly decreased between day
6 and day 21 (Fig. 3a, b), indicating the persistent discom-
fort even though body weight gradually recovered from
day 10. These data indicated that DSS-induced acute colitis
would lead to inflammation-related hyperalgesia.

DSS treatment resulted in evident activation of mi-
croglia and astrocytes with increased levels of inflamma-
tory cytokines TNF-α and IL-6 in the lumbar spinal cord
(Fig. 3b, c). In addition, phosphorylation and activation of
NR2B in the spine are vital in the maintenance of central
sensitization and mechanical allodynia [35, 36]. Results of
western blot showed that DSS treatment notably increased
phosphorylation of NR2B in the spinal cord from day 7 to
day 21, which was consistent with the changes of PWMT
(Fig. 3c).

Pioglitazone Alleviates DSS-Induced Immune Re-
sponse Through Downregulation of P65 and ERK

PPARγ, a member of the nuclear hormone receptor
family, can be activated by anti-diabetic thiazolidinedione
drugs, such as pioglitazone [37]. The treatment with pio-
glitazone or vehicle was introduced for 7 days during DSS
administration. Mice with DSS-induced colitis receiving
vehicle presented more pronounced weight loss, shorter

length of colons, and more severe histologic alterations
and macroscopic damages compared with those of con-
trols. In the preventive group, pioglitazone successfully
protected against weight loss and colonic shortening (Fig.
4b, c). Obviously, pioglitazone rescued DSS-induced re-
duction of PPARγ in colon tissues (Fig. 4d). A previous
research has shown that PPARγ could regulate the NF-κB
pathway and MAPK signaling activation, thus decreasing
the levels of pro-inflammatory cytokines [38].Western blot
analysis showed that DSS-induced activation of P65 and
ERK was significantly inhibited in pioglitazone preventive
group, along with decreased expressions of IL-6, TNF-α,
and MMP9 (Fig. 4d, e).

Enhanced Tight Junction Expression and Recovered
Intestinal Barrier Function Induced by Pioglitazone

Pathological injury in mouse colorectum was inde-
pendently examined by experienced pathologists. H&E
staining (magnification 100×) of colorectum tissues from
3 mice in each group was conducted on day 7 (Fig. 5a).
Within intestinal samples frommice in each group, expres-
sions of claudin-5 and ZO-1 were significantly downregu-
lated in the intestines of DSS-treated mice, whereas the
expression levels of them were dramatically elevated in the
intestines of the pioglitazone preventive group (Fig. 5b).

Pioglitazone Reduces Mechanical Hypersensitivity in
Colitis Mice

Pioglitazone-treated mice showed decreased mechan-
ically hypersensitivity and gradual recovery of inflamma-
tion during 2 weeks post-DSS discontinuation (Fig. 6a).
Less activated microglia and astrocytes in spinal dorsal
cord could also be observed in pioglitazone-treated mice
compared with DSS-treated mice, which were consistent
with protein level changes of Iba1 and GFAP in the spinal
dorsal cord (Fig. 6b, c). Western blot analysis of spinal
dorsal cord also showed that pioglitazone treatment

Fig. 2. Gut epithelial barrier dysfunction accompanied with decreased the expression of ZO-1 and claudin-5 in colitis. a H&E staining of a section obtained
from the distal colons of CON and DSS-treated mice on day 7. b Decreased expression of ZO-1 and claudin-5 after DSS treatment. Each lane represents one
mouse.
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remarkably decreased the levels of TNF-α and IL-6 (Fig.
6c). Further analysis showed that phosphorylation of
NR2B was notably suppressed after pioglitazone interven-
tion, which was in accordance with the findings of pain-
related behaviors (Fig. 6d).

DISCUSSION

This study demonstrated that systematic administra-
tion of pioglitazone, an agonist of PPARγ, could alleviate
DSS-induced colitis, attenuate colitis-associated mechani-
cal hyperalgesia, and improve integrity of the intestinal
mucosal barrier by directly upregulating tight junction
proteins.

Increasing effects have been made on clarifying the
possible role of gut-brain-axis in the complex regulation of
pain [39, 40]. However, it is still necessary to explore more
crosstalks between the intestinal tract and the central ner-
vous system or enteric nervous system in pain regulation.
The etiology of IBD-associated chronic pain remains enig-
matic. Visceral hypersensitivity and systematic mechanical

hyperalgesia have been well explored in the researches of
IBD-associated pain [41]. Hypersensitivity is driven by
peripheral and central mechanisms [42], involving the
participation of the intestinal wall, spinal cord, and brain
centers [43]. Nonetheless, contemporary histopathology
studies in IBD patients, as well as the established murine
models of intestinal inflammation, implicate a causative
combination of progressive destruction of the intestinal
mucosal barrier and altered mucosal immune responses
[44].

Previous studies have indicated a potential linkage
between genetic mutations or deletions in tight junction-
associated proteins and development of IBD [45]. Further
studies also have proven that stabilizing junctional com-
plex in intestinal barrier could attenuate intestinal inflam-
mation [46]. In this paper, tight junction proteins claudin-5
and ZO-1 were notably downregulated in mice after DSS
treatment, and further H&E identically supported our find-
ings, indicating the impairment of intestinal mucosal bar-
rier in DSS-induced colitis mice. Interestingly, decreased
protein level of PPARγ was corresponding to the severity
of intestinal inflammation. Based on the differences in

Fig. 3. Activation of astrocyte and microglia as well as NR2B signaling is required for colitis-reduced mechanical threshold. a Paw withdrawal mechanical
threshold in response to von Frey filaments in CON and DSS-treated mice from day 1 to day 21. b Activation of spinal microglia and astrocyte.
Immunofluorescent staining and corresponding quantification of staining intensity of Iba-1 (a microglia marker) and GFAP (an astrocyte marker) in the
spinal cords performing in CON and DSS (day 7) group mice. c Increased expression of IL-6, TNF-α, and p-NR2B after DSS treatment. Spinal cord lysates
of CON andDSS (day 7, day 14, and day 21) groupmice. Each lane represents onemouse. All data are presented as the mean ± SE. *p < 0.05, **p < 0.01, and
***p < 0.001 compared with CON and DSS group mice.
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mechanical thresholds observed between controls and ex-
perimental mice, potential correlation between intestinal

inflammation and changes in mechanical hypersensitivity
was investigated. Because the PPARγ system is a relevant

Fig. 4. Pioglitazone promoted the recovery from intestinal inflammation. a Percentage of weight change in indicated groups. Daily IP injection of PIO during
DSS administration. b Image of colons collected from DSS + Veh and DSS + PIO group mice (day 7). c Quantification of colon lengths in the different
groups. d Colonic lysates of CON + Veh, DSS + Veh, and DSS + PIO (day 7, day 14, and day 21) group mice were analyzed by immunoblotting with IL-6,
TNF-α, MMP9, and PPARγ antibodies, respectively. Each lane represents one mouse. d Colonic lysates of CON + Veh, DSS + Veh, and DSS + PIO (day 7,
day 14, and day 21) group mice were analyzed by immunoblotting with p-ERK, ERK, p-P65, and P65 antibodies, respectively. Each lane represents one
mouse. All data are presented as the mean ± SE. *p < 0.05, **p < 0.01, and ***p < 0.001 compared with CON + Veh and DSS + PIO group mice. #p < 0.05,
##p < 0.01, ###p < 0.001 compared with CON + Veh and DSS + Veh group mice. +p < 0.05, ++p < 0.01, +++p < 0.001 compared with DSS + Veh and DSS +
PIO group mice.

Fig. 5. Pioglitazone-alleviated tissue injury was histologically evident by increasing the expression of ZO-1 and claudin-5. a H&E staining of a section
obtained from the distal colons of CON +Veh, DSS + Veh, and DSS + PIOmice on day 7. bColonic lysates of CON +Veh, DSS + Veh, and DSS + PIO (day
7, day 14, and day 21) group mice were analyzed by immunoblotting with ZO-1 and claudin5 antibodies, respectively. Each lane represents one mouse.
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target for the treatment of inflammatory diseases and pain,
molecular mechanisms underlying the healing of intestinal
mucosal injury and analgesic effect of pioglitazone in DSS-
induced colitis mice were clarified here.

In our analysis, the PPARγ antagonist pioglitazone
was administered once a day in mice from day 1 to day 7
alone or in combination with DSS. Our data suggested that
the anti-inflammatory effects of pioglitazone were closely
linked to its regulatory ability on tight junction protein
expressions. The prevention of intestinal mucosal barrier
injury observed in pioglitazone-treated mice with colitis
was also associated with increased expressions of tight
junction proteins and reduced protein levels of TNF-α,
IL-6, and MMP9, which are soluble mediators controlled

by the ERK-NF-κB [38]. However, the reduction of these
inflammatory mediators in colon tissue could be simply a
consequence of a decreased infiltration of neutrophils,
which were beneficial from recovered intestinal mucosal
barrier after pioglitazone treatment. Our data also demon-
strated a marked inhibition of the p65 NF-κB subunit and
ERK in the colons of pioglitazone-treatedmice with colitis.
It is possible that impaired intestinal mucosal barrier
allowed the passage of inflammatory mediators in DSS-
treated mice, contributing to the systemically immune-
mediated activation. In the current study, relative levels of
TNF-α and IL-6 in mouse spinal cord after DSS treatment
were significantly enhanced. It is well known that multiple
inflammatory mediators could activate microglia and

Fig. 6. The antihyperalgesic effect of pioglitazone is mediated by inhibiting colitis-induced spinal inflammation. a Paw withdrawal mechanical threshold in
response to von Frey filaments in indicated groups (CON + Veh, DSS + Veh, and DSS + PIO) from day 1 to day 21. b Immunofluorescent staining and
corresponding quantification of staining intensity of Iba-1 (a microglia marker) and GFAP (an astrocyte marker) in the spinal cords in indicated groups (CON
+ Veh, DSS + Veh, and DSS + PIO) on day 7. c Spinal cord lysates of CON + Veh, DSS + Veh, and DSS + PIO (day 7, day 14, and day 21) group mice were
analyzed by immunoblotting with IL-6, TNF-α, GFAP, and Iba1 antibodies. d Immunoblotting was performed to analyze the expressions of p-NR2B and
NR2B in spinal cord of CON +Veh, DSS + Veh, and DSS + PIO (day 7, day 14, and day 21) groupmice. All data are presented as the mean ± SE. *p < 0.05,
**p < 0.01, and ***p < 0.001 comparedwith CON+Veh andDSS + PIO groupmice. #p < 0.05, ##p < 0.01, ###p < 0.001 comparedwith CON+Veh andDSS
+ Veh group mice. +p < 0.05, ++p < 0.01, +++p < 0.001 compared with DSS + Veh and DSS + PIO group mice.
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astrocytes [47], which maintain central sensitization and
mechanical hyperalgesia [48]. In addition, activation of
NMDA receptor in the spinal cord dorsal horn is one of
key events, driving central sensitization and pain hyper-
sensitivity [49]. Our results showed a significant colitis-
induced activation of NMDA receptor-NR2B subunit,
which is of importance role in regulating spinal synaptic
plasticity in persistent pain conditions. In our study, sys-
temically pioglitazone treatment inhibited the activation of
microglia and astrocytes, and DSS-induced phosphoryla-
tion of NR2B subunit in the spinal cord, thus contributing
to pain relief.

LIMITATIONS

In the present study, there are several limitations.
Firstly, our results are not the first to describe the anti-
inflammatory effect of pioglitazone on colitis. Secondly,
although it has been reported that intrathecal or
systematical of pioglitazone attenuates hyperalgesia in a
neuropathic pain model [20, 50]. However, we only ob-
serve the effects of systematical administration of pioglit-
azone on colitis and related pain hypersensitivity. Thirdly,
in fact, there are much more possible mechanisms of
colitis-associated chronic pain. Further evidences indicated
that colitis-associated pain can result from sympathetic
nerves to the spinal cord via the dorsal roots [51]. Except
for intestinal mucosa injury, the commensal microbiota-
gut-brain axis has been found to be both ecologically and
functionally perturbed in colitis and related pain [52]. The
pain processing of colitis patients with abdominal pain is
tightly associated with gut-derived neurochemical metab-
olites [53]. A further study on the specific mechanism of
brain-gut-network in colitis-associated pain has been con-
ducted in our laboratory.

CONCLUSIONS

In summary, we demonstrated that systemic adminis-
tration of pioglitazone markedly alleviated pain hypersen-
sitivity by decreasing inflammatory mediators coming into
the spinal cord from the injured intestinal mucosa in DSS-
induced acute colitis. Pioglitazone can ameliorate colitis-
associated intestinal barrier function by upregulating tight
junction proteins, which may result in the reduction of
spinal levels of inflammatory mediators. We proposed that
the PPARγ tight junction protein signaling might be a

potential therapeutic target for the treatment of colitis-
associated chronic pain.
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