Skip to main content

Advertisement

Log in

Anti-septic Effects of Fisetin In Vitro and In Vivo

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Sepsis is a state of disrupted inflammatory homeostasis that is initiated by infection. High mobility group box 1 (HMGB1) protein acting as a late mediator of severe vascular inflammatory conditions, such as sepsis and endothelial cell protein C receptor (EPCR), is involved in vascular inflammation. Fisetin, an active compound from the family Fabaceae, was reported to have antiviral, neuroprotective, and anti-inflammatory activities. Here, we determined the anti-septic effects of fisetin on HMGB1-mediated inflammatory responses and on the shedding of EPCR in vitro and in vivo, for the first time. First, we monitored the effects of post-treatment fisetin on lipopolysaccharide (LPS) and cecal ligation and puncture (CLP)-mediated release of HMGB1 and HMGB1-mediated regulation of pro-inflammatory responses in human umbilical vein endothelial cells (HUVECs) and septic mice. Post-treatment fisetin was found to suppress LPS-mediated release of HMGB1 and HMGB1-mediated cytoskeletal rearrangements. Fisetin also inhibited HMGB1-mediated hyperpermeability and leukocyte migration in septic mice. Fisetin induced potent inhibition of phorbol-12-myristate 13-acetate (PMA) and CLP-induced EPCR. Fisetin also inhibited the expression and activity of tumor necrosis factor-α converting enzyme, induced by PMA in endothelial cells. In addition, fisetin inhibited the production of tumor necrosis factor-α and the activation of AKT, nuclear factor-κB, and extracellular regulated kinases 1/2 by HMGB1 in HUVECs. Fisetin also down-regulated CLP-induced release of HMGB1, production of interleukin 1β, and reduced septic mortality. Collectively, these results suggest that fisetin may be a candidate therapeutic agent for the treatment of vascular inflammatory diseases via inhibition of the HMGB1 signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Reference

  1. Lotze, M.T., and K.J. Tracey. 2005. High-mobility group box 1 protein (HMGB1): Nuclear weapon in the immune arsenal. Nature Reviews Immunology 5: 331–342.

    Article  PubMed  CAS  Google Scholar 

  2. Degryse, B., T. Bonaldi, P. Scaffidi, et al. 2001. The high mobility group (HMG) boxes of the nuclear protein HMG1 induce chemotaxis and cytoskeleton reorganization in rat smooth muscle cells. Journal of Cell Biology 152: 1197–1206.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Ito, I., J. Fukazawa, and M. Yoshida. 2007. Post-translational methylation of high mobility group box 1 (HMGB1) causes its cytoplasmic localization in neutrophils. Journal of Biological Chemistry 282: 16336–16344.

    Article  PubMed  CAS  Google Scholar 

  4. Bae, J.S. 2012. Role of high mobility group box 1 in inflammatory disease: Focus on sepsis. Archives of Pharmacal Research 35: 1511–1523.

    Article  PubMed  CAS  Google Scholar 

  5. Andersson, U., and K.J. Tracey. 2011. HMGB1 is a therapeutic target for sterile inflammation and infection. Annual Review of Immunology 29: 139–162.

    Article  PubMed  CAS  Google Scholar 

  6. Hori, O., J. Brett, T. Slattery, et al. 1995. The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. Journal of Biological Chemistry 270: 25752–25761.

    Article  PubMed  CAS  Google Scholar 

  7. Park, J.S., D. Svetkauskaite, Q. He, et al. 2004. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. Journal of Biological Chemistry 279: 7370–7377.

    Article  PubMed  CAS  Google Scholar 

  8. Bae, J.S., and A.R. Rezaie. 2011. Activated protein C inhibits high mobility group box 1 signaling in endothelial cells. Blood 118: 3952–3959.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Yang, H., M. Ochani, J. Li, et al. 2004. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proceedings of the National Academy of Sciences of the United States of America 101: 296–301.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Mosnier, L.O., B.V. Zlokovic, and J.H. Griffin. 2007. The cytoprotective protein C pathway. Blood 109: 3161–3172.

    Article  PubMed  CAS  Google Scholar 

  11. Xu, J., D. Qu, N.L. Esmon, and C.T. Esmon. 2000. Metalloproteolytic release of endothelial cell protein C receptor. Journal of Biological Chemistry 275: 6038–6044.

    Article  PubMed  CAS  Google Scholar 

  12. Kurosawa, S., D.J. Stearns-Kurosawa, C.W. Carson, A. D'Angelo, P. Della Valle, and C.T. Esmon. 1998. Plasma levels of endothelial cell protein C receptor are elevated in patients with sepsis and systemic lupus erythematosus: lack of correlation with thrombomodulin suggests involvement of different pathological processes. Blood 91: 725–727.

    PubMed  CAS  Google Scholar 

  13. Park, H.J., B.T. Jeon, H.C. Kim, et al. 2012. Aged red garlic extract reduces lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophages and acute pulmonary inflammation through haeme oxygenase-1 induction. Acta Physiologica (Oxford, England) 205: 61–70.

    Article  CAS  Google Scholar 

  14. Persson, P.B., and A.B. Persson. 2012. Age your garlic for longevity! Acta Physiologica (Oxford, England) 205: 1–2.

    Article  CAS  Google Scholar 

  15. Middleton Jr., E., and G. Drzewiecki. 1984. Flavonoid inhibition of human basophil histamine release stimulated by various agents. Biochemical Pharmacology 33: 3333–3338.

    Article  PubMed  CAS  Google Scholar 

  16. Mukaida, N. 2000. Interleukin-8: An expanding universe beyond neutrophil chemotaxis and activation. International Journal of Hematology 72: 391–398.

    PubMed  CAS  Google Scholar 

  17. Hirano, T., S. Higa, J. Arimitsu, et al. 2006. Luteolin, a flavonoid, inhibits AP-1 activation by basophils. Biochemical and Biophysical Research Communications 340: 1–7.

    Article  PubMed  CAS  Google Scholar 

  18. Bakay, M., I. Mucsi, I. Beladi, and M. Gabor. 1968. Effect of flavonoids and related substances. II. Antiviral effect of quercetin, dihydroquercetin and dihydrofisetin. Acta Microbiologica Academiae Scientiarum Hungaricae 15: 223–227.

    PubMed  CAS  Google Scholar 

  19. Sung, B., M.K. Pandey, and B.B. Aggarwal. 2007. Fisetin, an inhibitor of cyclin-dependent kinase 6, down-regulates nuclear factor-kappaB-regulated cell proliferation, antiapoptotic and metastatic gene products through the suppression of TAK-1 and receptor-interacting protein-regulated IkappaBalpha kinase activation. Molecular Pharmacology 71: 1703–1714.

    Article  PubMed  CAS  Google Scholar 

  20. Akaishi, T., T. Morimoto, M. Shibao, et al. 2008. Structural requirements for the flavonoid fisetin in inhibiting fibril formation of amyloid beta protein. Neuroscience Letters 444: 280–285.

    Article  PubMed  CAS  Google Scholar 

  21. Bae, J.S., and A.R. Rezaie. 2008. Protease activated receptor 1 (PAR-1) activation by thrombin is protective in human pulmonary artery endothelial cells if endothelial protein C receptor is occupied by its natural ligand. Thrombosis and Haemostasis 100: 101–109.

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Lee, W., E.J. Yang, S.K. Ku, K.S. Song, and J.S. Bae. 2012. Anticoagulant activities of oleanolic acid via inhibition of tissue factor expressions. BMB Reports 45: 390–395.

    Article  PubMed  CAS  Google Scholar 

  23. Kim, T.H., and J.S. Bae. 2010. Ecklonia cava extracts inhibit lipopolysaccharide induced inflammatory responses in human endothelial cells. Food and Chemical Toxicology 48: 1682–1687.

    Article  PubMed  CAS  Google Scholar 

  24. Bae, J.S., and A.R. Rezaie. 2013. Thrombin inhibits HMGB1-mediated proinflammatory signaling responses when endothelial protein C receptor is occupied by its natural ligand. BMB Reports 46: 544–549.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Lee, W., S.K. Ku, and J.S. Bae. 2013. Emodin-6-O-beta-D-glucoside down-regulates endothelial protein C receptor shedding. Archives of Pharmacal Research 36: 1160–1165.

    Article  PubMed  CAS  Google Scholar 

  26. Ku, S.K., E.J. Yang, K.S. Song, and J.S. Bae. 2013. Rosmarinic acid down-regulates endothelial protein C receptor shedding in vitro and in vivo. Food and Chemical Toxicology 59: 311–315.

    Article  PubMed  CAS  Google Scholar 

  27. Miller, M.A., A.S. Meyer, M.T. Beste, et al. 2013. ADAM-10 and −17 regulate endometriotic cell migration via concerted ligand and receptor shedding feedback on kinase signaling. Proceedings of the National Academy of Sciences of the United States of America 110: E2074–2083.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Che, W., N. Lerner-Marmarosh, Q. Huang, et al. 2002. Insulin-like growth factor-1 enhances inflammatory responses in endothelial cells: Role of Gab1 and MEKK3 in TNF-alpha-induced c-Jun and NF-kappaB activation and adhesion molecule expression. Circulation Research 90: 1222–1230.

    Article  PubMed  CAS  Google Scholar 

  29. Kim, T.H., S.K. Ku, I.C. Lee, and J.S. Bae. 2012. Anti-inflammatory functions of purpurogallin in LPS-activated human endothelial cells. BMB Reports 45: 200–205.

    Article  PubMed  CAS  Google Scholar 

  30. Lee, W., S.K. Ku, J.A. Kim, T. Lee, and J.S. Bae. 2013. Inhibitory effects of epi-sesamin on HMGB1-induced vascular barrier disruptive responses in vitro and in vivo. Toxicology and Applied Pharmacology 267: 201–208.

    Article  PubMed  CAS  Google Scholar 

  31. Bae, J.S., W. Lee, and A.R. Rezaie. 2012. Polyphosphate elicits proinflammatory responses that are counteracted by activated protein C in both cellular and animal models. Journal of Thrombosis and Haemostasis 10(9): 1736–44.

    Article  Google Scholar 

  32. Lee, J.D., J.E. Huh, G. Jeon, et al. 2009. Flavonol-rich RVHxR from Rhus verniciflua Stokes and its major compound fisetin inhibits inflammation-related cytokines and angiogenic factor in rheumatoid arthritic fibroblast-like synovial cells and in vivo models. International Immunopharmacology 9: 268–276.

    Article  PubMed  CAS  Google Scholar 

  33. Valerio, D.A., T.M. Cunha, N.S. Arakawa, et al. 2007. Anti-inflammatory and analgesic effects of the sesquiterpene lactone budlein A in mice: Inhibition of cytokine production-dependent mechanism. European Journal of Pharmacology 562: 155–163.

    Article  PubMed  CAS  Google Scholar 

  34. Akeson, A.L., and C.W. Woods. 1993. A fluorometric assay for the quantitation of cell adherence to endothelial cells. Journal of Immunological Methods 163: 181–185.

    Article  PubMed  CAS  Google Scholar 

  35. Wang, H., H. Liao, M. Ochani, et al. 2004. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nature Medicine 10: 1216–1221.

    Article  PubMed  CAS  Google Scholar 

  36. Mullins, G.E., J. Sunden-Cullberg, A.S. Johansson, et al. 2004. Activation of human umbilical vein endothelial cells leads to relocation and release of high-mobility group box chromosomal protein 1. Scandinavian Journal of Immunology 60: 566–573.

    Article  PubMed  CAS  Google Scholar 

  37. Buras, J.A., B. Holzmann, and M. Sitkovsky. 2005. Animal models of sepsis: setting the stage. Nature Reviews Drug Discovery 4: 854–865.

    Article  PubMed  CAS  Google Scholar 

  38. Rittirsch, D., M.S. Huber-Lang, M.A. Flierl, and P.A. Ward. 2009. Immunodesign of experimental sepsis by cecal ligation and puncture. Nature Protocols 4: 31–36.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Sama, A.E., J. D'Amore, M.F. Ward, G. Chen, and H. Wang. 2004. Bench to bedside: HMGB1-a novel proinflammatory cytokine and potential therapeutic target for septic patients in the emergency department. Academic Emergency Medicine 11: 867–873.

    PubMed  Google Scholar 

  40. Berman, R.S., J.D. Frew, and W. Martin. 1993. Endotoxin-induced arterial endothelial barrier dysfunction assessed by an in vitro model. British Journal of Pharmacology 110: 1282–1284.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Goldblum, S.E., X. Ding, T.W. Brann, and J. Campbell-Washington. 1993. Bacterial lipopolysaccharide induces actin reorganization, intercellular gap formation, and endothelial barrier dysfunction in pulmonary vascular endothelial cells: Concurrent F-actin depolymerization and new actin synthesis. Journal of Cellular Physiology 157: 13–23.

    Article  PubMed  CAS  Google Scholar 

  42. Wolfson, R.K., E.T. Chiang, and J.G. Garcia. 2011. HMGB1 induces human lung endothelial cell cytoskeletal rearrangement and barrier disruption. Microvascular Research 81: 189–197.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Yang, H., H. Wang, C.J. Czura, and K.J. Tracey. 2005. The cytokine activity of HMGB1. Journal of Leukocyte Biology 78: 1–8.

    Article  PubMed  CAS  Google Scholar 

  44. Qin, Y.H., S.M. Dai, G.S. Tang, et al. 2009. HMGB1 enhances the proinflammatory activity of lipopolysaccharide by promoting the phosphorylation of MAPK p38 through receptor for advanced glycation end products. Journal of Immunology 183: 6244–6250.

    Article  CAS  Google Scholar 

  45. Sun, C., C. Liang, Y. Ren, et al. 2009. Advanced glycation end products depress function of endothelial progenitor cells via p38 and ERK 1/2 mitogen-activated protein kinase pathways. Basic Research in Cardiology 104: 42–49.

    Article  PubMed  CAS  Google Scholar 

  46. Schnittler, H.J., S.W. Schneider, H. Raifer, et al. 2001. Role of actin filaments in endothelial cell–cell adhesion and membrane stability under fluid shear stress. Pflügers Archiv 442: 675–687.

    Article  PubMed  CAS  Google Scholar 

  47. Friedl, J., M. Puhlmann, D.L. Bartlett, et al. 2002. Induction of permeability across endothelial cell monolayers by tumor necrosis factor (TNF) occurs via a tissue factor-dependent mechanism: Relationship between the procoagulant and permeability effects of TNF. Blood 100: 1334–1339.

    PubMed  CAS  Google Scholar 

  48. Petrache, I., A. Birukova, S.I. Ramirez, J.G. Garcia, and A.D. Verin. 2003. The role of the microtubules in tumor necrosis factor-alpha-induced endothelial cell permeability. American Journal of Respiratory Cell and Molecular Biology 28: 574–581.

    Article  PubMed  CAS  Google Scholar 

  49. Qu, D., Y. Wang, Y. Song, N.L. Esmon, and C.T. Esmon. 2006. The Ser219– > Gly dimorphism of the endothelial protein C receptor contributes to the higher soluble protein levels observed in individuals with the A3 haplotype. Journal of Thrombosis and Haemostasis 4: 229–235.

    Article  PubMed  CAS  Google Scholar 

  50. Qu, D., Y. Wang, N.L. Esmon, and C.T. Esmon. 2007. Regulated endothelial protein C receptor shedding is mediated by tumor necrosis factor-alpha converting enzyme/ADAM17. Journal of Thrombosis and Haemostasis 5: 395–402.

    Article  PubMed  CAS  Google Scholar 

  51. Menschikowski, M., A. Hagelgans, G. Eisenhofer, and G. Siegert. 2009. Regulation of endothelial protein C receptor shedding by cytokines is mediated through differential activation of MAP kinase signaling pathways. Experimental Cell Research 315: 2673–2682.

    Article  PubMed  CAS  Google Scholar 

  52. Andersson, U., H. Wang, K. Palmblad, et al. 2000. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. Journal of Experimental Medicine 192: 565–570.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Hansson, G.K., and P. Libby. 2006. The immune response in atherosclerosis: A double-edged sword. Nature Reviews Immunology 6: 508–519.

    Article  PubMed  CAS  Google Scholar 

  54. Kawahara, K., T. Hashiguchi, K. Kikuchi, et al. 2008. Induction of high mobility group box 1 release from serotonin-stimulated human umbilical vein endothelial cells. International Journal of Molecular Medicine 22: 639–644.

    PubMed  CAS  Google Scholar 

  55. Dagia, N.M., G. Agarwal, D.V. Kamath, et al. 2010. A preferential p110alpha/gamma PI3K inhibitor attenuates experimental inflammation by suppressing the production of proinflammatory mediators in a NF-kappaB-dependent manner. American Journal of Physiology - Cellular Physiology 298: C929–941.

    Article  CAS  Google Scholar 

  56. Wang, F.P., L. Li, J. Li, J.Y. Wang, L.Y. Wang, and W. Jiang. 2013. High mobility group box-1 promotes the proliferation and migration of hepatic stellate cells via TLR4-dependent signal pathways of PI3K/Akt and JNK. PLoS ONE 8: e64373.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Lockyer, J.M., J.S. Colladay, W.L. Alperin-Lea, T. Hammond, and A.J. Buda. 1998. Inhibition of nuclear factor-kappaB-mediated adhesion molecule expression in human endothelial cells. Circulation Research 82: 314–320.

    Article  PubMed  CAS  Google Scholar 

  58. Marui, N., M.K. Offermann, R. Swerlick, et al. 1993. Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells. Journal of Clinical Investigation 92: 1866–1874.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Rose, B.A., T. Force, and Y. Wang. 2010. Mitogen-activated protein kinase signaling in the heart: Angels versus demons in a heart-breaking tale. Physiological Reviews 90: 1507–1546.

    Article  PubMed  CAS  Google Scholar 

  60. Park, J.S., F. Gamboni-Robertson, Q. He, et al. 2006. High mobility group box 1 protein interacts with multiple Toll-like receptors. American Journal of Physiology - Cellular Physiology 290: C917–924.

    Article  CAS  Google Scholar 

  61. Yang, H., and K.J. Tracey. 2010. Targeting HMGB1 in inflammation. Biochimica et Biophysica Acta 1799: 149–156.

    Article  PubMed  CAS  Google Scholar 

  62. Palumbo, R., B.G. Galvez, T. Pusterla, et al. 2007. Cells migrating to sites of tissue damage in response to the danger signal HMGB1 require NF-kappaB activation. Journal of Cell Biology 179: 33–40.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Cohen, J. 2002. The immunopathogenesis of sepsis. Nature 420: 885–891.

    Article  PubMed  CAS  Google Scholar 

  64. Bhatia, M., M. He, H. Zhang, and S. Moochhala. 2009. Sepsis as a model of SIRS. Frontiers in Bioscience 14: 4703–4711.

    Article  CAS  Google Scholar 

  65. Tracey, K.J., Y. Fong, D.G. Hesse, et al. 1987. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature 330: 662–664.

    Article  PubMed  CAS  Google Scholar 

  66. Wichterman, K.A., A.E. Baue, and I.H. Chaudry. 1980. Sepsis and septic shock—a review of laboratory models and a proposal. Journal of Surgical Research 29: 189–201.

    Article  PubMed  CAS  Google Scholar 

  67. Wang, H., H. Yang, C.J. Czura, A.E. Sama, and K.J. Tracey. 2001. HMGB1 as a late mediator of lethal systemic inflammation. American Journal of Respiratory and Critical Care Medicine 164: 1768–1773.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Research Foundation of Korea (NRF) funded by the Korean government [MSIP] (Grant Nos. NRF-2012R1A4A1028835 and 2013–067053).

Conflict of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Sup Bae.

Additional information

Hayoung Yoo and Sae-Kwang Ku contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, H., Ku, SK., Han, MS. et al. Anti-septic Effects of Fisetin In Vitro and In Vivo . Inflammation 37, 1560–1574 (2014). https://doi.org/10.1007/s10753-014-9883-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-014-9883-4

KEY WORDS

Navigation